Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/alpha/lib/stxcpy.S
26425 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* arch/alpha/lib/stxcpy.S
4
* Contributed by Richard Henderson ([email protected])
5
*
6
* Copy a null-terminated string from SRC to DST.
7
*
8
* This is an internal routine used by strcpy, stpcpy, and strcat.
9
* As such, it uses special linkage conventions to make implementation
10
* of these public functions more efficient.
11
*
12
* On input:
13
* t9 = return address
14
* a0 = DST
15
* a1 = SRC
16
*
17
* On output:
18
* t12 = bitmask (with one bit set) indicating the last byte written
19
* a0 = unaligned address of the last *word* written
20
*
21
* Furthermore, v0, a3-a5, t11, and t12 are untouched.
22
*/
23
24
#include <asm/regdef.h>
25
26
.set noat
27
.set noreorder
28
29
.text
30
31
/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
32
doesn't like putting the entry point for a procedure somewhere in the
33
middle of the procedure descriptor. Work around this by putting the
34
aligned copy in its own procedure descriptor */
35
36
.ent stxcpy_aligned
37
.align 3
38
stxcpy_aligned:
39
.frame sp, 0, t9
40
.prologue 0
41
42
/* On entry to this basic block:
43
t0 == the first destination word for masking back in
44
t1 == the first source word. */
45
46
/* Create the 1st output word and detect 0's in the 1st input word. */
47
lda t2, -1 # e1 : build a mask against false zero
48
mskqh t2, a1, t2 # e0 : detection in the src word
49
mskqh t1, a1, t3 # e0 :
50
ornot t1, t2, t2 # .. e1 :
51
mskql t0, a1, t0 # e0 : assemble the first output word
52
cmpbge zero, t2, t8 # .. e1 : bits set iff null found
53
or t0, t3, t1 # e0 :
54
bne t8, $a_eos # .. e1 :
55
56
/* On entry to this basic block:
57
t0 == the first destination word for masking back in
58
t1 == a source word not containing a null. */
59
60
$a_loop:
61
stq_u t1, 0(a0) # e0 :
62
addq a0, 8, a0 # .. e1 :
63
ldq_u t1, 0(a1) # e0 :
64
addq a1, 8, a1 # .. e1 :
65
cmpbge zero, t1, t8 # e0 (stall)
66
beq t8, $a_loop # .. e1 (zdb)
67
68
/* Take care of the final (partial) word store.
69
On entry to this basic block we have:
70
t1 == the source word containing the null
71
t8 == the cmpbge mask that found it. */
72
$a_eos:
73
negq t8, t6 # e0 : find low bit set
74
and t8, t6, t12 # e1 (stall)
75
76
/* For the sake of the cache, don't read a destination word
77
if we're not going to need it. */
78
and t12, 0x80, t6 # e0 :
79
bne t6, 1f # .. e1 (zdb)
80
81
/* We're doing a partial word store and so need to combine
82
our source and original destination words. */
83
ldq_u t0, 0(a0) # e0 :
84
subq t12, 1, t6 # .. e1 :
85
zapnot t1, t6, t1 # e0 : clear src bytes >= null
86
or t12, t6, t8 # .. e1 :
87
zap t0, t8, t0 # e0 : clear dst bytes <= null
88
or t0, t1, t1 # e1 :
89
90
1: stq_u t1, 0(a0) # e0 :
91
ret (t9) # .. e1 :
92
93
.end stxcpy_aligned
94
95
.align 3
96
.ent __stxcpy
97
.globl __stxcpy
98
__stxcpy:
99
.frame sp, 0, t9
100
.prologue 0
101
102
/* Are source and destination co-aligned? */
103
xor a0, a1, t0 # e0 :
104
unop # :
105
and t0, 7, t0 # e0 :
106
bne t0, $unaligned # .. e1 :
107
108
/* We are co-aligned; take care of a partial first word. */
109
ldq_u t1, 0(a1) # e0 : load first src word
110
and a0, 7, t0 # .. e1 : take care not to load a word ...
