Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arc/mm/tlb.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* TLB Management (flush/create/diagnostics) for MMUv3 and MMUv4
4
*
5
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6
*
7
*/
8
9
#include <linux/module.h>
10
#include <linux/bug.h>
11
#include <linux/mm_types.h>
12
13
#include <asm/arcregs.h>
14
#include <asm/setup.h>
15
#include <asm/mmu_context.h>
16
#include <asm/mmu.h>
17
18
/* A copy of the ASID from the PID reg is kept in asid_cache */
19
DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
20
21
static struct cpuinfo_arc_mmu {
22
unsigned int ver, pg_sz_k, s_pg_sz_m, pae, sets, ways;
23
} mmuinfo;
24
25
/*
26
* Utility Routine to erase a J-TLB entry
27
* Caller needs to setup Index Reg (manually or via getIndex)
28
*/
29
static inline void __tlb_entry_erase(void)
30
{
31
write_aux_reg(ARC_REG_TLBPD1, 0);
32
33
if (is_pae40_enabled())
34
write_aux_reg(ARC_REG_TLBPD1HI, 0);
35
36
write_aux_reg(ARC_REG_TLBPD0, 0);
37
write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
38
}
39
40
static void utlb_invalidate(void)
41
{
42
write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
43
}
44
45
#ifdef CONFIG_ARC_MMU_V3
46
47
static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
48
{
49
unsigned int idx;
50
51
write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
52
53
write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
54
idx = read_aux_reg(ARC_REG_TLBINDEX);
55
56
return idx;
57
}
58
59
static void tlb_entry_erase(unsigned int vaddr_n_asid)
60
{
61
unsigned int idx;
62
63
/* Locate the TLB entry for this vaddr + ASID */
64
idx = tlb_entry_lkup(vaddr_n_asid);
65
66
/* No error means entry found, zero it out */
67
if (likely(!(idx & TLB_LKUP_ERR))) {
68
__tlb_entry_erase();
69
} else {
70
/* Duplicate entry error */
71
WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
72
vaddr_n_asid);
73
}
74
}
75
76
static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1)
77
{
78
unsigned int idx;
79
80
/*
81
* First verify if entry for this vaddr+ASID already exists
82
* This also sets up PD0 (vaddr, ASID..) for final commit
83
*/
84
idx = tlb_entry_lkup(pd0);
85
86
/*
87
* If Not already present get a free slot from MMU.
88
* Otherwise, Probe would have located the entry and set INDEX Reg
89
* with existing location. This will cause Write CMD to over-write
90
* existing entry with new PD0 and PD1
91
*/
92
if (likely(idx & TLB_LKUP_ERR))
93
write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
94
95
/* setup the other half of TLB entry (pfn, rwx..) */
96
write_aux_reg(ARC_REG_TLBPD1, pd1);
97
98
/*
99
* Commit the Entry to MMU
100
* It doesn't sound safe to use the TLBWriteNI cmd here
101
* which doesn't flush uTLBs. I'd rather be safe than sorry.
102
*/
103
write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
104
}
105
106
#else /* MMUv4 */
107
108
static void tlb_entry_erase(unsigned int vaddr_n_asid)
109
{
110
write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
111
write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
112
}
113
114
static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1)
115
{
116
write_aux_reg(ARC_REG_TLBPD0, pd0);
117
118
if (!is_pae40_enabled()) {
119
write_aux_reg(ARC_REG_TLBPD1, pd1);
120
} else {
121
write_aux_reg(ARC_REG_TLBPD1, pd1 & 0xFFFFFFFF);
122
write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
123
}
124
125
write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
126
}
127
128
#endif
129
130
/*
131
* Un-conditionally (without lookup) erase the entire MMU contents
132
*/
133
134
noinline void local_flush_tlb_all(void)
135
{
136
struct cpuinfo_arc_mmu *mmu = &mmuinfo;
137
unsigned long flags;
138
unsigned int entry;
139
int num_tlb = mmu->sets * mmu->ways;
140
141
local_irq_save(flags);
142
143
/* Load PD0 and PD1 with template for a Blank Entry */
144
write_aux_reg(ARC_REG_TLBPD1, 0);
145
146
if (is_pae40_enabled())
147
write_aux_reg(ARC_REG_TLBPD1HI, 0);
148
149
write_aux_reg(ARC_REG_TLBPD0, 0);
150
151
for (entry = 0; entry < num_tlb; entry++) {
152
/* write this entry to the TLB */
153
write_aux_reg(ARC_REG_TLBINDEX, entry);
154
write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
155
}
156
157
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
158
const int stlb_idx = 0x800;
159
160
/* Blank sTLB entry */
161
write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
162
163
for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
164
write_aux_reg(ARC_REG_TLBINDEX, entry);
165
write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
166
}
167
}
168
169
utlb_invalidate();
170
171
local_irq_restore(flags);
172
}
173
174
/*
175
* Flush the entire MM for userland. The fastest way is to move to Next ASID
176
*/
177
noinline void local_flush_tlb_mm(struct mm_struct *mm)
178
{
179
/*
180
* Small optimisation courtesy IA64
181
* flush_mm called during fork,exit,munmap etc, multiple times as well.
