Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arc/net/bpf_jit_arcv2.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* The ARCv2 backend of Just-In-Time compiler for eBPF bytecode.
4
*
5
* Copyright (c) 2024 Synopsys Inc.
6
* Author: Shahab Vahedi <[email protected]>
7
*/
8
#include <linux/bug.h>
9
#include "bpf_jit.h"
10
11
/* ARC core registers. */
12
enum {
13
ARC_R_0, ARC_R_1, ARC_R_2, ARC_R_3, ARC_R_4, ARC_R_5,
14
ARC_R_6, ARC_R_7, ARC_R_8, ARC_R_9, ARC_R_10, ARC_R_11,
15
ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17,
16
ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23,
17
ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK,
18
ARC_R_30, ARC_R_BLINK,
19
/*
20
* Having ARC_R_IMM encoded as source register means there is an
21
* immediate that must be interpreted from the next 4 bytes. If
22
* encoded as the destination register though, it implies that the
23
* output of the operation is not assigned to any register. The
24
* latter is helpful if we only care about updating the CPU status
25
* flags.
26
*/
27
ARC_R_IMM = 62
28
};
29
30
/*
31
* Remarks about the rationale behind the chosen mapping:
32
*
33
* - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to
34
* argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last
35
* argument register in the ABI. Therefore BPF_REG_5, as the fifth
36
* argument, must be pushed onto the stack. This is a must for calling
37
* in-kernel functions.
38
*
39
* - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0)
40
* for 64-bit results. However, because they're already used for BPF_REG_1,
41
* the next available scratch registers, r8 and r9, are the best candidates
42
* for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result
43
* is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to
44
* (r1,r0).
45
* It is worth mentioning that scratch registers are the best choice for
46
* BPF_REG_0, because it is very popular in BPF instruction encoding.
47
*
48
* - JIT_REG_TMP is an artifact needed to translate some BPF instructions.
49
* Its life span is one single BPF instruction. Since during the
50
* analyze_reg_usage(), it is not known if temporary registers are used,
51
* it is mapped to ARC's scratch registers: r10 and r11. Therefore, they
52
* don't matter in analysing phase and don't need saving. This temporary
53
* register is added as yet another index in the bpf2arc array, so it will
54
* unfold like the rest of registers during the code generation process.
55
*
56
* - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from
57
* (r15,r14) register pair. The (r13,r12) is not a good choice, because
58
* in ARCv2 ABI, r12 is not a callee-saved register and this can cause
59
* problem when calling an in-kernel function. Theoretically, the mapping
60
* could start from (r14,r13), but it is not a conventional ARCv2 register
61
* pair. To have a future proof design, I opted for this arrangement.
62
* If/when we decide to add ARCv2 instructions that do use register pairs,
63
* the mapping, hopefully, doesn't need to be revisited.
64
*/
65
static const u8 bpf2arc[][2] = {
66
/* Return value from in-kernel function, and exit value from eBPF */
67
[BPF_REG_0] = {ARC_R_8, ARC_R_9},
68
/* Arguments from eBPF program to in-kernel function */
69
[BPF_REG_1] = {ARC_R_0, ARC_R_1},
70
[BPF_REG_2] = {ARC_R_2, ARC_R_3},
71
[BPF_REG_3] = {ARC_R_4, ARC_R_5},
72
[BPF_REG_4] = {ARC_R_6, ARC_R_7},
73
/* Remaining arguments, to be passed on the stack per 32-bit ABI */
74
[BPF_REG_5] = {ARC_R_22, ARC_R_23},
75
/* Callee-saved registers that in-kernel function will preserve */
76
[BPF_REG_6] = {ARC_R_14, ARC_R_15},
77
[BPF_REG_7] = {ARC_R_16, ARC_R_17},
78
[BPF_REG_8] = {ARC_R_18, ARC_R_19},
79
[BPF_REG_9] = {ARC_R_20, ARC_R_21},
80
/* Read-only frame pointer to access the eBPF stack. 32-bit only. */
81
[BPF_REG_FP] = {ARC_R_FP, },
82
/* Register for blinding constants */
83
[BPF_REG_AX] = {ARC_R_24, ARC_R_25},
84
/* Temporary registers for internal use */
85
[JIT_REG_TMP] = {ARC_R_10, ARC_R_11}
86
};
87
88
#define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13
89
#define ARC_CALLEE_SAVED_REG_LAST ARC_R_25
90
91
#define REG_LO(r) (bpf2arc[(r)][0])
92
#define REG_HI(r) (bpf2arc[(r)][1])
93
94
/*
95
* To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which,
96
* the stack needs to be restored by ARG5_SIZE.
97
*/
98
#define ARG5_SIZE 8
99
100
/* Instruction lengths in bytes. */
101
enum {
102
INSN_len_normal = 4, /* Normal instructions length. */
103
INSN_len_imm = 4 /* Length of an extra 32-bit immediate. */
104
};
105
106
/* ZZ defines the size of operation in encodings that it is used. */
107
enum {
108
ZZ_1_byte = 1,
109
ZZ_2_byte = 2,
110
ZZ_4_byte = 0,
111
ZZ_8_byte = 3
112
};
113
114
/*
115
* AA is mostly about address write back mode. It determines if the
116
* address in question should be updated before usage or after:
117
* addr += offset; data = *addr;
118
* data = *addr; addr += offset;
119
*
120
* In "scaling" mode, the effective address will become the sum
121
* of "address" + "index"*"size". The "size" is specified by the
122
* "ZZ" field. There is no write back when AA is set for scaling:
123
* data = *(addr + offset<<zz)
124
*/
125
enum {
126
AA_none = 0,
127
AA_pre = 1, /* in assembly known as "a/aw". */
128
AA_post = 2, /* in assembly known as "ab". */
129
AA_scale = 3 /* in assembly known as "as". */
130
};
131
132
/* X flag determines the mode of extension. */
133
enum {
134
X_zero = 0,
135
X_sign = 1
136
};
137
138
/* Condition codes. */
139
enum {
140
CC_always = 0, /* condition is true all the time */
141
CC_equal = 1, /* if status32.z flag is set */
142
CC_unequal = 2, /* if status32.z flag is clear */
143
CC_positive = 3, /* if status32.n flag is clear */
144
CC_negative = 4, /* if status32.n flag is set */
145
CC_less_u = 5, /* less than (unsigned) */
146
CC_less_eq_u = 14, /* less than or equal (unsigned) */
147
CC_great_eq_u = 6, /* greater than or equal (unsigned) */
148
CC_great_u = 13, /* greater than (unsigned) */
149
CC_less_s = 11, /* less than (signed) */
150
CC_less_eq_s = 12, /* less than or equal (signed) */
151
CC_great_eq_s = 10, /* greater than or equal (signed) */
152
CC_great_s = 9 /* greater than (signed) */
153
};
154
155
#define IN_U6_RANGE(x) ((x) <= (0x40 - 1) && (x) >= 0)
156
#define IN_S9_RANGE(x) ((x) <= (0x100 - 1) && (x) >= -0x100)
157
#define IN_S12_RANGE(x) ((x) <= (0x800 - 1) && (x) >= -0x800)
158
#define IN_S21_RANGE(x) ((x) <= (0x100000 - 1) && (x) >= -0x100000)
159
#define IN_S25_RANGE(x) ((x) <= (0x1000000 - 1) && (x) >= -0x1000000)
160
161
/* Operands in most of the encodings. */
162
#define OP_A(x) ((x) & 0x03f)
163
#define OP_B(x) ((((x) & 0x07) << 24) | (((x) & 0x38) << 9))
164
#define OP_C(x) (((x) & 0x03f) << 6)
165
#define OP_IMM (OP_C(ARC_R_IMM))
166
#define COND(x) (OP_A((x) & 31))
167
#define FLAG(x) (((x) & 1) << 15)
168
169
/*
170
* The 4-byte encoding of "mov b,c":
171
*
172
* 0010_0bbb 0000_1010 0BBB_cccc cc00_0000
173
*
174
* b: BBBbbb destination register
175
* c: cccccc source register
176
*/
177
#define OPC_MOV 0x200a0000
178
179
/*
180
* The 4-byte encoding of "mov b,s12" (used for moving small immediates):
181
*
182
* 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS
183
*
184
* b: BBBbbb destination register
185
* s: SSSSSSssssss source immediate (signed)
186
*/
187
#define OPC_MOVI 0x208a0000
188
#define MOVI_S12(x) ((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6))
189
190
/*
191
* The 4-byte encoding of "mov[.qq] b,u6", used for conditional
192
* moving of even smaller immediates:
193
*
194
* 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq
195
*
196
* qq: qqqqq condition code
197
* i: If set, c is considered a 6-bit immediate, else a reg.
198
*
199
* b: BBBbbb destination register
200
* c: cccccc source
201
*/
202
#define OPC_MOV_CC 0x20ca0000
203
#define MOV_CC_I BIT(5)
204
#define OPC_MOVU_CC (OPC_MOV_CC | MOV_CC_I)
205
206
/*
207
* The 4-byte encoding of "sexb b,c" (8-bit sign extension):
208
*
209
* 0010_0bbb 0010_1111 0BBB_cccc cc00_0101
210
*
211
* b: BBBbbb destination register
212
* c: cccccc source register
213
*/
214
#define OPC_SEXB 0x202f0005
215
216
/*
217
* The 4-byte encoding of "sexh b,c" (16-bit sign extension):
218
*
219
* 0010_0bbb 0010_1111 0BBB_cccc cc00_0110
220
*
221
* b: BBBbbb destination register
222
* c: cccccc source register
223
*/
224
#define OPC_SEXH 0x202f0006
225
226
/*
227
* The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]":
228
*
229
* 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc
230
*
231
* zz: size mode
232
* aa: address write back mode
233
* x: extension mode
234
*
235
* s9: S_ssss_ssss 9-bit signed number
236
* b: BBBbbb source reg for address
237
* c: cccccc destination register
238
*/
239
#define OPC_LOAD 0x10000000
240
#define LOAD_X(x) ((x) << 6)
241
#define LOAD_ZZ(x) ((x) << 7)
242
#define LOAD_AA(x) ((x) << 9)
243
#define LOAD_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
244
#define LOAD_C(x) ((x) & 0x03f)
245
/* Unsigned and signed loads. */
246
#define OPC_LDU (OPC_LOAD | LOAD_X(X_zero))
247
#define OPC_LDS (OPC_LOAD | LOAD_X(X_sign))
248
/* 32-bit load. */
249
#define OPC_LD32 (OPC_LDU | LOAD_ZZ(ZZ_4_byte))
250
/* "pop reg" is merely a "ld.ab reg,[sp,4]". */
251
#define OPC_POP \
252
(OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP))
253
254
/*
255
* The 4-byte encoding of "st[zz][.aa] c,[b,s9]":
256
*
257
* 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0
258
*
259
* zz: zz size mode
260
* aa: aa address write back mode
261
*
262
* s9: S_ssss_ssss 9-bit signed number
263
* b: BBBbbb source reg for address
264
* c: cccccc source reg to be stored
265
*/
266
#define OPC_STORE 0x18000000
267
#define STORE_ZZ(x) ((x) << 1)
268
#define STORE_AA(x) ((x) << 3)
269
#define STORE_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
270
/* 32-bit store. */
271
#define OPC_ST32 (OPC_STORE | STORE_ZZ(ZZ_4_byte))
272
/* "push reg" is merely a "st.aw reg,[sp,-4]". */
273
#define OPC_PUSH \
274
(OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP))
275
276
/*
277
* The 4-byte encoding of "add a,b,c":
278
*
279
* 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa
280
*
281
* f: indicates if flags (carry, etc.) should be updated
282
* i: If set, c is considered a 6-bit immediate, else a reg.
283
*
284
* a: aaaaaa result
285
* b: BBBbbb the 1st input operand
286
* c: cccccc the 2nd input operand
287
*/
288
#define OPC_ADD 0x20000000
289
/* Addition with updating the pertinent flags in "status32" register. */
290
#define OPC_ADDF (OPC_ADD | FLAG(1))
291
#define ADDI BIT(22)
292
#define ADDI_U6(x) OP_C(x)
293
#define OPC_ADDI (OPC_ADD | ADDI)
294
#define OPC_ADDIF (OPC_ADDI | FLAG(1))
295
#define OPC_ADD_I (OPC_ADD | OP_IMM)
296
297
/*
298
* The 4-byte encoding of "adc a,b,c" (addition with carry):
299
*
300
* 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa
301
*
302
* i: if set, c is considered a 6-bit immediate, else a reg.
