Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arc/kernel/kprobes.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4
*/
5
6
#include <linux/types.h>
7
#include <linux/kprobes.h>
8
#include <linux/slab.h>
9
#include <linux/module.h>
10
#include <linux/kdebug.h>
11
#include <linux/sched.h>
12
#include <linux/uaccess.h>
13
#include <asm/cacheflush.h>
14
#include <asm/current.h>
15
#include <asm/disasm.h>
16
17
#define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \
18
(unsigned long)current_thread_info() + THREAD_SIZE - (addr))
19
20
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22
23
int __kprobes arch_prepare_kprobe(struct kprobe *p)
24
{
25
/* Attempt to probe at unaligned address */
26
if ((unsigned long)p->addr & 0x01)
27
return -EINVAL;
28
29
/* Address should not be in exception handling code */
30
31
p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
32
p->opcode = *p->addr;
33
34
return 0;
35
}
36
37
void __kprobes arch_arm_kprobe(struct kprobe *p)
38
{
39
*p->addr = UNIMP_S_INSTRUCTION;
40
41
flush_icache_range((unsigned long)p->addr,
42
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
43
}
44
45
void __kprobes arch_disarm_kprobe(struct kprobe *p)
46
{
47
*p->addr = p->opcode;
48
49
flush_icache_range((unsigned long)p->addr,
50
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
51
}
52
53
void __kprobes arch_remove_kprobe(struct kprobe *p)
54
{
55
arch_disarm_kprobe(p);
56
57
/* Can we remove the kprobe in the middle of kprobe handling? */
58
if (p->ainsn.t1_addr) {
59
*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
60
61
flush_icache_range((unsigned long)p->ainsn.t1_addr,
62
(unsigned long)p->ainsn.t1_addr +
63
sizeof(kprobe_opcode_t));
64
65
p->ainsn.t1_addr = NULL;
66
}
67
68
if (p->ainsn.t2_addr) {
69
*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
70
71
flush_icache_range((unsigned long)p->ainsn.t2_addr,
72
(unsigned long)p->ainsn.t2_addr +
73
sizeof(kprobe_opcode_t));
74
75
p->ainsn.t2_addr = NULL;
76
}
77
}
78
79
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
80
{
81
kcb->prev_kprobe.kp = kprobe_running();
82
kcb->prev_kprobe.status = kcb->kprobe_status;
83
}
84
85
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
86
{
87
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88
kcb->kprobe_status = kcb->prev_kprobe.status;
89
}
90
91
static inline void __kprobes set_current_kprobe(struct kprobe *p)
92
{
93
__this_cpu_write(current_kprobe, p);
94
}
95
96
static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
97
struct pt_regs *regs)
98
{
99
/* Remove the trap instructions inserted for single step and
100
* restore the original instructions
101
*/
102
if (p->ainsn.t1_addr) {
103
*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
104
105
flush_icache_range((unsigned long)p->ainsn.t1_addr,
106
(unsigned long)p->ainsn.t1_addr +
107
sizeof(kprobe_opcode_t));
108
109
p->ainsn.t1_addr = NULL;
110
}
111
112
if (p->ainsn.t2_addr) {
113
*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
114
115
flush_icache_range((unsigned long)p->ainsn.t2_addr,
116
(unsigned long)p->ainsn.t2_addr +
117
sizeof(kprobe_opcode_t));
118
119
p->ainsn.t2_addr = NULL;
120
}
121
122
return;
123
}
124
125
static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
126
{
127
unsigned long next_pc;
128
unsigned long tgt_if_br = 0;
129
int is_branch;
130
unsigned long bta;
131
132
/* Copy the opcode back to the kprobe location and execute the
133
* instruction. Because of this we will not be able to get into the
134
* same kprobe until this kprobe is done
135
*/
136
*(p->addr) = p->opcode;
137
138
flush_icache_range((unsigned long)p->addr,
139
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
140
141
/* Now we insert the trap at the next location after this instruction to
142
* single step. If it is a branch we insert the trap at possible branch
143
* targets
144
*/
145
146
bta = regs->bta;
147
148
if (regs->status32 & 0x40) {
149
/* We are in a delay slot with the branch taken */
150
151
next_pc = bta & ~0x01;
152
153
if (!p->ainsn.is_short) {
154
if (bta & 0x01)
155
regs->blink += 2;
156
else {
157
/* Branch not taken */
158
next_pc += 2;
159
160
/* next pc is taken from bta after executing the
161
* delay slot instruction
162
*/
163
regs->bta += 2;
164
}
165
}
166
167
is_branch = 0;
168
} else
169
is_branch =
170
disasm_next_pc((unsigned long)p->addr, regs,
171
(struct callee_regs *) current->thread.callee_reg,
172
&next_pc, &tgt_if_br);
173
174
p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
175
p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
176
*(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
177
178
flush_icache_range((unsigned long)p->ainsn.t1_addr,
179
(unsigned long)p->ainsn.t1_addr +
180
sizeof(kprobe_opcode_t));
181
182
if (is_branch) {
183
p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
184
p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
185
*(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
186
187
flush_icache_range((unsigned long)p->ainsn.t2_addr,
188
(unsigned long)p->ainsn.t2_addr +
189
sizeof(kprobe_opcode_t));
190
}
191
}
192
193
static int
194
__kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
195
{
196
struct kprobe *p;
197
struct kprobe_ctlblk *kcb;
198
199
preempt_disable();
200
201
kcb = get_kprobe_ctlblk();
202
p = get_kprobe((unsigned long *)addr);
203
204
if (p) {
205
/*
206
* We have reentered the kprobe_handler, since another kprobe
207
* was hit while within the handler, we save the original
208
* kprobes and single step on the instruction of the new probe
209
* without calling any user handlers to avoid recursive
210
* kprobes.
