Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/alpha/lib/stxncpy.S
26424 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* arch/alpha/lib/stxncpy.S
4
* Contributed by Richard Henderson ([email protected])
5
*
6
* Copy no more than COUNT bytes of the null-terminated string from
7
* SRC to DST.
8
*
9
* This is an internal routine used by strncpy, stpncpy, and strncat.
10
* As such, it uses special linkage conventions to make implementation
11
* of these public functions more efficient.
12
*
13
* On input:
14
* t9 = return address
15
* a0 = DST
16
* a1 = SRC
17
* a2 = COUNT
18
*
19
* Furthermore, COUNT may not be zero.
20
*
21
* On output:
22
* t0 = last word written
23
* t10 = bitmask (with one bit set) indicating the byte position of
24
* the end of the range specified by COUNT
25
* t12 = bitmask (with one bit set) indicating the last byte written
26
* a0 = unaligned address of the last *word* written
27
* a2 = the number of full words left in COUNT
28
*
29
* Furthermore, v0, a3-a5, t11, and $at are untouched.
30
*/
31
32
#include <asm/regdef.h>
33
34
.set noat
35
.set noreorder
36
37
.text
38
39
/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
40
doesn't like putting the entry point for a procedure somewhere in the
41
middle of the procedure descriptor. Work around this by putting the
42
aligned copy in its own procedure descriptor */
43
44
.ent stxncpy_aligned
45
.align 3
46
stxncpy_aligned:
47
.frame sp, 0, t9, 0
48
.prologue 0
49
50
/* On entry to this basic block:
51
t0 == the first destination word for masking back in
52
t1 == the first source word. */
53
54
/* Create the 1st output word and detect 0's in the 1st input word. */
55
lda t2, -1 # e1 : build a mask against false zero
56
mskqh t2, a1, t2 # e0 : detection in the src word
57
mskqh t1, a1, t3 # e0 :
58
ornot t1, t2, t2 # .. e1 :
59
mskql t0, a1, t0 # e0 : assemble the first output word
60
cmpbge zero, t2, t8 # .. e1 : bits set iff null found
61
or t0, t3, t0 # e0 :
62
beq a2, $a_eoc # .. e1 :
63
bne t8, $a_eos # .. e1 :
64
65
/* On entry to this basic block:
66
t0 == a source word not containing a null. */
67
68
$a_loop:
69
stq_u t0, 0(a0) # e0 :
70
addq a0, 8, a0 # .. e1 :
71
ldq_u t0, 0(a1) # e0 :
72
addq a1, 8, a1 # .. e1 :
73
subq a2, 1, a2 # e0 :
74
cmpbge zero, t0, t8 # .. e1 (stall)
75
beq a2, $a_eoc # e1 :
76
beq t8, $a_loop # e1 :
77
78
/* Take care of the final (partial) word store. At this point
79
the end-of-count bit is set in t8 iff it applies.
80
81
On entry to this basic block we have:
82
t0 == the source word containing the null
83
t8 == the cmpbge mask that found it. */
84
85
$a_eos:
86
negq t8, t12 # e0 : find low bit set
87
and t8, t12, t12 # e1 (stall)
88
89
/* For the sake of the cache, don't read a destination word
90
if we're not going to need it. */
91
and t12, 0x80, t6 # e0 :
92
bne t6, 1f # .. e1 (zdb)
93
94
/* We're doing a partial word store and so need to combine
95
our source and original destination words. */
96
ldq_u t1, 0(a0) # e0 :
97
subq t12, 1, t6 # .. e1 :
98
or t12, t6, t8 # e0 :
99
unop #
100
zapnot t0, t8, t0 # e0 : clear src bytes > null
101
zap t1, t8, t1 # .. e1 : clear dst bytes <= null
102
or t0, t1, t0 # e1 :
103
104
1: stq_u t0, 0(a0) # e0 :
105
ret (t9) # e1 :
106
107
/* Add the end-of-count bit to the eos detection bitmask. */
108
$a_eoc:
109
or t10, t8, t8
110
br $a_eos
111
112
.end stxncpy_aligned
113
114
.align 3
115
.ent __stxncpy
116
.globl __stxncpy
117
__stxncpy:
118
.frame sp, 0, t9, 0
119
.prologue 0
120
121
/* Are source and destination co-aligned? */
122
xor a0, a1, t1 # e0 :
123
and a0, 7, t0 # .. e1 : find dest misalignment
124
and t1, 7, t1 # e0 :
125
addq a2, t0, a2 # .. e1 : bias count by dest misalignment
126
subq a2, 1, a2 # e0 :
127
and a2, 7, t2 # e1 :
128
srl a2, 3, a2 # e0 : a2 = loop counter = (count - 1)/8
129
addq zero, 1, t10 # .. e1 :
130
sll t10, t2, t10 # e0 : t10 = bitmask of last count byte
131
bne t1, $unaligned # .. e1 :
132
133
/* We are co-aligned; take care of a partial first word. */
134
135
ldq_u t1, 0(a1) # e0 : load first src word
136
addq a1, 8, a1 # .. e1 :
137
138
beq t0, stxncpy_aligned # avoid loading dest word if not needed
139
ldq_u t0, 0(a0) # e0 :
140
br stxncpy_aligned # .. e1 :
141
142
143
/* The source and destination are not co-aligned. Align the destination
144
and cope. We have to be very careful about not reading too much and
145
causing a SEGV. */
146
147
.align 3
148
$u_head:
149
/* We know just enough now to be able to assemble the first
150
full source word. We can still find a zero at the end of it
151
that prevents us from outputting the whole thing.