182
* Only for fork( ) do we need to move parent to a new MMU ctxt,
183
* all other cases are NOPs, hence this check.
184
*/
185
if (atomic_read(&mm->mm_users) == 0)
186
return;
187
188
/*
189
* - Move to a new ASID, but only if the mm is still wired in
190
* (Android Binder ended up calling this for vma->mm != tsk->mm,
191
* causing h/w - s/w ASID to get out of sync)
192
* - Also get_new_mmu_context() new implementation allocates a new
193
* ASID only if it is not allocated already - so unallocate first
194
*/
195
destroy_context(mm);
196
if (current->mm == mm)
197
get_new_mmu_context(mm);
198
}
199
200
/*
201
* Flush a Range of TLB entries for userland.
202
* @start is inclusive, while @end is exclusive
203
* Difference between this and Kernel Range Flush is
204
* -Here the fastest way (if range is too large) is to move to next ASID
205
* without doing any explicit Shootdown
206
* -In case of kernel Flush, entry has to be shot down explicitly
207
*/
208
void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
209
unsigned long end)
210
{
211
const unsigned int cpu = smp_processor_id();
212
unsigned long flags;
213
214
/* If range @start to @end is more than 32 TLB entries deep,
215
* it's better to move to a new ASID rather than searching for
216
* individual entries and then shooting them down
217
*
218
* The calc above is rough, doesn't account for unaligned parts,
219
* since this is heuristics based anyways
220
*/
221
if (unlikely((end - start) >= PAGE_SIZE * 32)) {
222
local_flush_tlb_mm(vma->vm_mm);
223
return;
224
}
225
226
/*
227
* @start moved to page start: this alone suffices for checking
228
* loop end condition below, w/o need for aligning @end to end
229
* e.g. 2000 to 4001 will anyhow loop twice
230
*/
231
start &= PAGE_MASK;
232
233
local_irq_save(flags);
234
235
if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
236
while (start < end) {
237
tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
238
start += PAGE_SIZE;
239
}
240
}
241
242
local_irq_restore(flags);
243
}
244
245
/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
246
* @start, @end interpreted as kvaddr
247
* Interestingly, shared TLB entries can also be flushed using just
248
* @start,@end alone (interpreted as user vaddr), although technically SASID
249
* is also needed. However our smart TLbProbe lookup takes care of that.
250
*/
251
void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
252
{
253
unsigned long flags;
254
255
/* exactly same as above, except for TLB entry not taking ASID */
256
257
if (unlikely((end - start) >= PAGE_SIZE * 32)) {
258
local_flush_tlb_all();
259
return;
260
}
261
262
start &= PAGE_MASK;
263
264
local_irq_save(flags);
265
while (start < end) {
266
tlb_entry_erase(start);
267
start += PAGE_SIZE;
268
}
269
270
local_irq_restore(flags);
271
}
272
273
/*
274
* Delete TLB entry in MMU for a given page (??? address)
275
* NOTE One TLB entry contains translation for single PAGE
276
*/
277
278
void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
279
{
280
const unsigned int cpu = smp_processor_id();
281
unsigned long flags;
282
283
/* Note that it is critical that interrupts are DISABLED between
284
* checking the ASID and using it flush the TLB entry
285
*/
286
local_irq_save(flags);
287
288
if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
289
tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
290
}
291
292
local_irq_restore(flags);
293
}
294
295
#ifdef CONFIG_SMP
296
297
struct tlb_args {
298
struct vm_area_struct *ta_vma;
299
unsigned long ta_start;
300
unsigned long ta_end;
301
};
302
303
static inline void ipi_flush_tlb_page(void *arg)
304
{
305
struct tlb_args *ta = arg;
306
307
local_flush_tlb_page(ta->ta_vma, ta->ta_start);
308
}
309
310
static inline void ipi_flush_tlb_range(void *arg)
311
{
312
struct tlb_args *ta = arg;
313
314
local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
315
}
316
317
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
318
static inline void ipi_flush_pmd_tlb_range(void *arg)
319
{
320
struct tlb_args *ta = arg;
321
322
local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
323
}
324
#endif
325
326
static inline void ipi_flush_tlb_kernel_range(void *arg)
327
{
328
struct tlb_args *ta = (struct tlb_args *)arg;
329
330
local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
331
}
332
333
void flush_tlb_all(void)
334
{
335
on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
336
}
337
338
void flush_tlb_mm(struct mm_struct *mm)
339
{
340
