Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arc/kernel/perf_event.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0+
2
//
3
// Linux performance counter support for ARC CPUs.
4
// This code is inspired by the perf support of various other architectures.
5
//
6
// Copyright (C) 2013-2018 Synopsys, Inc. (www.synopsys.com)
7
8
#include <linux/errno.h>
9
#include <linux/interrupt.h>
10
#include <linux/module.h>
11
#include <linux/of.h>
12
#include <linux/perf_event.h>
13
#include <linux/platform_device.h>
14
#include <asm/arcregs.h>
15
#include <asm/stacktrace.h>
16
17
/* HW holds 8 symbols + one for null terminator */
18
#define ARCPMU_EVENT_NAME_LEN 9
19
20
/*
21
* Some ARC pct quirks:
22
*
23
* PERF_COUNT_HW_STALLED_CYCLES_BACKEND
24
* PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
25
* The ARC 700 can either measure stalls per pipeline stage, or all stalls
26
* combined; for now we assign all stalls to STALLED_CYCLES_BACKEND
27
* and all pipeline flushes (e.g. caused by mispredicts, etc.) to
28
* STALLED_CYCLES_FRONTEND.
29
*
30
* We could start multiple performance counters and combine everything
31
* afterwards, but that makes it complicated.
32
*
33
* Note that I$ cache misses aren't counted by either of the two!
34
*/
35
36
/*
37
* ARC PCT has hardware conditions with fixed "names" but variable "indexes"
38
* (based on a specific RTL build)
39
* Below is the static map between perf generic/arc specific event_id and
40
* h/w condition names.
41
* At the time of probe, we loop thru each index and find its name to
42
* complete the mapping of perf event_id to h/w index as latter is needed
43
* to program the counter really
44
*/
45
static const char * const arc_pmu_ev_hw_map[] = {
46
/* count cycles */
47
[PERF_COUNT_HW_CPU_CYCLES] = "crun",
48
[PERF_COUNT_HW_REF_CPU_CYCLES] = "crun",
49
[PERF_COUNT_HW_BUS_CYCLES] = "crun",
50
51
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = "bflush",
52
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = "bstall",
53
54
/* counts condition */
55
[PERF_COUNT_HW_INSTRUCTIONS] = "iall",
56
/* All jump instructions that are taken */
57
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = "ijmptak",
58
#ifdef CONFIG_ISA_ARCV2
59
[PERF_COUNT_HW_BRANCH_MISSES] = "bpmp",
60
#else
61
[PERF_COUNT_ARC_BPOK] = "bpok", /* NP-NT, PT-T, PNT-NT */
62
[PERF_COUNT_HW_BRANCH_MISSES] = "bpfail", /* NP-T, PT-NT, PNT-T */
63
#endif
64
[PERF_COUNT_ARC_LDC] = "imemrdc", /* Instr: mem read cached */
65
[PERF_COUNT_ARC_STC] = "imemwrc", /* Instr: mem write cached */
66
67
[PERF_COUNT_ARC_DCLM] = "dclm", /* D-cache Load Miss */
68
[PERF_COUNT_ARC_DCSM] = "dcsm", /* D-cache Store Miss */
69
[PERF_COUNT_ARC_ICM] = "icm", /* I-cache Miss */
70
[PERF_COUNT_ARC_EDTLB] = "edtlb", /* D-TLB Miss */
71
[PERF_COUNT_ARC_EITLB] = "eitlb", /* I-TLB Miss */
72
73
[PERF_COUNT_HW_CACHE_REFERENCES] = "imemrdc", /* Instr: mem read cached */
74
[PERF_COUNT_HW_CACHE_MISSES] = "dclm", /* D-cache Load Miss */
75
};
76
77
#define C(_x) PERF_COUNT_HW_CACHE_##_x
78
#define CACHE_OP_UNSUPPORTED 0xffff
79
80
static const unsigned int arc_pmu_cache_map[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
81
[C(L1D)] = {
82
[C(OP_READ)] = {
83
[C(RESULT_ACCESS)] = PERF_COUNT_ARC_LDC,
84
[C(RESULT_MISS)] = PERF_COUNT_ARC_DCLM,
85
},
86
[C(OP_WRITE)] = {
87
[C(RESULT_ACCESS)] = PERF_COUNT_ARC_STC,
88
[C(RESULT_MISS)] = PERF_COUNT_ARC_DCSM,
89
},
90
[C(OP_PREFETCH)] = {
91
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
92
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
93
},
94
},
95
[C(L1I)] = {
96
[C(OP_READ)] = {
97