152
153
On entry to this basic block:
154
t0 == the first dest word, unmasked
155
t1 == the shifted low bits of the first source word
156
t6 == bytemask that is -1 in dest word bytes */
157
158
ldq_u t2, 8(a1) # e0 : load second src word
159
addq a1, 8, a1 # .. e1 :
160
mskql t0, a0, t0 # e0 : mask trailing garbage in dst
161
extqh t2, a1, t4 # e0 :
162
or t1, t4, t1 # e1 : first aligned src word complete
163
mskqh t1, a0, t1 # e0 : mask leading garbage in src
164
or t0, t1, t0 # e0 : first output word complete
165
or t0, t6, t6 # e1 : mask original data for zero test
166
cmpbge zero, t6, t8 # e0 :
167
beq a2, $u_eocfin # .. e1 :
168
lda t6, -1 # e0 :
169
bne t8, $u_final # .. e1 :
170
171
mskql t6, a1, t6 # e0 : mask out bits already seen
172
nop # .. e1 :
173
stq_u t0, 0(a0) # e0 : store first output word
174
or t6, t2, t2 # .. e1 :
175
cmpbge zero, t2, t8 # e0 : find nulls in second partial
176
addq a0, 8, a0 # .. e1 :
177
subq a2, 1, a2 # e0 :
178
bne t8, $u_late_head_exit # .. e1 :
179
180
/* Finally, we've got all the stupid leading edge cases taken care
181
of and we can set up to enter the main loop. */
182
183
extql t2, a1, t1 # e0 : position hi-bits of lo word
184
beq a2, $u_eoc # .. e1 :
185
ldq_u t2, 8(a1) # e0 : read next high-order source word
186
addq a1, 8, a1 # .. e1 :
187
extqh t2, a1, t0 # e0 : position lo-bits of hi word (stall)
188
cmpbge zero, t2, t8 # .. e1 :
189
nop # e0 :
190
bne t8, $u_eos # .. e1 :
191
192
/* Unaligned copy main loop. In order to avoid reading too much,
193
the loop is structured to detect zeros in aligned source words.
194
This has, unfortunately, effectively pulled half of a loop
195
iteration out into the head and half into the tail, but it does
196
prevent nastiness from accumulating in the very thing we want
197
to run as fast as possible.
198
199
On entry to this basic block:
200
t0 == the shifted low-order bits from the current source word
201
t1 == the shifted high-order bits from the previous source word
202
t2 == the unshifted current source word
203
204
We further know that t2 does not contain a null terminator. */
205
206
.align 3
207
$u_loop:
208
or t0, t1, t0 # e0 : current dst word now complete
209
subq a2, 1, a2 # .. e1 : decrement word count
210
stq_u t0, 0(a0) # e0 : save the current word
211
addq a0, 8, a0 # .. e1 :
212
extql t2, a1, t1 # e0 : extract high bits for next time
213
beq a2, $u_eoc # .. e1 :
214
ldq_u t2, 8(a1) # e0 : load high word for next time
215
addq a1, 8, a1 # .. e1 :
216
nop # e0 :
217
cmpbge zero, t2, t8 # e1 : test new word for eos (stall)
218
extqh t2, a1, t0 # e0 : extract low bits for current word
219
beq t8, $u_loop # .. e1 :
220
221
/* We've found a zero somewhere in the source word we just read.
222
If it resides in the lower half, we have one (probably partial)
223
word to write out, and if it resides in the upper half, we
224
have one full and one partial word left to write out.
225
226
On entry to this basic block:
227
t0 == the shifted low-order bits from the current source word
228
t1 == the shifted high-order bits from the previous source word
229
t2 == the unshifted current source word. */
230
$u_eos:
231
or t0, t1, t0 # e0 : first (partial) source word complete
232
nop # .. e1 :
233
cmpbge zero, t0, t8 # e0 : is the null in this first bit?