303
*
304
* a: aaaaaa result
305
* b: BBBbbb the 1st input operand
306
* c: cccccc the 2nd input operand
307
*/
308
#define OPC_ADC 0x20010000
309
#define ADCI BIT(22)
310
#define ADCI_U6(x) OP_C(x)
311
#define OPC_ADCI (OPC_ADC | ADCI)
312
313
/*
314
* The 4-byte encoding of "sub a,b,c":
315
*
316
* 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa
317
*
318
* f: indicates if flags (carry, etc.) should be updated
319
* i: if set, c is considered a 6-bit immediate, else a reg.
320
*
321
* a: aaaaaa result
322
* b: BBBbbb the 1st input operand
323
* c: cccccc the 2nd input operand
324
*/
325
#define OPC_SUB 0x20020000
326
/* Subtraction with updating the pertinent flags in "status32" register. */
327
#define OPC_SUBF (OPC_SUB | FLAG(1))
328
#define SUBI BIT(22)
329
#define SUBI_U6(x) OP_C(x)
330
#define OPC_SUBI (OPC_SUB | SUBI)
331
#define OPC_SUB_I (OPC_SUB | OP_IMM)
332
333
/*
334
* The 4-byte encoding of "sbc a,b,c" (subtraction with carry):
335
*
336
* 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa
337
*
338
* f: indicates if flags (carry, etc.) should be updated
339
*
340
* a: aaaaaa result
341
* b: BBBbbb the 1st input operand
342
* c: cccccc the 2nd input operand
343
*/
344
#define OPC_SBC 0x20030000
345
346
/*
347
* The 4-byte encoding of "cmp[.qq] b,c":
348
*
349
* 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq
350
*
351
* qq: qqqqq condition code
352
*
353
* b: BBBbbb the 1st operand
354
* c: cccccc the 2nd operand
355
*/
356
#define OPC_CMP 0x20cc8000
357
358
/*
359
* The 4-byte encoding of "neg a,b":
360
*
361
* 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa
362
*
363
* a: aaaaaa result
364
* b: BBBbbb input
365
*/
366
#define OPC_NEG 0x204e0000
367
368
/*
369
* The 4-byte encoding of "mpy a,b,c".
370
* mpy is the signed 32-bit multiplication with the lower 32-bit
371
* of the product as the result.
372
*
373
* 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa
374
*
375
* a: aaaaaa result
376
* b: BBBbbb the 1st input operand
377
* c: cccccc the 2nd input operand
378
*/
379
#define OPC_MPY 0x201a0000
380
#define OPC_MPYI (OPC_MPY | OP_IMM)
381
382
/*
383
* The 4-byte encoding of "mpydu a,b,c".
384
* mpydu is the unsigned 32-bit multiplication with the lower 32-bit of
385
* the product in register "a" and the higher 32-bit in register "a+1".
386
*
387
* 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa
388
*
389
* a: aaaaaa 64-bit result in registers (R_a+1,R_a)
390
* b: BBBbbb the 1st input operand
391
* c: cccccc the 2nd input operand
392
*/
393
#define OPC_MPYDU 0x28190000
394
#define OPC_MPYDUI (OPC_MPYDU | OP_IMM)
395
396
/*
397
* The 4-byte encoding of "divu a,b,c" (unsigned division):
398
*
399
* 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa
400
*
401
* a: aaaaaa result (quotient)
402
* b: BBBbbb the 1st input operand
403
* c: cccccc the 2nd input operand (divisor)
404
*/
405
#define OPC_DIVU 0x28050000
406
#define OPC_DIVUI (OPC_DIVU | OP_IMM)
407
408
/*
409
* The 4-byte encoding of "div a,b,c" (signed division):
410
*
411
* 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa
412
*
413
* a: aaaaaa result (quotient)
414
* b: BBBbbb the 1st input operand
415
* c: cccccc the 2nd input operand (divisor)
416
*/
417
#define OPC_DIVS 0x28040000
418
#define OPC_DIVSI (OPC_DIVS | OP_IMM)
419
420
/*
421
* The 4-byte encoding of "remu a,b,c" (unsigned remainder):
422
*
423
* 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa
424
*
425
* a: aaaaaa result (remainder)
426
* b: BBBbbb the 1st input operand
427
* c: cccccc the 2nd input operand (divisor)
428
*/
429
#define OPC_REMU 0x28090000
430
#define OPC_REMUI (OPC_REMU | OP_IMM)
431
432
/*
433
* The 4-byte encoding of "rem a,b,c" (signed remainder):
434
*
435
* 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa
436
*
437
* a: aaaaaa result (remainder)
438
* b: BBBbbb the 1st input operand
439
* c: cccccc the 2nd input operand (divisor)
440
*/
441
#define OPC_REMS 0x28080000
442
#define OPC_REMSI (OPC_REMS | OP_IMM)
443
444
/*
445
* The 4-byte encoding of "and a,b,c":
446
*
447
* 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa
448
*
449
* f: indicates if zero and negative flags should be updated
450
*
451
* a: aaaaaa result
452
* b: BBBbbb the 1st input operand
453
* c: cccccc the 2nd input operand
454
*/
455
#define OPC_AND 0x20040000
456
#define OPC_ANDI (OPC_AND | OP_IMM)
457
458
/*
459
* The 4-byte encoding of "tst[.qq] b,c".
460
* Checks if the two input operands have any bit set at the same
461
* position.
462
*
463
* 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq
464
*
465
* qq: qqqqq condition code
466
*
467
* b: BBBbbb the 1st input operand
468
* c: cccccc the 2nd input operand
469
*/
470
#define OPC_TST 0x20cb8000
471
472
/*
473
* The 4-byte encoding of "or a,b,c":
474
*
475
* 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa
476
*
477
* a: aaaaaa result
478
* b: BBBbbb the 1st input operand
479
* c: cccccc the 2nd input operand
480
*/
481
#define OPC_OR 0x20050000
482
#define OPC_ORI (OPC_OR | OP_IMM)
483
484
/*
485
* The 4-byte encoding of "xor a,b,c":
486
*
487
* 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa
488
*
489
* a: aaaaaa result
490
* b: BBBbbb the 1st input operand
491
* c: cccccc the 2nd input operand
492
*/
493
#define OPC_XOR 0x20070000
494
#define OPC_XORI (OPC_XOR | OP_IMM)
495
496
/*
497
* The 4-byte encoding of "not b,c":
498
*
499
* 0010_0bbb 0010_1111 0BBB_cccc cc00_1010
500
*
501
* b: BBBbbb result
502
* c: cccccc input
503
*/
504
#define OPC_NOT 0x202f000a
505
506
/*
507
* The 4-byte encoding of "btst b,u6":
508
*
509
* 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000
510
*
511
* b: BBBbbb input number to check
512
* u6: uuuuuu 6-bit unsigned number specifying bit position to check
513
*/
514
#define OPC_BTSTU6 0x20518000
515
#define BTST_U6(x) (OP_C((x) & 63))
516
517
/*
518
* The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left):
519
*
520
* 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa
521
*
522
* i: if set, c is considered a 5-bit immediate, else a reg.
523
*
524
* b: BBBbbb result and the first operand (number to be shifted)
525
* c: cccccc amount to be shifted
526
*/
527
#define OPC_ASL 0x28000000
528
#define ASL_I BIT(22)
529
#define ASLI_U6(x) OP_C((x) & 31)
530
#define OPC_ASLI (OPC_ASL | ASL_I)
531
532
/*
533
* The 4-byte encoding of "asr a,b,c" (arithmetic shift right):
534
*
535
* 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa
536
*
537
* i: if set, c is considered a 6-bit immediate, else a reg.
538
*
539
* a: aaaaaa result
540
* b: BBBbbb first input: number to be shifted
541
* c: cccccc second input: amount to be shifted
542
*/
543
#define OPC_ASR 0x28020000
544
#define ASR_I ASL_I
545
#define ASRI_U6(x) ASLI_U6(x)
546
#define OPC_ASRI (OPC_ASR | ASR_I)
547
548
/*
549
* The 4-byte encoding of "lsr a,b,c" (logical shift right):
550
*
551
* 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa
552
*
553
* i: if set, c is considered a 6-bit immediate, else a reg.
554
*
555
* a: aaaaaa result
556
* b: BBBbbb first input: number to be shifted
557
* c: cccccc second input: amount to be shifted
558
*/
559
#define OPC_LSR 0x28010000
560
#define LSR_I ASL_I
561
#define LSRI_U6(x) ASLI_U6(x)
562
#define OPC_LSRI (OPC_LSR | LSR_I)
563
564
/*
565
* The 4-byte encoding of "swape b,c":
566
*
567
* 0010_1bbb 0010_1111 0bbb_cccc cc00_1001
568
*
569
* b: BBBbbb destination register
570
* c: cccccc source register
571
*/
572
#define OPC_SWAPE 0x282f0009
573
574
/*
575
* Encoding for jump to an address in register:
576
* j reg_c
577
*
578
* 0010_0000 1110_0000 0000_cccc cc00_0000
579
*
580
* c: cccccc register holding the destination address
581
*/
582
#define OPC_JMP 0x20e00000
583
/* Jump to "branch-and-link" register, which effectively is a "return". */
584
#define OPC_J_BLINK (OPC_JMP | OP_C(ARC_R_BLINK))
585
586
/*
587
* Encoding for jump-and-link to an address in register:
588
* jl reg_c
589
*
590
* 0010_0000 0010_0010 0000_cccc cc00_0000
591
*
592
* c: cccccc register holding the destination address
593
*/
594
#define OPC_JL 0x20220000
595
596
/*
597
* Encoding for (conditional) branch to an offset from the current location
598
* that is word aligned: (PC & 0xffff_fffc) + s21
599
* B[qq] s21
600
*
601
* 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq
602
*
603
* qq: qqqqq condition code
604
* s21: SSSS SSSS_SSss ssss_ssss The displacement (21-bit signed)
605
*
606
* The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
607
* it should be a multiple of 2. Hence, there is an implied '0' bit at its
608
* LSB: S_SSSS SSSS_Ssss ssss_sss0
609
*/
610
#define OPC_BCC 0x00000000
611
#define BCC_S21(d) ((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5))
612
613
/*
614
* Encoding for unconditional branch to an offset from the current location
615
* that is word aligned: (PC & 0xffff_fffc) + s25
616
* B s25
617
*
618
* 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT
619
*
620
* s25: TTTT SSSS SSSS_SSss ssss_ssss The displacement (25-bit signed)
621
*
622
* The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
623
* it should be a multiple of 2. Hence, there is an implied '0' bit at its
624
* LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0
625
*/
626
#define OPC_B 0x00010000
627
#define B_S25(d) ((((d) & 0x1e00000) >> 21) | BCC_S21(d))
628
629
static inline void emit_2_bytes(u8 *buf, u16 bytes)
630
{
631
*((u16 *)buf) = bytes;
632
}
633
634
static inline void emit_4_bytes(u8 *buf, u32 bytes)
635
{
636
emit_2_bytes(buf, bytes >> 16);
637
emit_2_bytes(buf + 2, bytes & 0xffff);
638
}
639
640
static inline u8 bpf_to_arc_size(u8 size)
641
{
642
switch (size) {
643
case BPF_B:
644
return ZZ_1_byte;
645
case BPF_H:
646
return ZZ_2_byte;
647
case BPF_W:
648
return ZZ_4_byte;
649
case BPF_DW:
650
return ZZ_8_byte;
651
default:
652
return ZZ_4_byte;
653
}
654
}
655
656
/************** Encoders (Deal with ARC regs) ************/
657
658
/* Move an immediate to register with a 4-byte instruction. */
659
static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm)
660
{
661
const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm);
662
663
if (buf)
664
emit_4_bytes(buf, insn);
665
return INSN_len_normal;
666
}
667
668
/* rd <- rs */
669
static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs)
670
{
671
const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs);
672
673
if (buf)
674
emit_4_bytes(buf, insn);
675
return INSN_len_normal;
676
}
677
678
/* The emitted code may have different sizes based on "imm". */
679
static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm)
680
{
681
const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
682
683
if (IN_S12_RANGE(imm))
684
return arc_movi_r(buf, rd, imm);
685
686
if (buf) {
687
emit_4_bytes(buf, insn);
688
emit_4_bytes(buf + INSN_len_normal, imm);
689
}
690
return INSN_len_normal + INSN_len_imm;
691
}
692
693
/* The emitted code will always have the same size (8). */
694
static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm)
695
{
696