111
addq a1, 8, a1 # e0 :
112
beq t0, stxcpy_aligned # .. e1 : ... if we wont need it
113
ldq_u t0, 0(a0) # e0 :
114
br stxcpy_aligned # .. e1 :
115
116
117
/* The source and destination are not co-aligned. Align the destination
118
and cope. We have to be very careful about not reading too much and
119
causing a SEGV. */
120
121
.align 3
122
$u_head:
123
/* We know just enough now to be able to assemble the first
124
full source word. We can still find a zero at the end of it
125
that prevents us from outputting the whole thing.
126
127
On entry to this basic block:
128
t0 == the first dest word, for masking back in, if needed else 0
129
t1 == the low bits of the first source word
130
t6 == bytemask that is -1 in dest word bytes */
131
132
ldq_u t2, 8(a1) # e0 :
133
addq a1, 8, a1 # .. e1 :
134
135
extql t1, a1, t1 # e0 :
136
extqh t2, a1, t4 # e0 :
137
mskql t0, a0, t0 # e0 :
138
or t1, t4, t1 # .. e1 :
139
mskqh t1, a0, t1 # e0 :
140
or t0, t1, t1 # e1 :
141
142
or t1, t6, t6 # e0 :
143
cmpbge zero, t6, t8 # .. e1 :
144
lda t6, -1 # e0 : for masking just below
145
bne t8, $u_final # .. e1 :
146
147
mskql t6, a1, t6 # e0 : mask out the bits we have
148
or t6, t2, t2 # e1 : already extracted before
149
cmpbge zero, t2, t8 # e0 : testing eos
150
bne t8, $u_late_head_exit # .. e1 (zdb)
151
152
/* Finally, we've got all the stupid leading edge cases taken care
153
of and we can set up to enter the main loop. */
154
155
stq_u t1, 0(a0) # e0 : store first output word
156
addq a0, 8, a0 # .. e1 :
157
extql t2, a1, t0 # e0 : position ho-bits of lo word
158
ldq_u t2, 8(a1) # .. e1 : read next high-order source word
159
addq a1, 8, a1 # e0 :
160
cmpbge zero, t2, t8 # .. e1 :
161
nop # e0 :
162
bne t8, $u_eos # .. e1 :
163
164
/* Unaligned copy main loop. In order to avoid reading too much,
165
the loop is structured to detect zeros in aligned source words.
166
This has, unfortunately, effectively pulled half of a loop
167
iteration out into the head and half into the tail, but it does
168
prevent nastiness from accumulating in the very thing we want
169
to run as fast as possible.
170
171
On entry to this basic block:
172
t0 == the shifted high-order bits from the previous source word
173
t2 == the unshifted current source word
174
175
We further know that t2 does not contain a null terminator. */
176
177
.align 3
178
$u_loop:
179
extqh t2, a1, t1 # e0 : extract high bits for current word
180
addq a1, 8, a1 # .. e1 :
181
extql t2, a1, t3 # e0 : extract low bits for next time
182
addq a0, 8, a0 # .. e1 :
183
or t0, t1, t1 # e0 : current dst word now complete
184
ldq_u t2, 0(a1) # .. e1 : load high word for next time
185
stq_u t1, -8(a0) # e0 : save the current word
186
mov t3, t0 # .. e1 :
187
cmpbge zero, t2, t8 # e0 : test new word for eos
188
beq t8, $u_loop # .. e1 :
189
190
/* We've found a zero somewhere in the source word we just read.
191
If it resides in the lower half, we have one (probably partial)
192
word to write out, and if it resides in the upper half, we
193
have one full and one partial word left to write out.