234
bne t8, $u_final # .. e1 (zdb)
235
236
stq_u t0, 0(a0) # e0 : the null was in the high-order bits
237
addq a0, 8, a0 # .. e1 :
238
subq a2, 1, a2 # e1 :
239
240
$u_late_head_exit:
241
extql t2, a1, t0 # .. e0 :
242
cmpbge zero, t0, t8 # e0 :
243
or t8, t10, t6 # e1 :
244
cmoveq a2, t6, t8 # e0 :
245
nop # .. e1 :
246
247
/* Take care of a final (probably partial) result word.
248
On entry to this basic block:
249
t0 == assembled source word
250
t8 == cmpbge mask that found the null. */
251
$u_final:
252
negq t8, t6 # e0 : isolate low bit set
253
and t6, t8, t12 # e1 :
254
255
and t12, 0x80, t6 # e0 : avoid dest word load if we can
256
bne t6, 1f # .. e1 (zdb)
257
258
ldq_u t1, 0(a0) # e0 :
259
subq t12, 1, t6 # .. e1 :
260
or t6, t12, t8 # e0 :
261
zapnot t0, t8, t0 # .. e1 : kill source bytes > null
262
zap t1, t8, t1 # e0 : kill dest bytes <= null
263
or t0, t1, t0 # e1 :
264
265
1: stq_u t0, 0(a0) # e0 :
266
ret (t9) # .. e1 :
267
268
/* Got to end-of-count before end of string.
269
On entry to this basic block:
270
t1 == the shifted high-order bits from the previous source word */
271
$u_eoc:
272
and a1, 7, t6 # e1 :
273
sll t10, t6, t6 # e0 :
274
and t6, 0xff, t6 # e0 :
275
bne t6, 1f # .. e1 :
276
277
ldq_u t2, 8(a1) # e0 : load final src word
278
nop # .. e1 :
279
extqh t2, a1, t0 # e0 : extract low bits for last word
280
or t1, t0, t1 # e1 :
281
282
1: cmpbge zero, t1, t8
283
mov t1, t0
284
285
$u_eocfin: # end-of-count, final word
286
or t10, t8, t8
287
br $u_final
288
289
/* Unaligned copy entry point. */
290
.align 3
291
$unaligned:
292
293
ldq_u t1, 0(a1) # e0 : load first source word
294
295
and a0, 7, t4 # .. e1 : find dest misalignment
296
and a1, 7, t5 # e0 : find src misalignment
297
298
/* Conditionally load the first destination word and a bytemask
299
with 0xff indicating that the destination byte is sacrosanct. */
300
301
mov zero, t0 # .. e1 :
302
mov zero, t6 # e0 :
303
beq t4, 1f # .. e1 :
304
ldq_u t0, 0(a0) # e0 :
305
lda t6, -1 # .. e1 :
306
mskql t6, a0, t6 # e0 :
307
subq a1, t4, a1 # .. e1 : sub dest misalignment from src addr
308
309
/* If source misalignment is larger than dest misalignment, we need
310
extra startup checks to avoid SEGV. */
311
312
1: cmplt t4, t5, t12 # e1 :
313
extql t1, a1, t1 # .. e0 : shift src into place
314
lda t2, -1 # e0 : for creating masks later
315
beq t12, $u_head # .. e1 :
316
317
extql t2, a1, t2 # e0 :
318
cmpbge zero, t1, t8 # .. e1 : is there a zero?
319
andnot t2, t6, t2 # e0 : dest mask for a single word copy
320
or t8, t10, t5 # .. e1 : test for end-of-count too
321
cmpbge zero, t2, t3 # e0 :
322
cmoveq a2, t5, t8 # .. e1 :
323
andnot t8, t3, t8 # e0 :
324
beq t8, $u_head # .. e1 (zdb)
325
326
/* At this point we've found a zero in the first partial word of
327
the source. We need to isolate the valid source data and mask
328
it into the original destination data. (Incidentally, we know
329
that we'll need at least one byte of that original dest word.) */
330
331
ldq_u t0, 0(a0) # e0 :
332
negq t8, t6 # .. e1 : build bitmask of bytes <= zero
333
mskqh t1, t4, t1 # e0 :
334
and t6, t8, t12 # .. e1 :
335
subq t12, 1, t6 # e0 :
336
or t6, t12, t8 # e1 :
337
338
zapnot t2, t8, t2 # e0 : prepare source word; mirror changes
339
zapnot t1, t8, t1 # .. e1 : to source validity mask
340
341
andnot t0, t2, t0 # e0 : zero place for source to reside
342
or t0, t1, t0 # e1 : and put it there
343
stq_u t0, 0(a0) # e0 :
344
ret (t9) # .. e1 :
345
346
.end __stxncpy
347
348