const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
697
698
if (buf) {
699
emit_4_bytes(buf, insn);
700
emit_4_bytes(buf + INSN_len_normal, imm);
701
}
702
return INSN_len_normal + INSN_len_imm;
703
}
704
705
/* Conditional move. */
706
static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs)
707
{
708
const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc);
709
710
if (buf)
711
emit_4_bytes(buf, insn);
712
return INSN_len_normal;
713
}
714
715
/* Conditional move of a small immediate to rd. */
716
static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm)
717
{
718
const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc);
719
720
if (buf)
721
emit_4_bytes(buf, insn);
722
return INSN_len_normal;
723
}
724
725
/* Sign extension from a byte. */
726
static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs)
727
{
728
const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs);
729
730
if (buf)
731
emit_4_bytes(buf, insn);
732
return INSN_len_normal;
733
}
734
735
/* Sign extension from two bytes. */
736
static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs)
737
{
738
const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs);
739
740
if (buf)
741
emit_4_bytes(buf, insn);
742
return INSN_len_normal;
743
}
744
745
/* st reg, [reg_mem, off] */
746
static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
747
{
748
const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) |
749
OP_B(reg_mem) | STORE_S9(off);
750
751
if (buf)
752
emit_4_bytes(buf, insn);
753
return INSN_len_normal;
754
}
755
756
/* st.aw reg, [sp, -4] */
757
static u8 arc_push_r(u8 *buf, u8 reg)
758
{
759
const u32 insn = OPC_PUSH | OP_C(reg);
760
761
if (buf)
762
emit_4_bytes(buf, insn);
763
return INSN_len_normal;
764
}
765
766
/* ld reg, [reg_mem, off] (unsigned) */
767
static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
768
{
769
const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) |
770
OP_B(reg_mem) | LOAD_S9(off);
771
772
if (buf)
773
emit_4_bytes(buf, insn);
774
return INSN_len_normal;
775
}
776
777
/* ld.x reg, [reg_mem, off] (sign extend) */
778
static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
779
{
780
const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) |
781
OP_B(reg_mem) | LOAD_S9(off);
782
783
if (buf)
784
emit_4_bytes(buf, insn);
785
return INSN_len_normal;
786
}
787
788
/* ld.ab reg,[sp,4] */
789
static u8 arc_pop_r(u8 *buf, u8 reg)
790
{
791
const u32 insn = OPC_POP | LOAD_C(reg);
792
793
if (buf)
794
emit_4_bytes(buf, insn);
795
return INSN_len_normal;
796
}
797
798
/* add Ra,Ra,Rc */
799
static u8 arc_add_r(u8 *buf, u8 ra, u8 rc)
800
{
801
const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc);
802
803
if (buf)
804
emit_4_bytes(buf, insn);
805
return INSN_len_normal;
806
}
807
808
/* add.f Ra,Ra,Rc */
809
static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc)
810
{
811
const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc);
812
813
if (buf)
814
emit_4_bytes(buf, insn);
815
return INSN_len_normal;
816
}
817
818
/* add.f Ra,Ra,u6 */
819
static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6)
820
{
821
const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
822
823
if (buf)
824
emit_4_bytes(buf, insn);
825
return INSN_len_normal;
826
}
827
828
/* add Ra,Ra,u6 */
829
static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6)
830
{
831
const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
832
833
if (buf)
834
emit_4_bytes(buf, insn);
835
return INSN_len_normal;
836
}
837
838
/* add Ra,Rb,imm */
839
static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm)
840
{
841
const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb);
842
843
if (buf) {
844
emit_4_bytes(buf, insn);
845
emit_4_bytes(buf + INSN_len_normal, imm);
846
}
847
return INSN_len_normal + INSN_len_imm;
848
}
849
850
/* adc Ra,Ra,Rc */
851
static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc)
852
{
853
const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc);
854
855
if (buf)
856
emit_4_bytes(buf, insn);
857
return INSN_len_normal;
858
}
859
860
/* adc Ra,Ra,u6 */
861
static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6)
862
{
863
const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6);
864
865
if (buf)
866
emit_4_bytes(buf, insn);
867
return INSN_len_normal;
868
}
869
870
/* sub Ra,Ra,Rc */
871
static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc)
872
{
873
const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc);
874
875
if (buf)
876
emit_4_bytes(buf, insn);
877
return INSN_len_normal;
878
}
879
880
/* sub.f Ra,Ra,Rc */
881
static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc)
882
{
883
const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc);
884
885
if (buf)
886
emit_4_bytes(buf, insn);
887
return INSN_len_normal;
888
}
889
890
/* sub Ra,Ra,u6 */
891
static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6)
892
{
893
const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6);
894
895
if (buf)
896
emit_4_bytes(buf, insn);
897
return INSN_len_normal;
898
}
899
900
/* sub Ra,Ra,imm */
901
static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm)
902
{
903
const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra);
904
905
if (buf) {
906
emit_4_bytes(buf, insn);
907
emit_4_bytes(buf + INSN_len_normal, imm);
908
}
909
return INSN_len_normal + INSN_len_imm;
910
}
911
912
/* sbc Ra,Ra,Rc */
913
static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc)
914
{
915
const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc);
916
917
if (buf)
918
emit_4_bytes(buf, insn);
919
return INSN_len_normal;
920
}
921
922
/* cmp Rb,Rc */
923
static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc)
924
{
925
const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc);
926
927
if (buf)
928
emit_4_bytes(buf, insn);
929
return INSN_len_normal;
930
}
931
932
/*
933
* cmp.z Rb,Rc
934
*
935
* This "cmp.z" variant of compare instruction is used on lower
936
* 32-bits of register pairs after "cmp"ing their upper parts. If the
937
* upper parts are equal (z), then this one will proceed to check the
938
* rest.
939
*/
940
static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc)
941
{
942
const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal;
943
944
if (buf)
945
emit_4_bytes(buf, insn);
946
return INSN_len_normal;
947
}
948
949
/* neg Ra,Rb */
950
static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb)
951
{
952
const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb);
953
954
if (buf)
955
emit_4_bytes(buf, insn);
956
return INSN_len_normal;
957
}
958
959
/* mpy Ra,Rb,Rc */
960
static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc)
961
{
962
const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc);
963
964
if (buf)
965
emit_4_bytes(buf, insn);
966
return INSN_len_normal;
967
}
968
969
/* mpy Ra,Rb,imm */
970
static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm)
971
{
972
const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb);
973
974
if (buf) {
975
emit_4_bytes(buf, insn);
976
emit_4_bytes(buf + INSN_len_normal, imm);
977
}
978
return INSN_len_normal + INSN_len_imm;
979
}
980
981
/* mpydu Ra,Ra,Rc */
982
static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc)
983
{
984
const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc);
985
986
if (buf)
987
emit_4_bytes(buf, insn);
988
return INSN_len_normal;
989
}
990
991
/* mpydu Ra,Ra,imm */
992
static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm)
993
{
994
const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra);
995
996
if (buf) {
997
emit_4_bytes(buf, insn);
998
emit_4_bytes(buf + INSN_len_normal, imm);
999
}
1000
return INSN_len_normal + INSN_len_imm;
1001
}
1002
1003
/* divu Rd,Rd,Rs */
1004
static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs)
1005
{
1006
const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs);
1007
1008
if (buf)
1009
emit_4_bytes(buf, insn);
1010
return INSN_len_normal;
1011
}
1012
1013
/* divu Rd,Rd,imm */
1014
static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm)
1015
{
1016
const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd);
1017
1018
if (buf) {
1019
emit_4_bytes(buf, insn);
1020
emit_4_bytes(buf + INSN_len_normal, imm);
1021
}
1022
return INSN_len_normal + INSN_len_imm;
1023
}
1024
1025
/* div Rd,Rd,Rs */
1026
static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs)
1027
{
1028
const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs);
1029
1030
if (buf)
1031
emit_4_bytes(buf, insn);
1032
return INSN_len_normal;
1033
}
1034
1035
/* div Rd,Rd,imm */
1036
static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm)
1037
{
1038
const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd);
1039
1040
if (buf) {
1041
emit_4_bytes(buf, insn);
1042
emit_4_bytes(buf + INSN_len_normal, imm);
1043
}
1044
return INSN_len_normal + INSN_len_imm;
1045
}
1046
1047
/* remu Rd,Rd,Rs */
1048
static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs)
1049
{
1050
const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs);
1051
1052
if (buf)
1053
emit_4_bytes(buf, insn);
1054
return INSN_len_normal;
1055
}
1056
1057
/* remu Rd,Rd,imm */
1058
static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm)
1059
{
1060
const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd);
1061
1062
if (buf) {
1063
emit_4_bytes(buf, insn);
1064
emit_4_bytes(buf + INSN_len_normal, imm);
1065
}
1066
return INSN_len_normal + INSN_len_imm;
1067
}
1068
1069
/* rem Rd,Rd,Rs */
1070
static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs)
1071
{
1072
const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs);
1073
1074
if (buf)
1075
emit_4_bytes(buf, insn);
1076
return INSN_len_normal;
1077
}
1078
1079
/* rem Rd,Rd,imm */
1080
static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm)
1081
{
1082
const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd);
1083
1084
if (buf) {
1085
emit_4_bytes(buf, insn);
1086
emit_4_bytes(buf + INSN_len_normal, imm);
1087
}
1088
return INSN_len_normal + INSN_len_imm;
1089
}
1090
1091
/* and Rd,Rd,Rs */
1092
static u8 arc_and_r(u8 *buf, u8 rd, u8 rs)
1093
{
1094
const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs);
1095
1096
if (buf)
1097
emit_4_bytes(buf, insn);
1098
return INSN_len_normal;
1099
}
1100
1101
/* and Rd,Rd,limm */
1102
static u8 arc_and_i(u8 *buf, u8 rd, s32 imm)
1103
{
1104
const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd);
1105
1106
if (buf) {
1107
emit_4_bytes(buf, insn);
1108
emit_4_bytes(buf + INSN_len_normal, imm);
1109
}
1110
return INSN_len_normal + INSN_len_imm;
1111
}
1112
1113
/* tst Rd,Rs */
1114
static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs)
1115
{
1116
const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs);
1117
1118
if (buf)
1119
emit_4_bytes(buf, insn);
1120
return INSN_len_normal;
1121
}
1122
1123
/*
1124
* This particular version, "tst.z ...", is meant to be used after a
1125
* "tst" on the low 32-bit of register pairs. If that "tst" is not
1126
* zero, then we don't need to test the upper 32-bits lest it sets
1127
* the zero flag.