[C(RESULT_ACCESS)] = PERF_COUNT_HW_INSTRUCTIONS,
98
[C(RESULT_MISS)] = PERF_COUNT_ARC_ICM,
99
},
100
[C(OP_WRITE)] = {
101
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
102
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
103
},
104
[C(OP_PREFETCH)] = {
105
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
106
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
107
},
108
},
109
[C(LL)] = {
110
[C(OP_READ)] = {
111
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
112
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
113
},
114
[C(OP_WRITE)] = {
115
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
116
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
117
},
118
[C(OP_PREFETCH)] = {
119
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
120
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
121
},
122
},
123
[C(DTLB)] = {
124
[C(OP_READ)] = {
125
[C(RESULT_ACCESS)] = PERF_COUNT_ARC_LDC,
126
[C(RESULT_MISS)] = PERF_COUNT_ARC_EDTLB,
127
},
128
/* DTLB LD/ST Miss not segregated by h/w*/
129
[C(OP_WRITE)] = {
130
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
131
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
132
},
133
[C(OP_PREFETCH)] = {
134
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
135
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
136
},
137
},
138
[C(ITLB)] = {
139
[C(OP_READ)] = {
140
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
141
[C(RESULT_MISS)] = PERF_COUNT_ARC_EITLB,
142
},
143
[C(OP_WRITE)] = {
144
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
145
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
146
},
147
[C(OP_PREFETCH)] = {
148
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
149
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
150
},
151
},
152
[C(BPU)] = {
153
[C(OP_READ)] = {
154
[C(RESULT_ACCESS)] = PERF_COUNT_HW_BRANCH_INSTRUCTIONS,
155
[C(RESULT_MISS)] = PERF_COUNT_HW_BRANCH_MISSES,
156
},
157
[C(OP_WRITE)] = {
158
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
159
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
160
},
161
[C(OP_PREFETCH)] = {
162
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
163
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
164
},
165
},
166
[C(NODE)] = {
167
[C(OP_READ)] = {
168
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
169
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
170
},
171
[C(OP_WRITE)] = {
172
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
173
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
174
},
175
[C(OP_PREFETCH)] = {
176
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
177
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
178
},
179
},
180
};
181
182
enum arc_pmu_attr_groups {
183
ARCPMU_ATTR_GR_EVENTS,
184
ARCPMU_ATTR_GR_FORMATS,
185
ARCPMU_NR_ATTR_GR
186
};
187
188
struct arc_pmu_raw_event_entry {
189
char name[ARCPMU_EVENT_NAME_LEN];
190
};
191
192
struct arc_pmu {
193
struct pmu pmu;
194
unsigned int irq;
195
int n_counters;
196
int n_events;
197
u64 max_period;
198
int ev_hw_idx[PERF_COUNT_ARC_HW_MAX];
199
200
struct arc_pmu_raw_event_entry *raw_entry;
201
struct attribute **attrs;
202
struct perf_pmu_events_attr *attr;
203
const struct attribute_group *attr_groups[ARCPMU_NR_ATTR_GR + 1];
204
};
205
206
struct arc_pmu_cpu {
207
/*
208
* A 1 bit for an index indicates that the counter is being used for
209
* an event. A 0 means that the counter can be used.
210
*/
211
unsigned long used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)];
212
213
/*
214
* The events that are active on the PMU for the given index.