194
195
On entry to this basic block:
196
t0 == the shifted high-order bits from the previous source word
197
t2 == the unshifted current source word. */
198
$u_eos:
199
extqh t2, a1, t1 # e0 :
200
or t0, t1, t1 # e1 : first (partial) source word complete
201
202
cmpbge zero, t1, t8 # e0 : is the null in this first bit?
203
bne t8, $u_final # .. e1 (zdb)
204
205
$u_late_head_exit:
206
stq_u t1, 0(a0) # e0 : the null was in the high-order bits
207
addq a0, 8, a0 # .. e1 :
208
extql t2, a1, t1 # e0 :
209
cmpbge zero, t1, t8 # .. e1 :
210
211
/* Take care of a final (probably partial) result word.
212
On entry to this basic block:
213
t1 == assembled source word
214
t8 == cmpbge mask that found the null. */
215
$u_final:
216
negq t8, t6 # e0 : isolate low bit set
217
and t6, t8, t12 # e1 :
218
219
and t12, 0x80, t6 # e0 : avoid dest word load if we can
220
bne t6, 1f # .. e1 (zdb)
221
222
ldq_u t0, 0(a0) # e0 :
223
subq t12, 1, t6 # .. e1 :
224
or t6, t12, t8 # e0 :
225
zapnot t1, t6, t1 # .. e1 : kill source bytes >= null
226
zap t0, t8, t0 # e0 : kill dest bytes <= null
227
or t0, t1, t1 # e1 :
228
229
1: stq_u t1, 0(a0) # e0 :
230
ret (t9) # .. e1 :
231
232
/* Unaligned copy entry point. */
233
.align 3
234
$unaligned:
235
236
ldq_u t1, 0(a1) # e0 : load first source word
237
238
and a0, 7, t4 # .. e1 : find dest misalignment
239
and a1, 7, t5 # e0 : find src misalignment
240
241
/* Conditionally load the first destination word and a bytemask
242
with 0xff indicating that the destination byte is sacrosanct. */
243
244
mov zero, t0 # .. e1 :
245
mov zero, t6 # e0 :
246
beq t4, 1f # .. e1 :
247
ldq_u t0, 0(a0) # e0 :
248
lda t6, -1 # .. e1 :
249
mskql t6, a0, t6 # e0 :
250
1:
251
subq a1, t4, a1 # .. e1 : sub dest misalignment from src addr
252
253
/* If source misalignment is larger than dest misalignment, we need
254
extra startup checks to avoid SEGV. */
255
256
cmplt t4, t5, t12 # e0 :
257
beq t12, $u_head # .. e1 (zdb)
258
259
lda t2, -1 # e1 : mask out leading garbage in source
260
mskqh t2, t5, t2 # e0 :
261
nop # e0 :
262
ornot t1, t2, t3 # .. e1 :
263
cmpbge zero, t3, t8 # e0 : is there a zero?
264
beq t8, $u_head # .. e1 (zdb)
265
266
/* At this point we've found a zero in the first partial word of
267
the source. We need to isolate the valid source data and mask
268
it into the original destination data. (Incidentally, we know
269
that we'll need at least one byte of that original dest word.) */
270
271
ldq_u t0, 0(a0) # e0 :
272
273
negq t8, t6 # .. e1 : build bitmask of bytes <= zero
274
and t6, t8, t12 # e0 :
275
and a1, 7, t5 # .. e1 :
276
subq t12, 1, t6 # e0 :
277
or t6, t12, t8 # e1 :
278
srl t12, t5, t12 # e0 : adjust final null return value
279
280
zapnot t2, t8, t2 # .. e1 : prepare source word; mirror changes
281
and t1, t2, t1 # e1 : to source validity mask
282
extql t2, a1, t2 # .. e0 :
283
extql t1, a1, t1 # e0 :
284
285
andnot t0, t2, t0 # .. e1 : zero place for source to reside
286
or t0, t1, t1 # e1 : and put it there
287
stq_u t1, 0(a0) # .. e0 :
288
ret (t9) # e1 :
289
290
.end __stxcpy
291
292