1128
*/
1129
static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs)
1130
{
1131
const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal;
1132
1133
if (buf)
1134
emit_4_bytes(buf, insn);
1135
return INSN_len_normal;
1136
}
1137
1138
static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1139
{
1140
const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1141
1142
if (buf)
1143
emit_4_bytes(buf, insn);
1144
return INSN_len_normal;
1145
}
1146
1147
static u8 arc_or_i(u8 *buf, u8 rd, s32 imm)
1148
{
1149
const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd);
1150
1151
if (buf) {
1152
emit_4_bytes(buf, insn);
1153
emit_4_bytes(buf + INSN_len_normal, imm);
1154
}
1155
return INSN_len_normal + INSN_len_imm;
1156
}
1157
1158
static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs)
1159
{
1160
const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs);
1161
1162
if (buf)
1163
emit_4_bytes(buf, insn);
1164
return INSN_len_normal;
1165
}
1166
1167
static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm)
1168
{
1169
const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd);
1170
1171
if (buf) {
1172
emit_4_bytes(buf, insn);
1173
emit_4_bytes(buf + INSN_len_normal, imm);
1174
}
1175
return INSN_len_normal + INSN_len_imm;
1176
}
1177
1178
static u8 arc_not_r(u8 *buf, u8 rd, u8 rs)
1179
{
1180
const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs);
1181
1182
if (buf)
1183
emit_4_bytes(buf, insn);
1184
return INSN_len_normal;
1185
}
1186
1187
static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm)
1188
{
1189
const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm);
1190
1191
if (buf)
1192
emit_4_bytes(buf, insn);
1193
return INSN_len_normal;
1194
}
1195
1196
static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1197
{
1198
const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1199
1200
if (buf)
1201
emit_4_bytes(buf, insn);
1202
return INSN_len_normal;
1203
}
1204
1205
static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1206
{
1207
const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm);
1208
1209
if (buf)
1210
emit_4_bytes(buf, insn);
1211
return INSN_len_normal;
1212
}
1213
1214
static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1215
{
1216
const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1217
1218
if (buf)
1219
emit_4_bytes(buf, insn);
1220
return INSN_len_normal;
1221
}
1222
1223
static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1224
{
1225
const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm);
1226
1227
if (buf)
1228
emit_4_bytes(buf, insn);
1229
return INSN_len_normal;
1230
}
1231
1232
static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1233
{
1234
const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1235
1236
if (buf)
1237
emit_4_bytes(buf, insn);
1238
return INSN_len_normal;
1239
}
1240
1241
static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1242
{
1243
const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm);
1244
1245
if (buf)
1246
emit_4_bytes(buf, insn);
1247
return INSN_len_normal;
1248
}
1249
1250
static u8 arc_swape_r(u8 *buf, u8 r)
1251
{
1252
const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r);
1253
1254
if (buf)
1255
emit_4_bytes(buf, insn);
1256
return INSN_len_normal;
1257
}
1258
1259
static u8 arc_jmp_return(u8 *buf)
1260
{
1261
if (buf)
1262
emit_4_bytes(buf, OPC_J_BLINK);
1263
return INSN_len_normal;
1264
}
1265
1266
static u8 arc_jl(u8 *buf, u8 reg)
1267
{
1268
const u32 insn = OPC_JL | OP_C(reg);
1269
1270
if (buf)
1271
emit_4_bytes(buf, insn);
1272
return INSN_len_normal;
1273
}
1274
1275
/*
1276
* Conditional jump to an address that is max 21 bits away (signed).
1277
*
1278
* b<cc> s21
1279
*/
1280
static u8 arc_bcc(u8 *buf, u8 cc, int offset)
1281
{
1282
const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc);
1283
1284
if (buf)
1285
emit_4_bytes(buf, insn);
1286
return INSN_len_normal;
1287
}
1288
1289
/*
1290
* Unconditional jump to an address that is max 25 bits away (signed).
1291
*
1292
* b s25
1293
*/
1294
static u8 arc_b(u8 *buf, s32 offset)
1295
{
1296
const u32 insn = OPC_B | B_S25(offset);
1297
1298
if (buf)
1299
emit_4_bytes(buf, insn);
1300
return INSN_len_normal;
1301
}
1302
1303
/************* Packers (Deal with BPF_REGs) **************/
1304
1305
u8 zext(u8 *buf, u8 rd)
1306
{
1307
if (rd != BPF_REG_FP)
1308
return arc_movi_r(buf, REG_HI(rd), 0);
1309
else
1310
return 0;
1311
}
1312
1313
u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
1314
{
1315
u8 len = 0;
1316
1317
if (sign_ext) {
1318
if (sign_ext == 8)
1319
len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs));
1320
else if (sign_ext == 16)
1321
len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs));
1322
else if (sign_ext == 32 && rd != rs)
1323
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1324
1325
return len;
1326
}
1327
1328
/* Unsigned move. */
1329
1330
if (rd != rs)
1331
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1332
1333
return len;
1334
}
1335
1336
u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm)
1337
{
1338
return arc_mov_i(buf, REG_LO(reg), imm);
1339
}
1340
1341
u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
1342
{
1343
u8 len = 0;
1344
1345
if (sign_ext) {
1346
/* First handle the low 32-bit part. */
1347
len = mov_r32(buf, rd, rs, sign_ext);
1348
1349
/* Now propagate the sign bit of LO to HI. */
1350
if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) {
1351
len += arc_asri_r(BUF(buf, len),
1352
REG_HI(rd), REG_LO(rd), 31);
1353
}
1354
1355
return len;
1356
}
1357
1358
/* Unsigned move. */
1359
1360
if (rd == rs)
1361
return 0;
1362
1363
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1364
1365
if (rs != BPF_REG_FP)
1366
len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1367
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
1368
else
1369
len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
1370
1371
return len;
1372
}
1373
1374
/* Sign extend the 32-bit immediate into 64-bit register pair. */
1375
u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm)
1376
{
1377
u8 len = 0;
1378
1379
len = arc_mov_i(buf, REG_LO(reg), imm);
1380
1381
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
1382
if (reg != BPF_REG_FP) {
1383
if (imm >= 0)
1384
len += arc_movi_r(BUF(buf, len), REG_HI(reg), 0);
1385
else
1386
len += arc_movi_r(BUF(buf, len), REG_HI(reg), -1);
1387
}
1388
1389
return len;
1390
}
1391
1392
/*
1393
* This is merely used for translation of "LD R, IMM64" instructions
1394
* of the BPF. These sort of instructions are sometimes used for
1395
* relocations. If during the normal pass, the relocation value is
1396
* not known, the BPF instruction may look something like:
1397
*
1398
* LD R <- 0x0000_0001_0000_0001
1399
*
1400
* Which will nicely translate to two 4-byte ARC instructions:
1401
*
1402
* mov R_lo, 1 # imm is small enough to be s12
1403
* mov R_hi, 1 # same
1404
*
1405
* However, during the extra pass, the IMM64 will have changed
1406
* to the resolved address and looks something like:
1407
*
1408
* LD R <- 0x0000_0000_1234_5678
1409
*
1410
* Now, the translated code will require 12 bytes:
1411
*
1412
* mov R_lo, 0x12345678 # this is an 8-byte instruction
1413
* mov R_hi, 0 # still 4 bytes
1414
*
1415
* Which in practice will result in overwriting the following
1416
* instruction. To avoid such cases, we will always emit codes
1417
* with fixed sizes.
1418
*/
1419
u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi)
1420
{
1421
u8 len;
1422
1423
len = arc_mov_i_fixed(buf, REG_LO(reg), lo);
1424
len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), hi);
1425
1426
return len;
1427
}
1428
1429
/*
1430
* If the "off"set is too big (doesn't encode as S9) for:
1431
*
1432
* {ld,st} r, [rm, off]
1433
*
1434
* Then emit:
1435
*
1436
* add r10, REG_LO(rm), off
1437
*
1438
* and make sure that r10 becomes the effective address:
1439
*
1440
* {ld,st} r, [r10, 0]
1441
*/
1442
static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size,
1443
u8 rm, u8 *arc_reg_mem)
1444
{
1445
u8 len = 0;
1446
*arc_reg_mem = REG_LO(rm);
1447
1448
if (!IN_S9_RANGE(*off) ||
1449
(size == BPF_DW && !IN_S9_RANGE(*off + 4))) {
1450
len += arc_add_i(BUF(buf, len),
1451
REG_LO(JIT_REG_TMP), REG_LO(rm), (u32)(*off));
1452
*arc_reg_mem = REG_LO(JIT_REG_TMP);
1453
*off = 0;
1454
}
1455
1456
return len;
1457
}
1458
1459
/* store rs, [rd, off] */
1460
u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size)
1461
{
1462
u8 len, arc_reg_mem;
1463
1464
len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
1465
1466
if (size == BPF_DW) {
1467
len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
1468
off, ZZ_4_byte);
1469
len += arc_st_r(BUF(buf, len), REG_HI(rs), arc_reg_mem,
1470
off + 4, ZZ_4_byte);
1471
} else {
1472
u8 zz = bpf_to_arc_size(size);
1473
1474
len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
1475
off, zz);
1476
}
1477
1478
return len;
1479
}
1480
1481
/*
1482
* For {8,16,32}-bit stores:
1483
* mov r21, imm
1484
* st r21, [...]
1485
* For 64-bit stores:
1486
* mov r21, imm
1487
* st r21, [...]
1488
* mov r21, {0,-1}
1489
* st r21, [...+4]
1490
*/
1491
u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size)
1492
{
1493
u8 len, arc_reg_mem;
1494
/* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */
1495
const u8 arc_rs = REG_HI(JIT_REG_TMP);
1496
1497
len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
1498
1499
if (size == BPF_DW) {
1500
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1501
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
1502
off, ZZ_4_byte);
1503
imm = (imm >= 0 ? 0 : -1);
1504
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1505
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
1506
off + 4, ZZ_4_byte);
1507
} else {
1508
u8 zz = bpf_to_arc_size(size);
1509
1510
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1511
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, off, zz);
1512
}
1513
1514
return len;
1515
}
1516
1517
/*
1518
* For the calling convention of a little endian machine, the LO part
1519
* must be on top of the stack.