215
*/
216
struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS];
217
};
218
219
struct arc_callchain_trace {
220
int depth;
221
void *perf_stuff;
222
};
223
224
static int callchain_trace(unsigned int addr, void *data)
225
{
226
struct arc_callchain_trace *ctrl = data;
227
struct perf_callchain_entry_ctx *entry = ctrl->perf_stuff;
228
229
perf_callchain_store(entry, addr);
230
231
if (ctrl->depth++ < 3)
232
return 0;
233
234
return -1;
235
}
236
237
void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
238
struct pt_regs *regs)
239
{
240
struct arc_callchain_trace ctrl = {
241
.depth = 0,
242
.perf_stuff = entry,
243
};
244
245
arc_unwind_core(NULL, regs, callchain_trace, &ctrl);
246
}
247
248
void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
249
struct pt_regs *regs)
250
{
251
/*
252
* User stack can't be unwound trivially with kernel dwarf unwinder
253
* So for now just record the user PC
254
*/
255
perf_callchain_store(entry, instruction_pointer(regs));
256
}
257
258
static struct arc_pmu *arc_pmu;
259
static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu);
260
261
/* read counter #idx; note that counter# != event# on ARC! */
262
static u64 arc_pmu_read_counter(int idx)
263
{
264
u32 tmp;
265
u64 result;
266
267
/*
268
* ARC supports making 'snapshots' of the counters, so we don't
269
* need to care about counters wrapping to 0 underneath our feet
270
*/
271
write_aux_reg(ARC_REG_PCT_INDEX, idx);
272
tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
273
write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN);
274
result = (u64) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32;
275
result |= read_aux_reg(ARC_REG_PCT_SNAPL);
276
277
return result;
278
}
279
280
static void arc_perf_event_update(struct perf_event *event,
281
struct hw_perf_event *hwc, int idx)
282
{
283
u64 prev_raw_count = local64_read(&hwc->prev_count);
284
u64 new_raw_count = arc_pmu_read_counter(idx);
285
s64 delta = new_raw_count - prev_raw_count;
286
287
/*
288
* We aren't afraid of hwc->prev_count changing beneath our feet
289
* because there's no way for us to re-enter this function anytime.
290
*/
291
local64_set(&hwc->prev_count, new_raw_count);
292
local64_add(delta, &event->count);
293
local64_sub(delta, &hwc->period_left);
294
}
295
296
static void arc_pmu_read(struct perf_event *event)
297
{
298
arc_perf_event_update(event, &event->hw, event->hw.idx);
299
}
300
301
static int arc_pmu_cache_event(u64 config)
302
{
303
unsigned int cache_type, cache_op, cache_result;
304
int ret;
305
306
cache_type = (config >> 0) & 0xff;
307
cache_op = (config >> 8) & 0xff;
308
cache_result = (config >> 16) & 0xff;
309
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310
return -EINVAL;
311
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
312
return -EINVAL;
313
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
314
return -EINVAL;
315
316
ret = arc_pmu_cache_map[cache_type][cache_op][cache_result];
317
318
if (ret == CACHE_OP_UNSUPPORTED)
319
return -ENOENT;
320
321
pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n",
322
cache_type, cache_op, cache_result, ret,
323
arc_pmu_ev_hw_map[ret]);
324
325
return ret;
326
}
327
328
/* initializes hw_perf_event structure if event is supported */
329
static int arc_pmu_event_init(struct perf_event *event)
330
{
331
struct hw_perf_event *hwc = &event->hw;
332
int ret;
333
334
if (!is_sampling_event(event)) {
335
hwc->sample_period = arc_pmu->max_period;
336
hwc->last_period = hwc->sample_period;
337
local64_set(&hwc->period_left, hwc->sample_period);
338
}
339
340
hwc->config = 0;
341
342
if (is_isa_arcv2()) {
343
/* "exclude user" means "count only kernel" */
344
if (event->attr.exclude_user)
345
hwc->config |= ARC_REG_PCT_CONFIG_KERN;
346
347
/* "exclude kernel" means "count only user" */
348
if (event->attr.exclude_kernel)
349
hwc->config |= ARC_REG_PCT_CONFIG_USER;