211
*/
212
if (kprobe_running()) {
213
save_previous_kprobe(kcb);
214
set_current_kprobe(p);
215
kprobes_inc_nmissed_count(p);
216
setup_singlestep(p, regs);
217
kcb->kprobe_status = KPROBE_REENTER;
218
return 1;
219
}
220
221
set_current_kprobe(p);
222
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
223
224
/* If we have no pre-handler or it returned 0, we continue with
225
* normal processing. If we have a pre-handler and it returned
226
* non-zero - which means user handler setup registers to exit
227
* to another instruction, we must skip the single stepping.
228
*/
229
if (!p->pre_handler || !p->pre_handler(p, regs)) {
230
setup_singlestep(p, regs);
231
kcb->kprobe_status = KPROBE_HIT_SS;
232
} else {
233
reset_current_kprobe();
234
preempt_enable_no_resched();
235
}
236
237
return 1;
238
}
239
240
/* no_kprobe: */
241
preempt_enable_no_resched();
242
return 0;
243
}
244
245
static int
246
__kprobes arc_post_kprobe_handler(unsigned long addr, struct pt_regs *regs)
247
{
248
struct kprobe *cur = kprobe_running();
249
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
250
251
if (!cur)
252
return 0;
253
254
resume_execution(cur, addr, regs);
255
256
/* Rearm the kprobe */
257
arch_arm_kprobe(cur);
258
259
/*
260
* When we return from trap instruction we go to the next instruction
261
* We restored the actual instruction in resume_exectuiont and we to
262
* return to the same address and execute it
263
*/
264
regs->ret = addr;
265
266
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
267
kcb->kprobe_status = KPROBE_HIT_SSDONE;
268
cur->post_handler(cur, regs, 0);
269
}
270
271
if (kcb->kprobe_status == KPROBE_REENTER) {
272
restore_previous_kprobe(kcb);
273
goto out;
274
}
275
276
reset_current_kprobe();
277
278
out:
279
preempt_enable_no_resched();
280
return 1;
281
}
282
283
/*
284
* Fault can be for the instruction being single stepped or for the
285
* pre/post handlers in the module.
286
* This is applicable for applications like user probes, where we have the
287
* probe in user space and the handlers in the kernel
288
*/
289
290
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
291
{
292
struct kprobe *cur = kprobe_running();
293
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
294
295
switch (kcb->kprobe_status) {
296
case KPROBE_HIT_SS:
297
case KPROBE_REENTER:
298
/*
299
* We are here because the instruction being single stepped
300
* caused the fault. We reset the current kprobe and allow the
301
* exception handler as if it is regular exception. In our
302
* case it doesn't matter because the system will be halted
303
*/
304
resume_execution(cur, (unsigned long)cur->addr, regs);
305
306
if (kcb->kprobe_status == KPROBE_REENTER)
307
restore_previous_kprobe(kcb);
308
else
309
reset_current_kprobe();
310
311
preempt_enable_no_resched();
312
break;
313
314
case KPROBE_HIT_ACTIVE:
315
case KPROBE_HIT_SSDONE:
316
/*
317
* We are here because the instructions in the pre/post handler
318
* caused the fault.
319
*/
320
321
/*
322
* In case the user-specified fault handler returned zero,
323
* try to fix up.
324
*/
325
if (fixup_exception(regs))
326
return 1;
327
328
/*
329
* fixup_exception() could not handle it,
330
* Let do_page_fault() fix it.
331
*/
332
break;
333
334
default:
335
break;
336
}
337
return 0;
338
}
339
340
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
341
unsigned long val, void *data)
342
{
343
struct die_args *args = data;
344
unsigned long addr = args->err;
345
int ret = NOTIFY_DONE;
346
347
switch (val) {
348
case DIE_IERR:
349
if (arc_kprobe_handler(addr, args->regs))
350
return NOTIFY_STOP;
351
break;
352
353
case DIE_TRAP:
354
if (arc_post_kprobe_handler(addr, args->regs))
355
return NOTIFY_STOP;
356
break;
357
358
default:
359
break;
360
}
361
362
return ret;
363
}
364
365
static void __used kretprobe_trampoline_holder(void)
366
{
367
__asm__ __volatile__(".global __kretprobe_trampoline\n"
368
"__kretprobe_trampoline:\n"
369
"nop\n");
370
}
371
372
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
373
struct pt_regs *regs)
374
{
375
376
ri->ret_addr = (kprobe_opcode_t *) regs->blink;
377
ri->fp = NULL;
378
379
/* Replace the return addr with trampoline addr */
380
regs->blink = (unsigned long)&__kretprobe_trampoline;
381
}
382
383
static int __kprobes trampoline_probe_handler(struct kprobe *p,
384
struct pt_regs *regs)
385
{
386
regs->ret = __kretprobe_trampoline_handler(regs, NULL);
387
388
/* By returning a non zero value, we are telling the kprobe handler
389
* that we don't want the post_handler to run
390
*/
391
return 1;
392
}
393
394
static struct kprobe trampoline_p = {
395
.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
396
.pre_handler = trampoline_probe_handler
397
};
398
399
int __init arch_init_kprobes(void)
400
{
401
/* Registering the trampoline code for the kret probe */
402
return register_kprobe(&trampoline_p);
403
}
404
405
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
406
{
407
if (p->addr == (kprobe_opcode_t *) &__kretprobe_trampoline)
408
return 1;
409
410
return 0;
411
}
412
413
void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
414
{
415
notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
416
}
417
418