1520
*/
1521
static u8 push_r64(u8 *buf, u8 reg)
1522
{
1523
u8 len = 0;
1524
1525
#ifdef __LITTLE_ENDIAN
1526
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
1527
if (reg != BPF_REG_FP)
1528
len += arc_push_r(BUF(buf, len), REG_HI(reg));
1529
len += arc_push_r(BUF(buf, len), REG_LO(reg));
1530
#else
1531
len += arc_push_r(BUF(buf, len), REG_LO(reg));
1532
if (reg != BPF_REG_FP)
1533
len += arc_push_r(BUF(buf, len), REG_HI(reg));
1534
#endif
1535
1536
return len;
1537
}
1538
1539
/* load rd, [rs, off] */
1540
u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext)
1541
{
1542
u8 len, arc_reg_mem;
1543
1544
len = adjust_mem_access(buf, &off, size, rs, &arc_reg_mem);
1545
1546
if (size == BPF_B || size == BPF_H || size == BPF_W) {
1547
const u8 zz = bpf_to_arc_size(size);
1548
1549
/* Use LD.X only if the data size is less than 32-bit. */
1550
if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) {
1551
len += arc_ldx_r(BUF(buf, len), REG_LO(rd),
1552
arc_reg_mem, off, zz);
1553
} else {
1554
len += arc_ld_r(BUF(buf, len), REG_LO(rd),
1555
arc_reg_mem, off, zz);
1556
}
1557
1558
if (sign_ext) {
1559
/* Propagate the sign bit to the higher reg. */
1560
len += arc_asri_r(BUF(buf, len),
1561
REG_HI(rd), REG_LO(rd), 31);
1562
} else {
1563
len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
1564
}
1565
} else if (size == BPF_DW) {
1566
/*
1567
* We are about to issue 2 consecutive loads:
1568
*
1569
* ld rx, [rb, off+0]
1570
* ld ry, [rb, off+4]
1571
*
1572
* If "rx" and "rb" are the same registers, then the order
1573
* should change to guarantee that "rb" remains intact
1574
* during these 2 operations:
1575
*
1576
* ld ry, [rb, off+4]
1577
* ld rx, [rb, off+0]
1578
*/
1579
if (REG_LO(rd) != arc_reg_mem) {
1580
len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
1581
off, ZZ_4_byte);
1582
len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
1583
off + 4, ZZ_4_byte);
1584
} else {
1585
len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
1586
off + 4, ZZ_4_byte);
1587
len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
1588
off, ZZ_4_byte);
1589
}
1590
}
1591
1592
return len;
1593
}
1594
1595
u8 add_r32(u8 *buf, u8 rd, u8 rs)
1596
{
1597
return arc_add_r(buf, REG_LO(rd), REG_LO(rs));
1598
}
1599
1600
u8 add_r32_i32(u8 *buf, u8 rd, s32 imm)
1601
{
1602
if (IN_U6_RANGE(imm))
1603
return arc_addi_r(buf, REG_LO(rd), imm);
1604
else
1605
return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm);
1606
}
1607
1608
u8 add_r64(u8 *buf, u8 rd, u8 rs)
1609
{
1610
u8 len;
1611
1612
len = arc_addf_r(buf, REG_LO(rd), REG_LO(rs));
1613
len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1614
return len;
1615
}
1616
1617
u8 add_r64_i32(u8 *buf, u8 rd, s32 imm)
1618
{
1619
u8 len;
1620
1621
if (IN_U6_RANGE(imm)) {
1622
len = arc_addif_r(buf, REG_LO(rd), imm);
1623
len += arc_adci_r(BUF(buf, len), REG_HI(rd), 0);
1624
} else {
1625
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
1626
len += add_r64(BUF(buf, len), rd, JIT_REG_TMP);
1627
}
1628
return len;
1629
}
1630
1631
u8 sub_r32(u8 *buf, u8 rd, u8 rs)
1632
{
1633
return arc_sub_r(buf, REG_LO(rd), REG_LO(rs));
1634
}
1635
1636
u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm)
1637
{
1638
if (IN_U6_RANGE(imm))
1639
return arc_subi_r(buf, REG_LO(rd), imm);
1640
else
1641
return arc_sub_i(buf, REG_LO(rd), imm);
1642
}
1643
1644
u8 sub_r64(u8 *buf, u8 rd, u8 rs)
1645
{
1646
u8 len;
1647
1648
len = arc_subf_r(buf, REG_LO(rd), REG_LO(rs));
1649
len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1650
return len;
1651
}
1652
1653
u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm)
1654
{
1655
u8 len;
1656
1657
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
1658
len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP);
1659
return len;
1660
}
1661
1662
static u8 cmp_r32(u8 *buf, u8 rd, u8 rs)
1663
{
1664
return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs));
1665
}
1666
1667
u8 neg_r32(u8 *buf, u8 r)
1668
{
1669
return arc_neg_r(buf, REG_LO(r), REG_LO(r));
1670
}
1671
1672
/* In a two's complement system, -r is (~r + 1). */
1673
u8 neg_r64(u8 *buf, u8 r)
1674
{
1675
u8 len;
1676
1677
len = arc_not_r(buf, REG_LO(r), REG_LO(r));
1678
len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r));
1679
len += add_r64_i32(BUF(buf, len), r, 1);
1680
return len;
1681
}
1682
1683
u8 mul_r32(u8 *buf, u8 rd, u8 rs)
1684
{
1685
return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1686
}
1687
1688
u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm)
1689
{
1690
return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm);
1691
}
1692
1693
/*
1694
* MUL B, C
1695
* --------
1696
* mpy t0, B_hi, C_lo
1697
* mpy t1, B_lo, C_hi
1698
* mpydu B_lo, B_lo, C_lo
1699
* add B_hi, B_hi, t0
1700
* add B_hi, B_hi, t1
1701
*/
1702
u8 mul_r64(u8 *buf, u8 rd, u8 rs)
1703
{
1704
const u8 t0 = REG_LO(JIT_REG_TMP);
1705
const u8 t1 = REG_HI(JIT_REG_TMP);
1706
const u8 C_lo = REG_LO(rs);
1707
const u8 C_hi = REG_HI(rs);
1708
const u8 B_lo = REG_LO(rd);
1709
const u8 B_hi = REG_HI(rd);
1710
u8 len;
1711
1712
len = arc_mpy_r(buf, t0, B_hi, C_lo);
1713
len += arc_mpy_r(BUF(buf, len), t1, B_lo, C_hi);
1714
len += arc_mpydu_r(BUF(buf, len), B_lo, C_lo);
1715
len += arc_add_r(BUF(buf, len), B_hi, t0);
1716
len += arc_add_r(BUF(buf, len), B_hi, t1);
1717
1718
return len;
1719
}
1720
1721
/*
1722
* MUL B, imm
1723
* ----------
1724
*
1725
* To get a 64-bit result from a signed 64x32 multiplication:
1726
*
1727
* B_hi B_lo *
1728
* sign imm
1729
* -----------------------------
1730
* HI(B_lo*imm) LO(B_lo*imm) +
1731
* B_hi*imm +
1732
* B_lo*sign
1733
* -----------------------------
1734
* res_hi res_lo
1735
*
1736
* mpy t1, B_lo, sign(imm)
1737
* mpy t0, B_hi, imm
1738
* mpydu B_lo, B_lo, imm
1739
* add B_hi, B_hi, t0
1740
* add B_hi, B_hi, t1
1741
*
1742
* Note: We can't use signed double multiplication, "mpyd", instead of an
1743
* unsigned version, "mpydu", and then get rid of the sign adjustments
1744
* calculated in "t1". The signed multiplication, "mpyd", will consider
1745
* both operands, "B_lo" and "imm", as signed inputs. However, for this
1746
* 64x32 multiplication, "B_lo" must be treated as an unsigned number.
1747
*/
1748
u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm)
1749
{
1750
const u8 t0 = REG_LO(JIT_REG_TMP);
1751
const u8 t1 = REG_HI(JIT_REG_TMP);
1752
const u8 B_lo = REG_LO(rd);
1753
const u8 B_hi = REG_HI(rd);
1754
u8 len = 0;
1755
1756
if (imm == 1)
1757
return 0;
1758
1759
/* Is the sign-extension of the immediate "-1"? */
1760
if (imm < 0)
1761
len += arc_neg_r(BUF(buf, len), t1, B_lo);
1762
1763
len += arc_mpy_i(BUF(buf, len), t0, B_hi, imm);
1764
len += arc_mpydu_i(BUF(buf, len), B_lo, imm);
1765
len += arc_add_r(BUF(buf, len), B_hi, t0);
1766
1767
/* Add the "sign*B_lo" part, if necessary. */
1768
if (imm < 0)
1769
len += arc_add_r(BUF(buf, len), B_hi, t1);
1770
1771
return len;
1772
}
1773
1774
u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
1775
{
1776
if (sign_ext)
1777
return arc_divs_r(buf, REG_LO(rd), REG_LO(rs));
1778
else
1779
return arc_divu_r(buf, REG_LO(rd), REG_LO(rs));
1780
}
1781
1782
u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
1783
{
1784
if (imm == 0)
1785
return 0;
1786
1787
if (sign_ext)
1788
return arc_divs_i(buf, REG_LO(rd), imm);
1789
else
1790
return arc_divu_i(buf, REG_LO(rd), imm);
1791
}
1792
1793
u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
1794
{
1795
if (sign_ext)
1796
return arc_rems_r(buf, REG_LO(rd), REG_LO(rs));
1797
else
1798
return arc_remu_r(buf, REG_LO(rd), REG_LO(rs));
1799
}
1800
1801
u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
1802
{
1803
if (imm == 0)
1804
return 0;
1805
1806
if (sign_ext)
1807
return arc_rems_i(buf, REG_LO(rd), imm);
1808
else
1809
return arc_remu_i(buf, REG_LO(rd), imm);
1810
}
1811
1812
u8 and_r32(u8 *buf, u8 rd, u8 rs)
1813
{
1814
return arc_and_r(buf, REG_LO(rd), REG_LO(rs));
1815
}
1816
1817
u8 and_r32_i32(u8 *buf, u8 rd, s32 imm)
1818
{
1819
return arc_and_i(buf, REG_LO(rd), imm);
1820
}
1821
1822
u8 and_r64(u8 *buf, u8 rd, u8 rs)
1823
{
1824
u8 len;
1825
1826
len = arc_and_r(buf, REG_LO(rd), REG_LO(rs));
1827
len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1828
return len;
1829
}
1830
1831
u8 and_r64_i32(u8 *buf, u8 rd, s32 imm)
1832
{
1833
u8 len;
1834
1835
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
1836
len += and_r64(BUF(buf, len), rd, JIT_REG_TMP);
1837
return len;
1838
}
1839
1840
static u8 tst_r32(u8 *buf, u8 rd, u8 rs)
1841
{
1842
return arc_tst_r(buf, REG_LO(rd), REG_LO(rs));
1843
}
1844
1845
u8 or_r32(u8 *buf, u8 rd, u8 rs)
1846
{
1847
return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1848
}
1849
1850
u8 or_r32_i32(u8 *buf, u8 rd, s32 imm)
1851
{
1852
return arc_or_i(buf, REG_LO(rd), imm);
1853
}
1854
1855
u8 or_r64(u8 *buf, u8 rd, u8 rs)
1856
{
1857
u8 len;
1858
1859
len = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1860
len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs));
1861
return len;
1862
}
1863
1864
u8 or_r64_i32(u8 *buf, u8 rd, s32 imm)
1865
{
1866
u8 len;
1867
1868
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
1869
len += or_r64(BUF(buf, len), rd, JIT_REG_TMP);
1870
return len;
1871
}
1872
1873
u8 xor_r32(u8 *buf, u8 rd, u8 rs)
1874
{
1875
return arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
1876
}
1877
1878
u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm)
1879
{
1880
return arc_xor_i(buf, REG_LO(rd), imm);
1881
}
1882
1883
u8 xor_r64(u8 *buf, u8 rd, u8 rs)
1884
{
1885
u8 len;
1886
1887
len = arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
1888
len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1889
return len;
1890
}
1891
1892
u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm)
1893
{
1894
u8 len;
1895
1896
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
1897
len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP);
1898
return len;
1899
}
1900
1901
/* "asl a,b,c" --> "a = (b << (c & 31))". */
1902
u8 lsh_r32(u8 *buf, u8 rd, u8 rs)
1903
{
1904
return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1905
}
1906
1907
u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm)
1908
{
1909
return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm);
1910
}
1911
1912
/*
1913
* algorithm
1914
* ---------
1915
* if (n <= 32)
1916
* to_hi = lo >> (32-n) # (32-n) is the negate of "n" in a 5-bit width.
1917
* lo <<= n
1918
* hi <<= n
1919
* hi |= to_hi
1920
* else
1921
* hi = lo << (n-32)
1922
* lo = 0
1923
*
1924
* assembly translation for "LSH B, C"
1925
* (heavily influenced by ARC gcc)
1926
* -----------------------------------
1927
* not t0, C_lo # The first 3 lines are almost the same as:
1928
* lsr t1, B_lo, 1 # neg t0, C_lo
1929
* lsr t1, t1, t0 # lsr t1, B_lo, t0 --> t1 is "to_hi"
1930
* mov t0, C_lo* # with one important difference. In "neg"
1931
* asl B_lo, B_lo, t0 # version, when C_lo=0, t1 becomes B_lo while
1932
* asl B_hi, B_hi, t0 # it should be 0. The "not" approach instead,
1933
* or B_hi, B_hi, t1 # "shift"s t1 once and 31 times, practically
1934
* btst t0, 5 # setting it to 0 when C_lo=0.
1935
* mov.ne B_hi, B_lo**
1936
* mov.ne B_lo, 0
1937
*
1938
* *The "mov t0, C_lo" is necessary to cover the cases that C is the same
1939
* register as B.
1940
*
1941
* **ARC performs a shift in this manner: B <<= (C & 31)
1942
* For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and
1943
* "B << (n-32)" yield the same results. e.g. the results of "B << 35" and
1944
* "B << 3" are the same.
1945
*
1946
* The behaviour is undefined for n >= 64.