350
}
351
352
switch (event->attr.type) {
353
case PERF_TYPE_HARDWARE:
354
if (event->attr.config >= PERF_COUNT_HW_MAX)
355
return -ENOENT;
356
if (arc_pmu->ev_hw_idx[event->attr.config] < 0)
357
return -ENOENT;
358
hwc->config |= arc_pmu->ev_hw_idx[event->attr.config];
359
pr_debug("init event %d with h/w %08x \'%s\'\n",
360
(int)event->attr.config, (int)hwc->config,
361
arc_pmu_ev_hw_map[event->attr.config]);
362
return 0;
363
364
case PERF_TYPE_HW_CACHE:
365
ret = arc_pmu_cache_event(event->attr.config);
366
if (ret < 0)
367
return ret;
368
hwc->config |= arc_pmu->ev_hw_idx[ret];
369
pr_debug("init cache event with h/w %08x \'%s\'\n",
370
(int)hwc->config, arc_pmu_ev_hw_map[ret]);
371
return 0;
372
373
case PERF_TYPE_RAW:
374
if (event->attr.config >= arc_pmu->n_events)
375
return -ENOENT;
376
377
hwc->config |= event->attr.config;
378
pr_debug("init raw event with idx %lld \'%s\'\n",
379
event->attr.config,
380
arc_pmu->raw_entry[event->attr.config].name);
381
382
return 0;
383
384
default:
385
return -ENOENT;
386
}
387
}
388
389
/* starts all counters */
390
static void arc_pmu_enable(struct pmu *pmu)
391
{
392
u32 tmp;
393
tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
394
write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1);
395
}
396
397
/* stops all counters */
398
static void arc_pmu_disable(struct pmu *pmu)
399
{
400
u32 tmp;
401
tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
402
write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0);
403
}
404
405
static int arc_pmu_event_set_period(struct perf_event *event)
406
{
407
struct hw_perf_event *hwc = &event->hw;
408
s64 left = local64_read(&hwc->period_left);
409
s64 period = hwc->sample_period;
410
int idx = hwc->idx;
411
int overflow = 0;
412
u64 value;
413
414
if (unlikely(left <= -period)) {
415
/* left underflowed by more than period. */
416
left = period;
417
local64_set(&hwc->period_left, left);
418
hwc->last_period = period;
419
overflow = 1;
420
} else if (unlikely(left <= 0)) {
421
/* left underflowed by less than period. */
422
left += period;
423
local64_set(&hwc->period_left, left);
424
hwc->last_period = period;
425
overflow = 1;
426
}
427
428
if (left > arc_pmu->max_period)
429
left = arc_pmu->max_period;
430
431
value = arc_pmu->max_period - left;
432
local64_set(&hwc->prev_count, value);
433
434
/* Select counter */
435
write_aux_reg(ARC_REG_PCT_INDEX, idx);
436
437
/* Write value */
438
write_aux_reg(ARC_REG_PCT_COUNTL, lower_32_bits(value));
439
write_aux_reg(ARC_REG_PCT_COUNTH, upper_32_bits(value));
440
441
perf_event_update_userpage(event);
442
443
return overflow;
444
}
445
446
/*
447
* Assigns hardware counter to hardware condition.
448
* Note that there is no separate start/stop mechanism;
449
* stopping is achieved by assigning the 'never' condition
450
*/
451
static void arc_pmu_start(struct perf_event *event, int flags)
452
{
453
struct hw_perf_event *hwc = &event->hw;
454
int idx = hwc->idx;
455
456
if (WARN_ON_ONCE(idx == -1))
457
return;
458
459
if (flags & PERF_EF_RELOAD)
460
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
461
462
hwc->state = 0;
463
464
arc_pmu_event_set_period(event);
465
466
/* Enable interrupt for this counter */
467
if (is_sampling_event(event))
468
write_aux_reg(ARC_REG_PCT_INT_CTRL,
469
read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx));
470
471
/* enable ARC pmu here */
472
write_aux_reg(ARC_REG_PCT_INDEX, idx); /* counter # */
473
write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config); /* condition */
474
}
475
476
static void arc_pmu_stop(struct perf_event *event, int flags)
477
{
478
struct hw_perf_event *hwc = &event->hw;
479
int idx = hwc->idx;
480
481
/* Disable interrupt for this counter */
482
if (is_sampling_event(event)) {
483
/*
484
* Reset interrupt flag by writing of 1. This is required
485
* to make sure pending interrupt was not left.