on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
341
mm, 1);
342
}
343
344
void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
345
{
346
struct tlb_args ta = {
347
.ta_vma = vma,
348
.ta_start = uaddr
349
};
350
351
on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
352
}
353
354
void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
355
unsigned long end)
356
{
357
struct tlb_args ta = {
358
.ta_vma = vma,
359
.ta_start = start,
360
.ta_end = end
361
};
362
363
on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
364
}
365
366
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
367
void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
368
unsigned long end)
369
{
370
struct tlb_args ta = {
371
.ta_vma = vma,
372
.ta_start = start,
373
.ta_end = end
374
};
375
376
on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
377
}
378
#endif
379
380
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
381
{
382
struct tlb_args ta = {
383
.ta_start = start,
384
.ta_end = end
385
};
386
387
on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
388
}
389
#endif
390
391
/*
392
* Routine to create a TLB entry
393
*/
394
static void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
395
{
396
unsigned long flags;
397
unsigned int asid_or_sasid, rwx;
398
unsigned long pd0;
399
phys_addr_t pd1;
400
401
/*
402
* create_tlb() assumes that current->mm == vma->mm, since
403
* -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
404
* -completes the lazy write to SASID reg (again valid for curr tsk)
405
*
406
* Removing the assumption involves
407
* -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
408
* -More importantly it makes this handler inconsistent with fast-path
409
* TLB Refill handler which always deals with "current"
410
*
411
* Let's see the use cases when current->mm != vma->mm and we land here
412
* 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
413
* Here VM wants to pre-install a TLB entry for user stack while
414
* current->mm still points to pre-execve mm (hence the condition).
415
* However the stack vaddr is soon relocated (randomization) and
416
* move_page_tables() tries to undo that TLB entry.
417
* Thus not creating TLB entry is not any worse.
418
*
419
* 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
420
* breakpoint in debugged task. Not creating a TLB now is not
421
* performance critical.
422
*
423
* Both the cases above are not good enough for code churn.
424
*/
425
if (current->active_mm != vma->vm_mm)
426
return;
427
428
local_irq_save(flags);
429
430
vaddr &= PAGE_MASK;
431
432
/* update this PTE credentials */
433
pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
434
435
/* Create HW TLB(PD0,PD1) from PTE */
436
437
/* ASID for this task */
438
asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
439
440
pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
441
442
/*
443
* ARC MMU provides fully orthogonal access bits for K/U mode,
444
* however Linux only saves 1 set to save PTE real-estate
445
* Here we convert 3 PTE bits into 6 MMU bits:
446
* -Kernel only entries have Kr Kw Kx 0 0 0
447
* -User entries have mirrored K and U bits
448
*/
449
rwx = pte_val(*ptep) & PTE_BITS_RWX;
450
451
if (pte_val(*ptep) & _PAGE_GLOBAL)
452
rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
453
else
454
rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
455
456
pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
457
458
tlb_entry_insert(pd0, pd1);
459
460
local_irq_restore(flags);
461
}
462
463
/*
464
* Called at the end of pagefault, for a userspace mapped page
465
* -pre-install the corresponding TLB entry into MMU
466
* -Finalize the delayed D-cache flush of kernel mapping of page due to
467
* flush_dcache_page(), copy_user_page()
468
*
469
* Note that flush (when done) involves both WBACK - so physical page is
470
* in sync as well as INV - so any non-congruent aliases don't remain
471
*/
472
void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
473
unsigned long vaddr_unaligned, pte_t *ptep, unsigned int nr)
474
{
475
unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
476
phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS;
477
struct page *page = pfn_to_page(pte_pfn(*ptep));
478
479
create_tlb(vma, vaddr, ptep);
480
481
if (page == ZERO_PAGE(0))
482
return;
483
484
/*
485
* For executable pages, since icache doesn't snoop dcache, any
486
* dirty K-mapping of a code page needs to be wback+inv so that
487
* icache fetch by userspace sees code correctly.