1947
*/
1948
u8 lsh_r64(u8 *buf, u8 rd, u8 rs)
1949
{
1950
const u8 t0 = REG_LO(JIT_REG_TMP);
1951
const u8 t1 = REG_HI(JIT_REG_TMP);
1952
const u8 C_lo = REG_LO(rs);
1953
const u8 B_lo = REG_LO(rd);
1954
const u8 B_hi = REG_HI(rd);
1955
u8 len;
1956
1957
len = arc_not_r(buf, t0, C_lo);
1958
len += arc_lsri_r(BUF(buf, len), t1, B_lo, 1);
1959
len += arc_lsr_r(BUF(buf, len), t1, t1, t0);
1960
len += arc_mov_r(BUF(buf, len), t0, C_lo);
1961
len += arc_asl_r(BUF(buf, len), B_lo, B_lo, t0);
1962
len += arc_asl_r(BUF(buf, len), B_hi, B_hi, t0);
1963
len += arc_or_r(BUF(buf, len), B_hi, B_hi, t1);
1964
len += arc_btst_i(BUF(buf, len), t0, 5);
1965
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, B_lo);
1966
len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_lo, 0);
1967
1968
return len;
1969
}
1970
1971
/*
1972
* if (n < 32)
1973
* to_hi = B_lo >> 32-n # extract upper n bits
1974
* lo <<= n
1975
* hi <<=n
1976
* hi |= to_hi
1977
* else if (n < 64)
1978
* hi = lo << n-32
1979
* lo = 0
1980
*/
1981
u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm)
1982
{
1983
const u8 t0 = REG_LO(JIT_REG_TMP);
1984
const u8 B_lo = REG_LO(rd);
1985
const u8 B_hi = REG_HI(rd);
1986
const u8 n = (u8)imm;
1987
u8 len = 0;
1988
1989
if (n == 0) {
1990
return 0;
1991
} else if (n <= 31) {
1992
len = arc_lsri_r(buf, t0, B_lo, 32 - n);
1993
len += arc_asli_r(BUF(buf, len), B_lo, B_lo, n);
1994
len += arc_asli_r(BUF(buf, len), B_hi, B_hi, n);
1995
len += arc_or_r(BUF(buf, len), B_hi, B_hi, t0);
1996
} else if (n <= 63) {
1997
len = arc_asli_r(buf, B_hi, B_lo, n - 32);
1998
len += arc_movi_r(BUF(buf, len), B_lo, 0);
1999
}
2000
/* n >= 64 is undefined behaviour. */
2001
2002
return len;
2003
}
2004
2005
/* "lsr a,b,c" --> "a = (b >> (c & 31))". */
2006
u8 rsh_r32(u8 *buf, u8 rd, u8 rs)
2007
{
2008
return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
2009
}
2010
2011
u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm)
2012
{
2013
return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm);
2014
}
2015
2016
/*
2017
* For better commentary, see lsh_r64().
2018
*
2019
* algorithm
2020
* ---------
2021
* if (n <= 32)
2022
* to_lo = hi << (32-n)
2023
* hi >>= n
2024
* lo >>= n
2025
* lo |= to_lo
2026
* else
2027
* lo = hi >> (n-32)
2028
* hi = 0
2029
*
2030
* RSH B,C
2031
* ----------
2032
* not t0, C_lo
2033
* asl t1, B_hi, 1
2034
* asl t1, t1, t0
2035
* mov t0, C_lo
2036
* lsr B_hi, B_hi, t0
2037
* lsr B_lo, B_lo, t0
2038
* or B_lo, B_lo, t1
2039
* btst t0, 5
2040
* mov.ne B_lo, B_hi
2041
* mov.ne B_hi, 0
2042
*/
2043
u8 rsh_r64(u8 *buf, u8 rd, u8 rs)
2044
{
2045
const u8 t0 = REG_LO(JIT_REG_TMP);
2046
const u8 t1 = REG_HI(JIT_REG_TMP);
2047
const u8 C_lo = REG_LO(rs);
2048
const u8 B_lo = REG_LO(rd);
2049
const u8 B_hi = REG_HI(rd);
2050
u8 len;
2051
2052
len = arc_not_r(buf, t0, C_lo);
2053
len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
2054
len += arc_asl_r(BUF(buf, len), t1, t1, t0);
2055
len += arc_mov_r(BUF(buf, len), t0, C_lo);
2056
len += arc_lsr_r(BUF(buf, len), B_hi, B_hi, t0);
2057
len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
2058
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
2059
len += arc_btst_i(BUF(buf, len), t0, 5);
2060
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
2061
len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_hi, 0);
2062
2063
return len;
2064
}
2065
2066
/*
2067
* if (n < 32)
2068
* to_lo = B_lo << 32-n # extract lower n bits, right-padded with 32-n 0s
2069
* lo >>=n
2070
* hi >>=n
2071
* hi |= to_lo
2072
* else if (n < 64)
2073
* lo = hi >> n-32
2074
* hi = 0
2075
*/
2076
u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm)
2077
{
2078
const u8 t0 = REG_LO(JIT_REG_TMP);
2079
const u8 B_lo = REG_LO(rd);
2080
const u8 B_hi = REG_HI(rd);
2081
const u8 n = (u8)imm;
2082
u8 len = 0;
2083
2084
if (n == 0) {
2085
return 0;
2086
} else if (n <= 31) {
2087
len = arc_asli_r(buf, t0, B_hi, 32 - n);
2088
len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
2089
len += arc_lsri_r(BUF(buf, len), B_hi, B_hi, n);
2090
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
2091
} else if (n <= 63) {
2092
len = arc_lsri_r(buf, B_lo, B_hi, n - 32);
2093
len += arc_movi_r(BUF(buf, len), B_hi, 0);
2094
}
2095
/* n >= 64 is undefined behaviour. */
2096
2097
return len;
2098
}
2099
2100
/* "asr a,b,c" --> "a = (b s>> (c & 31))". */
2101
u8 arsh_r32(u8 *buf, u8 rd, u8 rs)
2102
{
2103
return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
2104
}
2105
2106
u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm)
2107
{
2108
return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm);
2109
}
2110
2111
/*
2112
* For comparison, see rsh_r64().
2113
*
2114
* algorithm
2115
* ---------
2116
* if (n <= 32)
2117
* to_lo = hi << (32-n)
2118
* hi s>>= n
2119
* lo >>= n
2120
* lo |= to_lo
2121
* else
2122
* hi_sign = hi s>>31
2123
* lo = hi s>> (n-32)
2124
* hi = hi_sign
2125
*
2126
* ARSH B,C
2127
* ----------
2128
* not t0, C_lo
2129
* asl t1, B_hi, 1
2130
* asl t1, t1, t0
2131
* mov t0, C_lo
2132
* asr B_hi, B_hi, t0
2133
* lsr B_lo, B_lo, t0
2134
* or B_lo, B_lo, t1
2135
* btst t0, 5
2136
* asr t0, B_hi, 31 # now, t0 = 0 or -1 based on B_hi's sign
2137
* mov.ne B_lo, B_hi
2138
* mov.ne B_hi, t0
2139
*/
2140
u8 arsh_r64(u8 *buf, u8 rd, u8 rs)
2141
{
2142
const u8 t0 = REG_LO(JIT_REG_TMP);
2143
const u8 t1 = REG_HI(JIT_REG_TMP);
2144
const u8 C_lo = REG_LO(rs);
2145
const u8 B_lo = REG_LO(rd);
2146
const u8 B_hi = REG_HI(rd);
2147
u8 len;
2148
2149
len = arc_not_r(buf, t0, C_lo);
2150
len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
2151
len += arc_asl_r(BUF(buf, len), t1, t1, t0);
2152
len += arc_mov_r(BUF(buf, len), t0, C_lo);
2153
len += arc_asr_r(BUF(buf, len), B_hi, B_hi, t0);
2154
len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
2155
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
2156
len += arc_btst_i(BUF(buf, len), t0, 5);
2157
len += arc_asri_r(BUF(buf, len), t0, B_hi, 31);
2158
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
2159
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, t0);
2160
2161
return len;
2162
}
2163
2164
/*
2165
* if (n < 32)
2166
* to_lo = lo << 32-n # extract lower n bits, right-padded with 32-n 0s
2167
* lo >>=n
2168
* hi s>>=n
2169
* hi |= to_lo
2170
* else if (n < 64)
2171
* lo = hi s>> n-32
2172
* hi = (lo[msb] ? -1 : 0)
2173
*/
2174
u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm)
2175
{
2176
const u8 t0 = REG_LO(JIT_REG_TMP);
2177
const u8 B_lo = REG_LO(rd);
2178
const u8 B_hi = REG_HI(rd);
2179
const u8 n = (u8)imm;
2180
u8 len = 0;
2181
2182
if (n == 0) {
2183
return 0;
2184
} else if (n <= 31) {
2185
len = arc_asli_r(buf, t0, B_hi, 32 - n);
2186
len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
2187
len += arc_asri_r(BUF(buf, len), B_hi, B_hi, n);
2188
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
2189
} else if (n <= 63) {
2190
len = arc_asri_r(buf, B_lo, B_hi, n - 32);
2191
len += arc_movi_r(BUF(buf, len), B_hi, -1);
2192
len += arc_btst_i(BUF(buf, len), B_lo, 31);
2193
len += arc_movu_cc_r(BUF(buf, len), CC_equal, B_hi, 0);
2194
}
2195
/* n >= 64 is undefined behaviour. */
2196
2197
return len;
2198
}
2199
2200
u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext)
2201
{
2202
u8 len = 0;
2203
#ifdef __BIG_ENDIAN
2204
const u8 host_endian = BPF_FROM_BE;
2205
#else
2206
const u8 host_endian = BPF_FROM_LE;
2207
#endif
2208
if (host_endian != endian || force) {
2209
switch (size) {
2210
case 16:
2211
/*
2212
* r = B4B3_B2B1 << 16 --> r = B2B1_0000
2213
* then, swape(r) would become the desired 0000_B1B2
2214
*/
2215
len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), 16);
2216
fallthrough;
2217
case 32:
2218
len += arc_swape_r(BUF(buf, len), REG_LO(rd));
2219
if (do_zext)
2220
len += zext(BUF(buf, len), rd);
2221
break;
2222
case 64:
2223
/*
2224
* swap "hi" and "lo":
2225
* hi ^= lo;
2226
* lo ^= hi;
2227
* hi ^= lo;
2228
* and then swap the bytes in "hi" and "lo".
2229
*/
2230
len = arc_xor_r(buf, REG_HI(rd), REG_LO(rd));
2231
len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd));
2232
len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd));
2233
len += arc_swape_r(BUF(buf, len), REG_LO(rd));
2234
len += arc_swape_r(BUF(buf, len), REG_HI(rd));
2235
break;
2236
default:
2237
/* The caller must have handled this. */
2238
break;
2239
}
2240
} else {
2241
/*
2242
* If the same endianness, there's not much to do other
2243
* than zeroing out the upper bytes based on the "size".
2244
*/
2245
switch (size) {
2246
case 16:
2247
len = arc_and_i(buf, REG_LO(rd), 0xffff);
2248
fallthrough;
2249
case 32:
2250
if (do_zext)
2251
len += zext(BUF(buf, len), rd);
2252
break;
2253
case 64:
2254
break;
2255
default:
2256
/* The caller must have handled this. */
2257
break;
2258
}
2259
}
2260
2261
return len;
2262
}
2263
2264
/*
2265
* To create a frame, all that is needed is:
2266
*
2267
* push fp
2268
* mov fp, sp
2269
* sub sp, <frame_size>
2270
*
2271
* "push fp" is taken care of separately while saving the clobbered registers.
2272
* All that remains is copying SP value to FP and shrinking SP's address space
2273
* for any possible function call to come.
2274
*/
2275
static inline u8 frame_create(u8 *buf, u16 size)
2276
{
2277
u8 len;
2278
2279
len = arc_mov_r(buf, ARC_R_FP, ARC_R_SP);
2280
if (IN_U6_RANGE(size))
2281
len += arc_subi_r(BUF(buf, len), ARC_R_SP, size);
2282
else
2283
len += arc_sub_i(BUF(buf, len), ARC_R_SP, size);
2284
return len;
2285
}
2286
2287
/*
2288
* mov sp, fp
2289
*
2290
* The value of SP upon entering was copied to FP.
2291
*/
2292
static inline u8 frame_restore(u8 *buf)
2293
{
2294
return arc_mov_r(buf, ARC_R_SP, ARC_R_FP);
2295
}
2296
2297
/*
2298
* Going from a JITed code to the native caller:
2299
*
2300
* mov ARC_ABI_RET_lo, BPF_REG_0_lo # r0 <- r8
2301
* mov ARC_ABI_RET_hi, BPF_REG_0_hi # r1 <- r9
2302
*/
2303
static u8 bpf_to_arc_return(u8 *buf)
2304
{
2305
u8 len;
2306
2307
len = arc_mov_r(buf, ARC_R_0, REG_LO(BPF_REG_0));
2308
len += arc_mov_r(BUF(buf, len), ARC_R_1, REG_HI(BPF_REG_0));
2309
return len;
2310
}
2311
2312
/*
2313
* Coming back from an external (in-kernel) function to the JITed code:
2314
*
2315
* mov ARC_ABI_RET_lo, BPF_REG_0_lo # r8 <- r0
2316
* mov ARC_ABI_RET_hi, BPF_REG_0_hi # r9 <- r1
2317
*/
2318
u8 arc_to_bpf_return(u8 *buf)
2319
{
2320
u8 len;
2321
2322
len = arc_mov_r(buf, REG_LO(BPF_REG_0), ARC_R_0);
2323
len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), ARC_R_1);
2324
return len;
2325
}
2326
2327
/*
2328
* This translation leads to:
2329
*
2330
* mov r10, addr # always an 8-byte instruction
2331
* jl [r10]
2332
*
2333
* The length of the "mov" must be fixed (8), otherwise it may diverge
2334
* during the normal and extra passes:
2335
*
2336
* normal pass extra pass
2337
*
2338
* 180: mov r10,0 | 180: mov r10,0x700578d8
2339
* 184: jl [r10] | 188: jl [r10]
2340
* 188: add.f r16,r16,0x1 | 18c: adc r17,r17,0
2341
* 18c: adc r17,r17,0 |
2342
*
2343
* In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8"
2344
* has led to an increase in the length of the "mov" instruction.