486
*/
487
write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx));
488
write_aux_reg(ARC_REG_PCT_INT_CTRL,
489
read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~BIT(idx));
490
}
491
492
if (!(event->hw.state & PERF_HES_STOPPED)) {
493
/* stop hw counter here */
494
write_aux_reg(ARC_REG_PCT_INDEX, idx);
495
496
/* condition code #0 is always "never" */
497
write_aux_reg(ARC_REG_PCT_CONFIG, 0);
498
499
event->hw.state |= PERF_HES_STOPPED;
500
}
501
502
if ((flags & PERF_EF_UPDATE) &&
503
!(event->hw.state & PERF_HES_UPTODATE)) {
504
arc_perf_event_update(event, &event->hw, idx);
505
event->hw.state |= PERF_HES_UPTODATE;
506
}
507
}
508
509
static void arc_pmu_del(struct perf_event *event, int flags)
510
{
511
struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
512
513
arc_pmu_stop(event, PERF_EF_UPDATE);
514
__clear_bit(event->hw.idx, pmu_cpu->used_mask);
515
516
pmu_cpu->act_counter[event->hw.idx] = 0;
517
518
perf_event_update_userpage(event);
519
}
520
521
/* allocate hardware counter and optionally start counting */
522
static int arc_pmu_add(struct perf_event *event, int flags)
523
{
524
struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
525
struct hw_perf_event *hwc = &event->hw;
526
int idx;
527
528
idx = ffz(pmu_cpu->used_mask[0]);
529
if (idx == arc_pmu->n_counters)
530
return -EAGAIN;
531
532
__set_bit(idx, pmu_cpu->used_mask);
533
hwc->idx = idx;
534
535
write_aux_reg(ARC_REG_PCT_INDEX, idx);
536
537
pmu_cpu->act_counter[idx] = event;
538
539
if (is_sampling_event(event)) {
540
/* Mimic full counter overflow as other arches do */
541
write_aux_reg(ARC_REG_PCT_INT_CNTL,
542
lower_32_bits(arc_pmu->max_period));
543
write_aux_reg(ARC_REG_PCT_INT_CNTH,
544
upper_32_bits(arc_pmu->max_period));
545
}
546
547
write_aux_reg(ARC_REG_PCT_CONFIG, 0);
548
write_aux_reg(ARC_REG_PCT_COUNTL, 0);
549
write_aux_reg(ARC_REG_PCT_COUNTH, 0);
550
local64_set(&hwc->prev_count, 0);
551
552
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
553
if (flags & PERF_EF_START)
554
arc_pmu_start(event, PERF_EF_RELOAD);
555
556
perf_event_update_userpage(event);
557
558
return 0;
559
}
560
561
#ifdef CONFIG_ISA_ARCV2
562
static irqreturn_t arc_pmu_intr(int irq, void *dev)
563
{
564
struct perf_sample_data data;
565
struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
566
struct pt_regs *regs;
567
unsigned int active_ints;
568
int idx;
569
570
arc_pmu_disable(&arc_pmu->pmu);
571
572
active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT);
573
if (!active_ints)
574
goto done;
575
576
regs = get_irq_regs();
577
578
do {
579
struct perf_event *event;
580
struct hw_perf_event *hwc;
581
582
idx = __ffs(active_ints);
583
584
/* Reset interrupt flag by writing of 1 */
585
write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx));
586
587
/*
588
* On reset of "interrupt active" bit corresponding
589
* "interrupt enable" bit gets automatically reset as well.
590
* Now we need to re-enable interrupt for the counter.