488
*/
489
if (vma->vm_flags & VM_EXEC) {
490
struct folio *folio = page_folio(page);
491
int dirty = !test_and_set_bit(PG_dc_clean, &folio->flags);
492
if (dirty) {
493
unsigned long offset = offset_in_folio(folio, paddr);
494
nr = folio_nr_pages(folio);
495
paddr -= offset;
496
vaddr -= offset;
497
/* wback + inv dcache lines (K-mapping) */
498
__flush_dcache_pages(paddr, paddr, nr);
499
500
/* invalidate any existing icache lines (U-mapping) */
501
if (vma->vm_flags & VM_EXEC)
502
__inv_icache_pages(paddr, vaddr, nr);
503
}
504
}
505
}
506
507
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
508
509
/*
510
* MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
511
* support.
512
*
513
* Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
514
* new bit "SZ" in TLB page descriptor to distinguish between them.
515
* Super Page size is configurable in hardware (4K to 16M), but fixed once
516
* RTL builds.
517
*
518
* The exact THP size a Linux configuration will support is a function of:
519
* - MMU page size (typical 8K, RTL fixed)
520
* - software page walker address split between PGD:PTE:PFN (typical
521
* 11:8:13, but can be changed with 1 line)
522
* So for above default, THP size supported is 8K * (2^8) = 2M
523
*
524
* Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
525
* reduces to 1 level (as PTE is folded into PGD and canonically referred
526
* to as PMD).
527
* Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
528
*/
529
530
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
531
pmd_t *pmd)
532
{
533
pte_t pte = __pte(pmd_val(*pmd));
534
update_mmu_cache_range(NULL, vma, addr, &pte, HPAGE_PMD_NR);
535
}
536
537
void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
538
unsigned long end)
539
{
540
unsigned int cpu;
541
unsigned long flags;
542
543
local_irq_save(flags);
544
545
cpu = smp_processor_id();
546
547
if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
548
unsigned int asid = hw_pid(vma->vm_mm, cpu);
549
550
/* No need to loop here: this will always be for 1 Huge Page */
551
tlb_entry_erase(start | _PAGE_HW_SZ | asid);
552
}
553
554
local_irq_restore(flags);
555
}
556
557
#endif
558
559
/* Read the Cache Build Configuration Registers, Decode them and save into
560
* the cpuinfo structure for later use.
561
* No Validation is done here, simply read/convert the BCRs
562
*/
563
int arc_mmu_mumbojumbo(int c, char *buf, int len)
564
{
565
struct cpuinfo_arc_mmu *mmu = &mmuinfo;
566
unsigned int bcr, u_dtlb, u_itlb, sasid;
567
struct bcr_mmu_3 *mmu3;
568
struct bcr_mmu_4 *mmu4;
569
char super_pg[64] = "";
570
int n = 0;
571
572
bcr = read_aux_reg(ARC_REG_MMU_BCR);
573
mmu->ver = (bcr >> 24);
574
575
if (is_isa_arcompact() && mmu->ver == 3) {
576
mmu3 = (struct bcr_mmu_3 *)&bcr;
577
mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
578
mmu->sets = 1 << mmu3->sets;
579
mmu->ways = 1 << mmu3->ways;
580
u_dtlb = mmu3->u_dtlb;
581
u_itlb = mmu3->u_itlb;
582
sasid = mmu3->sasid;
583
} else {
584
mmu4 = (struct bcr_mmu_4 *)&bcr;
585
mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
586
mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
587
mmu->sets = 64 << mmu4->n_entry;
588
mmu->ways = mmu4->n_ways * 2;
589
u_dtlb = mmu4->u_dtlb * 4;
590
u_itlb = mmu4->u_itlb * 4;
591
sasid = mmu4->sasid;
592
mmu->pae = mmu4->pae;
593
}
594
595
if (mmu->s_pg_sz_m)
596
scnprintf(super_pg, 64, "/%dM%s",
597
mmu->s_pg_sz_m,
598
IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) ? " (THP enabled)":"");
599
600
n += scnprintf(buf + n, len - n,
601
"MMU [v%x]\t: %dk%s, swalk %d lvl, JTLB %dx%d, uDTLB %d, uITLB %d%s%s%s\n",
602
mmu->ver, mmu->pg_sz_k, super_pg, CONFIG_PGTABLE_LEVELS,
603
mmu->sets, mmu->ways,
604
u_dtlb, u_itlb,
605
IS_AVAIL1(sasid, ", SASID"),
606
IS_AVAIL2(mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
607
608
return n;
609
}
610
611
int pae40_exist_but_not_enab(void)
612
{
613
return mmuinfo.pae && !is_pae40_enabled();
614
}
615
616
void arc_mmu_init(void)
617
{
618
struct cpuinfo_arc_mmu *mmu = &mmuinfo;
619
int compat = 0;
620
621
/*
622
* Can't be done in processor.h due to header include dependencies
623
*/
624
BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
625
626
/*
627
* stack top size sanity check,
628
* Can't be done in processor.h due to header include dependencies
629
*/
630
BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
631
632
/*
633
* Ensure that MMU features assumed by kernel exist in hardware.