2345
* Inadvertently, that caused the loss of the "add.f" instruction.
2346
*/
2347
static u8 jump_and_link(u8 *buf, u32 addr)
2348
{
2349
u8 len;
2350
2351
len = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), addr);
2352
len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP));
2353
return len;
2354
}
2355
2356
/*
2357
* This function determines which ARC registers must be saved and restored.
2358
* It does so by looking into:
2359
*
2360
* "bpf_reg": The clobbered (destination) BPF register
2361
* "is_call": Indicator if the current instruction is a call
2362
*
2363
* When a register of interest is clobbered, its corresponding bit position
2364
* in return value, "usage", is set to true.
2365
*/
2366
u32 mask_for_used_regs(u8 bpf_reg, bool is_call)
2367
{
2368
u32 usage = 0;
2369
2370
/* BPF registers that must be saved. */
2371
if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) {
2372
usage |= BIT(REG_LO(bpf_reg));
2373
usage |= BIT(REG_HI(bpf_reg));
2374
/*
2375
* Using the frame pointer register implies that it should
2376
* be saved and reinitialised with the current frame data.
2377
*/
2378
} else if (bpf_reg == BPF_REG_FP) {
2379
usage |= BIT(REG_LO(BPF_REG_FP));
2380
/* Could there be some ARC registers that must to be saved? */
2381
} else {
2382
if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
2383
REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
2384
usage |= BIT(REG_LO(bpf_reg));
2385
2386
if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
2387
REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
2388
usage |= BIT(REG_HI(bpf_reg));
2389
}
2390
2391
/* A "call" indicates that ARC's "blink" reg must be saved. */
2392
usage |= is_call ? BIT(ARC_R_BLINK) : 0;
2393
2394
return usage;
2395
}
2396
2397
/*
2398
* push blink # if blink is marked as clobbered
2399
* push r[0-n] # if r[i] is marked as clobbered
2400
* push fp # if fp is marked as clobbered
2401
* mov fp, sp # if frame_size > 0 (clobbers fp)
2402
* sub sp, <frame_size> # same as above
2403
*/
2404
u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size)
2405
{
2406
u8 len = 0;
2407
u32 gp_regs = 0;
2408
2409
/* Deal with blink first. */
2410
if (usage & BIT(ARC_R_BLINK))
2411
len += arc_push_r(BUF(buf, len), ARC_R_BLINK);
2412
2413
gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
2414
while (gp_regs) {
2415
u8 reg = __builtin_ffs(gp_regs) - 1;
2416
2417
len += arc_push_r(BUF(buf, len), reg);
2418
gp_regs &= ~BIT(reg);
2419
}
2420
2421
/* Deal with fp last. */
2422
if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
2423
len += arc_push_r(BUF(buf, len), ARC_R_FP);
2424
2425
if (frame_size > 0)
2426
len += frame_create(BUF(buf, len), frame_size);
2427
2428
#ifdef ARC_BPF_JIT_DEBUG
2429
if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
2430
pr_err("FP is being saved while there is no frame.");
2431
BUG();
2432
}
2433
#endif
2434
2435
return len;
2436
}
2437
2438
/*
2439
* mov sp, fp # if frame_size > 0
2440
* pop fp # if fp is marked as clobbered
2441
* pop r[n-0] # if r[i] is marked as clobbered
2442
* pop blink # if blink is marked as clobbered
2443
* mov r0, r8 # always: ABI_return <- BPF_return
2444
* mov r1, r9 # continuation of above
2445
* j [blink] # always
2446
*
2447
* "fp being marked as clobbered" and "frame_size > 0" are the two sides of
2448
* the same coin.
2449
*/
2450
u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size)
2451
{
2452
u32 len = 0;
2453
u32 gp_regs = 0;
2454
2455
#ifdef ARC_BPF_JIT_DEBUG
2456
if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
2457
pr_err("FP is being saved while there is no frame.");
2458
BUG();
2459
}
2460
#endif
2461
2462
if (frame_size > 0)
2463
len += frame_restore(BUF(buf, len));
2464
2465
/* Deal with fp first. */
2466
if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
2467
len += arc_pop_r(BUF(buf, len), ARC_R_FP);
2468
2469
gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
2470
while (gp_regs) {
2471
/* "usage" is 32-bit, each bit indicating an ARC register. */
2472
u8 reg = 31 - __builtin_clz(gp_regs);
2473
2474
len += arc_pop_r(BUF(buf, len), reg);
2475
gp_regs &= ~BIT(reg);
2476
}
2477
2478
/* Deal with blink last. */
2479
if (usage & BIT(ARC_R_BLINK))
2480
len += arc_pop_r(BUF(buf, len), ARC_R_BLINK);
2481
2482
/* Wrap up the return value and jump back to the caller. */
2483
len += bpf_to_arc_return(BUF(buf, len));
2484
len += arc_jmp_return(BUF(buf, len));
2485
2486
return len;
2487
}
2488
2489
/*
2490
* For details on the algorithm, see the comments of "gen_jcc_64()".
2491
*
2492
* This data structure is holding information for jump translations.
2493
*
2494
* jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs
2495
* cond: The condition that the ARC branch instruction must use
2496
*
2497
* e.g.:
2498
*
2499
* BPF_JGE R1, R0, @target
2500
* ------------------------
2501
* |
2502
* v
2503
* 0x1000: cmp r3, r1 # 0x1000 is the JIT address for "BPF_JGE ..." insn
2504
* 0x1004: bhi @target # first jump (branch higher)
2505
* 0x1008: blo @end # second jump acting as a skip (end is 0x1014)
2506
* 0x100C: cmp r2, r0 # the lower 32 bits are evaluated
2507
* 0x1010: bhs @target # third jump (branch higher or same)
2508
* 0x1014: ...
2509
*
2510
* The jit_off(set) of the "bhi" is 4 bytes.
2511
* The cond(ition) for the "bhi" is "CC_great_u".
2512
*
2513
* The jit_off(set) is necessary for calculating the exact displacement
2514
* to the "target" address:
2515
*
2516
* jit_address + jit_off(set) - @target
2517
* 0x1000 + 4 - @target
2518
*/
2519
#define JCC64_NR_OF_JMPS 3 /* Number of jumps in jcc64 template. */
2520
#define JCC64_INSNS_TO_END 3 /* Number of insn. inclusive the 2nd jmp to end. */
2521
#define JCC64_SKIP_JMP 1 /* Index of the "skip" jump to "end". */
2522
static const struct {
2523
/*
2524
* "jit_off" is common between all "jmp[]" and is coupled with
2525
* "cond" of each "jmp[]" instance. e.g.:
2526
*
2527
* arcv2_64_jccs.jit_off[1]
2528
* arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1]
2529
*
2530
* Are indicating that the second jump in JITed code of "UGT"
2531
* is at offset "jit_off[1]" while its condition is "cond[1]".
2532
*/
2533
u8 jit_off[JCC64_NR_OF_JMPS];
2534
2535
struct {
2536
u8 cond[JCC64_NR_OF_JMPS];
2537
} jmp[ARC_CC_SLE + 1];
2538
} arcv2_64_jccs = {
2539
.jit_off = {
2540
INSN_len_normal * 1,
2541
INSN_len_normal * 2,
2542
INSN_len_normal * 4
2543
},
2544
/*
2545
* cmp rd_hi, rs_hi
2546
* bhi @target # 1: u>
2547
* blo @end # 2: u<
2548
* cmp rd_lo, rs_lo
2549
* bhi @target # 3: u>
2550
* end:
2551
*/
2552
.jmp[ARC_CC_UGT] = {
2553
.cond = {CC_great_u, CC_less_u, CC_great_u}
2554
},
2555
/*
2556
* cmp rd_hi, rs_hi
2557
* bhi @target # 1: u>
2558
* blo @end # 2: u<
2559
* cmp rd_lo, rs_lo
2560
* bhs @target # 3: u>=
2561
* end:
2562
*/
2563
.jmp[ARC_CC_UGE] = {
2564
.cond = {CC_great_u, CC_less_u, CC_great_eq_u}
2565
},
2566
/*
2567
* cmp rd_hi, rs_hi
2568
* blo @target # 1: u<
2569
* bhi @end # 2: u>
2570
* cmp rd_lo, rs_lo
2571
* blo @target # 3: u<
2572
* end:
2573
*/
2574
.jmp[ARC_CC_ULT] = {
2575
.cond = {CC_less_u, CC_great_u, CC_less_u}
2576
},
2577
/*
2578
* cmp rd_hi, rs_hi
2579
* blo @target # 1: u<
2580
* bhi @end # 2: u>
2581
* cmp rd_lo, rs_lo
2582
* bls @target # 3: u<=
2583
* end:
2584
*/
2585
.jmp[ARC_CC_ULE] = {
2586
.cond = {CC_less_u, CC_great_u, CC_less_eq_u}
2587
},
2588
/*
2589
* cmp rd_hi, rs_hi
2590
* bgt @target # 1: s>
2591
* blt @end # 2: s<
2592
* cmp rd_lo, rs_lo
2593
* bhi @target # 3: u>
2594
* end:
2595
*/
2596
.jmp[ARC_CC_SGT] = {
2597
.cond = {CC_great_s, CC_less_s, CC_great_u}
2598
},
2599
/*
2600
* cmp rd_hi, rs_hi
2601
* bgt @target # 1: s>
2602
* blt @end # 2: s<
2603
* cmp rd_lo, rs_lo
2604
* bhs @target # 3: u>=
2605
* end:
2606
*/
2607
.jmp[ARC_CC_SGE] = {
2608
.cond = {CC_great_s, CC_less_s, CC_great_eq_u}
2609
},
2610
/*
2611
* cmp rd_hi, rs_hi
2612
* blt @target # 1: s<
2613
* bgt @end # 2: s>
2614
* cmp rd_lo, rs_lo
2615
* blo @target # 3: u<
2616
* end:
2617
*/
2618
.jmp[ARC_CC_SLT] = {
2619
.cond = {CC_less_s, CC_great_s, CC_less_u}
2620
},
2621
/*
2622
* cmp rd_hi, rs_hi
2623
* blt @target # 1: s<
2624
* bgt @end # 2: s>
2625
* cmp rd_lo, rs_lo
2626
* bls @target # 3: u<=
2627
* end:
2628
*/
2629
.jmp[ARC_CC_SLE] = {
2630
.cond = {CC_less_s, CC_great_s, CC_less_eq_u}
2631
}
2632
};
2633
2634
/*
2635
* The displacement (offset) for ARC's "b"ranch instruction is the distance
2636
* from the aligned version of _current_ instruction (PCL) to the target
2637
* instruction:
2638
*
2639
* DISP = TARGET - PCL # PCL is the word aligned PC
2640
*/
2641
static inline s32 get_displacement(u32 curr_off, u32 targ_off)
2642
{
2643
return (s32)(targ_off - (curr_off & ~3L));
2644
}
2645
2646
/*
2647
* "disp"lacement should be:
2648
*
2649
* 1. 16-bit aligned.
2650
* 2. fit in S25, because no "condition code" is supposed to be encoded.
2651
*/
2652
static inline bool is_valid_far_disp(s32 disp)
2653
{
2654
return (!(disp & 1) && IN_S25_RANGE(disp));
2655
}
2656
2657
/*
2658
* "disp"lacement should be:
2659
*
2660
* 1. 16-bit aligned.