591
*/
592
write_aux_reg(ARC_REG_PCT_INT_CTRL,
593
read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx));
594
595
event = pmu_cpu->act_counter[idx];
596
hwc = &event->hw;
597
598
WARN_ON_ONCE(hwc->idx != idx);
599
600
arc_perf_event_update(event, &event->hw, event->hw.idx);
601
perf_sample_data_init(&data, 0, hwc->last_period);
602
if (arc_pmu_event_set_period(event))
603
perf_event_overflow(event, &data, regs);
604
605
active_ints &= ~BIT(idx);
606
} while (active_ints);
607
608
done:
609
arc_pmu_enable(&arc_pmu->pmu);
610
611
return IRQ_HANDLED;
612
}
613
#else
614
615
static irqreturn_t arc_pmu_intr(int irq, void *dev)
616
{
617
return IRQ_NONE;
618
}
619
620
#endif /* CONFIG_ISA_ARCV2 */
621
622
static void arc_cpu_pmu_irq_init(void *data)
623
{
624
int irq = *(int *)data;
625
626
enable_percpu_irq(irq, IRQ_TYPE_NONE);
627
628
/* Clear all pending interrupt flags */
629
write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff);
630
}
631
632
/* Event field occupies the bottom 15 bits of our config field */
633
PMU_FORMAT_ATTR(event, "config:0-14");
634
static struct attribute *arc_pmu_format_attrs[] = {
635
&format_attr_event.attr,
636
NULL,
637
};
638
639
static struct attribute_group arc_pmu_format_attr_gr = {
640
.name = "format",
641
.attrs = arc_pmu_format_attrs,
642
};
643
644
static ssize_t arc_pmu_events_sysfs_show(struct device *dev,
645
struct device_attribute *attr,
646
char *page)
647
{
648
struct perf_pmu_events_attr *pmu_attr;
649
650
pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
651
return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
652
}
653
654
/*
655
* We don't add attrs here as we don't have pre-defined list of perf events.
656
* We will generate and add attrs dynamically in probe() after we read HW
657
* configuration.
658
*/
659
static struct attribute_group arc_pmu_events_attr_gr = {
660
.name = "events",
661
};
662
663
static void arc_pmu_add_raw_event_attr(int j, char *str)
664
{
665
memmove(arc_pmu->raw_entry[j].name, str, ARCPMU_EVENT_NAME_LEN - 1);
666
arc_pmu->attr[j].attr.attr.name = arc_pmu->raw_entry[j].name;
667
arc_pmu->attr[j].attr.attr.mode = VERIFY_OCTAL_PERMISSIONS(0444);
668
arc_pmu->attr[j].attr.show = arc_pmu_events_sysfs_show;
669
arc_pmu->attr[j].id = j;
670
arc_pmu->attrs[j] = &(arc_pmu->attr[j].attr.attr);
671
}
672
673
static int arc_pmu_raw_alloc(struct device *dev)
674
{
675
arc_pmu->attr = devm_kmalloc_array(dev, arc_pmu->n_events + 1,
676
sizeof(*arc_pmu->attr), GFP_KERNEL | __GFP_ZERO);
677
if (!arc_pmu->attr)
678
return -ENOMEM;
679
680
arc_pmu->attrs = devm_kmalloc_array(dev, arc_pmu->n_events + 1,
681
sizeof(*arc_pmu->attrs), GFP_KERNEL | __GFP_ZERO);
682
if (!arc_pmu->attrs)
683
return -ENOMEM;
684
685
arc_pmu->raw_entry = devm_kmalloc_array(dev, arc_pmu->n_events,
686
sizeof(*arc_pmu->raw_entry), GFP_KERNEL | __GFP_ZERO);
687
if (!arc_pmu->raw_entry)
688
return -ENOMEM;
689
690
return 0;
691
}
692
693
static inline bool event_in_hw_event_map(int i, char *name)
694
{
695
if (!arc_pmu_ev_hw_map[i])
696
return false;
697
698
if (!strlen(arc_pmu_ev_hw_map[i]))
699
return false;
700
701
if (strcmp(arc_pmu_ev_hw_map[i], name))
702
return false;
703
704
return true;
705
}
706
707
static void arc_pmu_map_hw_event(int j, char *str)
708
{
709
int i;
710
711
/* See if HW condition has been mapped to a perf event_id */
712
for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) {
713
if (event_in_hw_event_map(i, str)) {
714
pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n",
715
i, str, j);
716
arc_pmu->ev_hw_idx[i] = j;
717
}
718
}
719
}
720
721
static int arc_pmu_device_probe(struct platform_device *pdev)
722
{
723
struct arc_reg_pct_build pct_bcr;
724
struct arc_reg_cc_build cc_bcr;
725
int i, has_interrupts, irq = -1;
726
int counter_size; /* in bits */
727
728
union cc_name {
729
struct {
730
u32 word0, word1;
731
char sentinel;
732
} indiv;
733
char str[ARCPMU_EVENT_NAME_LEN];
734
} cc_name;
735
736
737
READ_BCR(ARC_REG_PCT_BUILD, pct_bcr);
738
if (!pct_bcr.v) {
739
pr_err("This core does not have performance counters!\n");
740
return -ENODEV;
741
}
742
BUILD_BUG_ON(ARC_PERF_MAX_COUNTERS > 32);
743
if (WARN_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS))
744
return -EINVAL;
745
746
READ_BCR(ARC_REG_CC_BUILD, cc_bcr);
747
if (WARN(!cc_bcr.v, "Counters exist but No countable conditions?"))