634
* - For older ARC700 cpus, only v3 supported
635
* - For HS cpus, v4 was baseline and v5 is backwards compatible
636
* (will run older software).
637
*/
638
if (is_isa_arcompact() && mmu->ver == 3)
639
compat = 1;
640
else if (is_isa_arcv2() && mmu->ver >= 4)
641
compat = 1;
642
643
if (!compat)
644
panic("MMU ver %d doesn't match kernel built for\n", mmu->ver);
645
646
if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
647
panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
648
649
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
650
mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
651
panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
652
(unsigned long)TO_MB(HPAGE_PMD_SIZE));
653
654
if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
655
panic("Hardware doesn't support PAE40\n");
656
657
/* Enable the MMU with ASID 0 */
658
mmu_setup_asid(NULL, 0);
659
660
/* cache the pgd pointer in MMU SCRATCH reg (ARCv2 only) */
661
mmu_setup_pgd(NULL, swapper_pg_dir);
662
663
if (pae40_exist_but_not_enab())
664
write_aux_reg(ARC_REG_TLBPD1HI, 0);
665
}
666
667
/*
668
* TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
669
* The mapping is Column-first.
670
* --------------------- -----------
671
* |way0|way1|way2|way3| |way0|way1|
672
* --------------------- -----------
673
* [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
674
* [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
675
* ~ ~ ~ ~
676
* [set127] | 508| 509| 510| 511| | 254| 255|
677
* --------------------- -----------
678
* For normal operations we don't(must not) care how above works since
679
* MMU cmd getIndex(vaddr) abstracts that out.
680
* However for walking WAYS of a SET, we need to know this
681
*/
682
#define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
683
684
/* Handling of Duplicate PD (TLB entry) in MMU.
685
* -Could be due to buggy customer tapeouts or obscure kernel bugs
686
* -MMU complaints not at the time of duplicate PD installation, but at the
687
* time of lookup matching multiple ways.
688
* -Ideally these should never happen - but if they do - workaround by deleting
689
* the duplicate one.
690
* -Knob to be verbose abt it.(TODO: hook them up to debugfs)
691
*/
692
volatile int dup_pd_silent; /* Be silent abt it or complain (default) */
693
694
void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
695
struct pt_regs *regs)
696
{
697
struct cpuinfo_arc_mmu *mmu = &mmuinfo;
698
unsigned long flags;
699
int set, n_ways = mmu->ways;
700
701
n_ways = min(n_ways, 4);
702
BUG_ON(mmu->ways > 4);
703
704
local_irq_save(flags);
705
706
/* loop thru all sets of TLB */
707
for (set = 0; set < mmu->sets; set++) {
708
709
int is_valid, way;
710
unsigned int pd0[4];
711
712
/* read out all the ways of current set */
713
for (way = 0, is_valid = 0; way < n_ways; way++) {
714
write_aux_reg(ARC_REG_TLBINDEX,
715
SET_WAY_TO_IDX(mmu, set, way));
716
write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
717
pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
718
is_valid |= pd0[way] & _PAGE_PRESENT;
719
pd0[way] &= PAGE_MASK;
720
}
721
722
/* If all the WAYS in SET are empty, skip to next SET */
723
if (!is_valid)
724
continue;
725
726
/* Scan the set for duplicate ways: needs a nested loop */
727
for (way = 0; way < n_ways - 1; way++) {
728
729
int n;
730
731
if (!pd0[way])
732
continue;
733
734
for (n = way + 1; n < n_ways; n++) {
735
if (pd0[way] != pd0[n])
736
continue;
737
738
if (!dup_pd_silent)
739
pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
740
pd0[way], set, way, n);
741
742
/*
743
* clear entry @way and not @n.
744
* This is critical to our optimised loop
745
*/
746
pd0[way] = 0;
747
write_aux_reg(ARC_REG_TLBINDEX,
748
SET_WAY_TO_IDX(mmu, set, way));
749
__tlb_entry_erase();
750
}
751
}
752
}
753
754
local_irq_restore(flags);
755
}
756
757