2661
* 2. fit in S21, because "condition code" is supposed to be encoded too.
2662
*/
2663
static inline bool is_valid_near_disp(s32 disp)
2664
{
2665
return (!(disp & 1) && IN_S21_RANGE(disp));
2666
}
2667
2668
/*
2669
* cmp rd_hi, rs_hi
2670
* cmp.z rd_lo, rs_lo
2671
* b{eq,ne} @target
2672
* | |
2673
* | `--> "eq" param is false (JNE)
2674
* `-----> "eq" param is true (JEQ)
2675
*/
2676
static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq,
2677
u32 curr_off, u32 targ_off)
2678
{
2679
s32 disp;
2680
u8 len = 0;
2681
2682
len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
2683
len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2684
disp = get_displacement(curr_off + len, targ_off);
2685
len += arc_bcc(BUF(buf, len), eq ? CC_equal : CC_unequal, disp);
2686
2687
return len;
2688
}
2689
2690
/*
2691
* tst rd_hi, rs_hi
2692
* tst.z rd_lo, rs_lo
2693
* bne @target
2694
*/
2695
static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off)
2696
{
2697
u8 len = 0;
2698
s32 disp;
2699
2700
len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
2701
len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2702
disp = get_displacement(curr_off + len, targ_off);
2703
len += arc_bcc(BUF(buf, len), CC_unequal, disp);
2704
2705
return len;
2706
}
2707
2708
/*
2709
* Verify if all the jumps for a JITed jcc64 operation are valid,
2710
* by consulting the data stored at "arcv2_64_jccs".
2711
*/
2712
static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond)
2713
{
2714
size_t i;
2715
2716
if (cond >= ARC_CC_LAST)
2717
return false;
2718
2719
for (i = 0; i < JCC64_NR_OF_JMPS; i++) {
2720
u32 from, to;
2721
2722
from = curr_off + arcv2_64_jccs.jit_off[i];
2723
/* for the 2nd jump, we jump to the end of block. */
2724
if (i != JCC64_SKIP_JMP)
2725
to = targ_off;
2726
else
2727
to = from + (JCC64_INSNS_TO_END * INSN_len_normal);
2728
/* There is a "cc" in the instruction, so a "near" jump. */
2729
if (!is_valid_near_disp(get_displacement(from, to)))
2730
return false;
2731
}
2732
2733
return true;
2734
}
2735
2736
/* Can the jump from "curr_off" to "targ_off" actually happen? */
2737
bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond)
2738
{
2739
s32 disp;
2740
2741
switch (cond) {
2742
case ARC_CC_UGT:
2743
case ARC_CC_UGE:
2744
case ARC_CC_ULT:
2745
case ARC_CC_ULE:
2746
case ARC_CC_SGT:
2747
case ARC_CC_SGE:
2748
case ARC_CC_SLT:
2749
case ARC_CC_SLE:
2750
return check_jcc_64(curr_off, targ_off, cond);
2751
case ARC_CC_EQ:
2752
case ARC_CC_NE:
2753
case ARC_CC_SET:
2754
/*
2755
* The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the
2756
* 3rd instruction. See comments of "gen_j{set,_eq}_64()".
2757
*/
2758
curr_off += 2 * INSN_len_normal;
2759
disp = get_displacement(curr_off, targ_off);
2760
/* There is a "cc" field in the issued instruction. */
2761
return is_valid_near_disp(disp);
2762
case ARC_CC_AL:
2763
disp = get_displacement(curr_off, targ_off);
2764
return is_valid_far_disp(disp);
2765
default:
2766
return false;
2767
}
2768
}
2769
2770
/*
2771
* The template for the 64-bit jumps with the following BPF conditions
2772
*
2773
* u< u<= u> u>= s< s<= s> s>=
2774
*
2775
* Looks like below:
2776
*
2777
* cmp rd_hi, rs_hi
2778
* b<c1> @target
2779
* b<c2> @end
2780
* cmp rd_lo, rs_lo # if execution reaches here, r{d,s}_hi are equal
2781
* b<c3> @target
2782
* end:
2783
*
2784
* "c1" is the condition that JIT is handling minus the equality part.
2785
* For instance if we have to translate an "unsigned greater or equal",
2786
* then "c1" will be "unsigned greater". We won't know about equality
2787
* until all 64-bits of data (higeher and lower registers) are processed.
2788
*
2789
* "c2" is the counter logic of "c1". For instance, if "c1" is originated
2790
* from "s>", then "c2" would be "s<". Notice that equality doesn't play
2791
* a role here either, because the lower 32 bits are not processed yet.
2792
*
2793
* "c3" is the unsigned version of "c1", no matter if the BPF condition
2794
* was signed or unsigned. An unsigned version is necessary, because the
2795
* MSB of the lower 32 bits does not reflect a sign in the whole 64-bit
2796
* scheme. Otherwise, 64-bit comparisons like
2797
* (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000)
2798
* would yield an incorrect result. Finally, if there is an equality
2799
* check in the BPF condition, it will be reflected in "c3".
2800
*
2801
* You can find all the instances of this template where the
2802
* "arcv2_64_jccs" is getting initialised.
2803
*/
2804
static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond,
2805
u32 curr_off, u32 targ_off)
2806
{
2807
s32 disp;
2808
u32 end_off;
2809
const u8 *cc = arcv2_64_jccs.jmp[cond].cond;
2810
u8 len = 0;
2811
2812
/* cmp rd_hi, rs_hi */
2813
len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs));
2814
2815
/* b<c1> @target */
2816
disp = get_displacement(curr_off + len, targ_off);
2817
len += arc_bcc(BUF(buf, len), cc[0], disp);
2818
2819
/* b<c2> @end */
2820
end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal);
2821
disp = get_displacement(curr_off + len, end_off);
2822
len += arc_bcc(BUF(buf, len), cc[1], disp);
2823
2824
/* cmp rd_lo, rs_lo */
2825
len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2826
2827
/* b<c3> @target */
2828
disp = get_displacement(curr_off + len, targ_off);
2829
len += arc_bcc(BUF(buf, len), cc[2], disp);
2830
2831
return len;
2832
}
2833
2834
/*
2835
* This function only applies the necessary logic to make the proper
2836
* translations. All the sanity checks must have already been done
2837
* by calling the check_jmp_64().
2838
*/
2839
u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
2840
{
2841
u8 len = 0;
2842
bool eq = false;
2843
s32 disp;
2844
2845
switch (cond) {
2846
case ARC_CC_AL:
2847
disp = get_displacement(curr_off, targ_off);
2848
len = arc_b(buf, disp);
2849
break;
2850
case ARC_CC_UGT:
2851
case ARC_CC_UGE:
2852
case ARC_CC_ULT:
2853
case ARC_CC_ULE:
2854
case ARC_CC_SGT:
2855
case ARC_CC_SGE:
2856
case ARC_CC_SLT:
2857
case ARC_CC_SLE:
2858
len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off);
2859
break;
2860
case ARC_CC_EQ:
2861
eq = true;
2862
fallthrough;
2863
case ARC_CC_NE:
2864
len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off);
2865
break;
2866
case ARC_CC_SET:
2867
len = gen_jset_64(buf, rd, rs, curr_off, targ_off);
2868
break;
2869
default:
2870
#ifdef ARC_BPF_JIT_DEBUG
2871
pr_err("64-bit jump condition is not known.");
2872
BUG();
2873
#endif
2874
}
2875
return len;
2876
}
2877
2878
/*
2879
* The condition codes to use when generating JIT instructions
2880
* for 32-bit jumps.
2881
*
2882
* The "ARC_CC_AL" index is not really used by the code, but it
2883
* is here for the sake of completeness.
2884
*
2885
* The "ARC_CC_SET" becomes "CC_unequal" because of the "tst"
2886
* instruction that precedes the conditional branch.
2887
*/
2888
static const u8 arcv2_32_jmps[ARC_CC_LAST] = {
2889
[ARC_CC_UGT] = CC_great_u,
2890
[ARC_CC_UGE] = CC_great_eq_u,
2891
[ARC_CC_ULT] = CC_less_u,
2892
[ARC_CC_ULE] = CC_less_eq_u,
2893
[ARC_CC_SGT] = CC_great_s,
2894
[ARC_CC_SGE] = CC_great_eq_s,
2895
[ARC_CC_SLT] = CC_less_s,
2896
[ARC_CC_SLE] = CC_less_eq_s,
2897
[ARC_CC_AL] = CC_always,
2898
[ARC_CC_EQ] = CC_equal,
2899
[ARC_CC_NE] = CC_unequal,
2900
[ARC_CC_SET] = CC_unequal
2901
};
2902
2903
/* Can the jump from "curr_off" to "targ_off" actually happen? */
2904
bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond)
2905
{
2906
u8 addendum;
2907
s32 disp;
2908
2909
if (cond >= ARC_CC_LAST)
2910
return false;
2911
2912
/*
2913
* The unconditional jump happens immediately, while the rest
2914
* are either preceded by a "cmp" or "tst" instruction.
2915
*/
2916
addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal;
2917
disp = get_displacement(curr_off + addendum, targ_off);
2918
2919
if (cond == ARC_CC_AL)
2920
return is_valid_far_disp(disp);
2921
else
2922
return is_valid_near_disp(disp);
2923
}
2924
2925
/*
2926
* The JITed code for 32-bit (conditional) branches:
2927
*
2928
* ARC_CC_AL @target
2929
* b @jit_targ_addr
2930
*
2931
* ARC_CC_SET rd, rs, @target
2932
* tst rd, rs
2933
* bnz @jit_targ_addr
2934
*
2935
* ARC_CC_xx rd, rs, @target
2936
* cmp rd, rs
2937
* b<cc> @jit_targ_addr # cc = arcv2_32_jmps[xx]
2938
*/
2939
u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
2940
{
2941
s32 disp;
2942
u8 len = 0;
2943
2944
/*
2945
* Although this must have already been checked by "check_jmp_32()",
2946
* we're not going to risk accessing "arcv2_32_jmps" array without
2947
* the boundary check.
2948
*/
2949
if (cond >= ARC_CC_LAST) {
2950
#ifdef ARC_BPF_JIT_DEBUG
2951
pr_err("32-bit jump condition is not known.");
2952
BUG();
2953
#endif
2954
return 0;
2955
}
2956
2957
/* If there is a "condition", issue the "cmp" or "tst" first. */
2958
if (cond != ARC_CC_AL) {
2959
if (cond == ARC_CC_SET)
2960
len = tst_r32(buf, rd, rs);
2961
else
2962
len = cmp_r32(buf, rd, rs);
2963
/*
2964
* The issued instruction affects the "disp"lacement as
2965
* it alters the "curr_off" by its "len"gth. The "curr_off"
2966
* should always point to the jump instruction.
2967
*/
2968
disp = get_displacement(curr_off + len, targ_off);
2969
len += arc_bcc(BUF(buf, len), arcv2_32_jmps[cond], disp);
2970
} else {
2971
/* The straight forward unconditional jump. */
2972
disp = get_displacement(curr_off, targ_off);
2973
len = arc_b(buf, disp);
2974
}
2975
2976
return len;
2977
}
2978
2979
/*
2980
* Generate code for functions calls. There can be two types of calls:
2981
*
2982
* - Calling another BPF function
2983
* - Calling an in-kernel function which is compiled by ARC gcc
2984
*
2985
* In the later case, we must comply to ARCv2 ABI and handle arguments
2986
* and return values accordingly.
2987
*/
2988
u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func)
2989
{
2990
u8 len = 0;
2991
2992
/*
2993
* In case of an in-kernel function call, always push the 5th
2994
* argument onto the stack, because that's where the ABI dictates
2995
* it should be found. If the callee doesn't really use it, no harm
2996
* is done. The stack is readjusted either way after the call.
2997
*/
2998
if (external_func)
2999
len += push_r64(BUF(buf, len), BPF_REG_5);
3000
3001
len += jump_and_link(BUF(buf, len), func_addr);
3002
3003
if (external_func)
3004
len += arc_add_i(BUF(buf, len), ARC_R_SP, ARC_R_SP, ARG5_SIZE);
3005
3006
return len;
3007
}
3008
3009