748
return -EINVAL;
749
750
arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL);
751
if (!arc_pmu)
752
return -ENOMEM;
753
754
arc_pmu->n_events = cc_bcr.c;
755
756
if (arc_pmu_raw_alloc(&pdev->dev))
757
return -ENOMEM;
758
759
has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0;
760
761
arc_pmu->n_counters = pct_bcr.c;
762
counter_size = 32 + (pct_bcr.s << 4);
763
764
arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL;
765
766
pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n",
767
arc_pmu->n_counters, counter_size, cc_bcr.c,
768
has_interrupts ? ", [overflow IRQ support]" : "");
769
770
cc_name.str[ARCPMU_EVENT_NAME_LEN - 1] = 0;
771
for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++)
772
arc_pmu->ev_hw_idx[i] = -1;
773
774
/* loop thru all available h/w condition indexes */
775
for (i = 0; i < cc_bcr.c; i++) {
776
write_aux_reg(ARC_REG_CC_INDEX, i);
777
cc_name.indiv.word0 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME0));
778
cc_name.indiv.word1 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME1));
779
780
arc_pmu_map_hw_event(i, cc_name.str);
781
arc_pmu_add_raw_event_attr(i, cc_name.str);
782
}
783
784
arc_pmu_events_attr_gr.attrs = arc_pmu->attrs;
785
arc_pmu->attr_groups[ARCPMU_ATTR_GR_EVENTS] = &arc_pmu_events_attr_gr;
786
arc_pmu->attr_groups[ARCPMU_ATTR_GR_FORMATS] = &arc_pmu_format_attr_gr;
787
788
arc_pmu->pmu = (struct pmu) {
789
.pmu_enable = arc_pmu_enable,
790
.pmu_disable = arc_pmu_disable,
791
.event_init = arc_pmu_event_init,
792
.add = arc_pmu_add,
793
.del = arc_pmu_del,
794
.start = arc_pmu_start,
795
.stop = arc_pmu_stop,
796
.read = arc_pmu_read,
797
.attr_groups = arc_pmu->attr_groups,
798
};
799
800
if (has_interrupts) {
801
irq = platform_get_irq(pdev, 0);
802
if (irq >= 0) {
803
int ret;
804
805
arc_pmu->irq = irq;
806
807
/* intc map function ensures irq_set_percpu_devid() called */
808
ret = request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters",
809
this_cpu_ptr(&arc_pmu_cpu));
810
811
if (!ret)
812
on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1);
813
else
814
irq = -1;
815
}
816
817
}
818
819
if (irq == -1)
820
arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
821
822
/*
823
* perf parser doesn't really like '-' symbol in events name, so let's
824
* use '_' in arc pct name as it goes to kernel PMU event prefix.
825
*/
826
return perf_pmu_register(&arc_pmu->pmu, "arc_pct", PERF_TYPE_RAW);
827
}
828
829
static const struct of_device_id arc_pmu_match[] = {
830
{ .compatible = "snps,arc700-pct" },
831
{ .compatible = "snps,archs-pct" },
832
{},
833
};
834
MODULE_DEVICE_TABLE(of, arc_pmu_match);
835
836
static struct platform_driver arc_pmu_driver = {
837
.driver = {
838
.name = "arc-pct",
839
.of_match_table = of_match_ptr(arc_pmu_match),
840
},
841
.probe = arc_pmu_device_probe,
842
};
843
844
module_platform_driver(arc_pmu_driver);
845
846
MODULE_LICENSE("GPL");
847
MODULE_AUTHOR("Mischa Jonker <[email protected]>");
848
MODULE_DESCRIPTION("ARC PMU driver");
849
850