Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm/common/bL_switcher.c
26292 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
4
*
5
* Created by: Nicolas Pitre, March 2012
6
* Copyright: (C) 2012-2013 Linaro Limited
7
*/
8
9
#include <linux/atomic.h>
10
#include <linux/init.h>
11
#include <linux/kernel.h>
12
#include <linux/module.h>
13
#include <linux/sched/signal.h>
14
#include <uapi/linux/sched/types.h>
15
#include <linux/interrupt.h>
16
#include <linux/cpu_pm.h>
17
#include <linux/cpu.h>
18
#include <linux/cpumask.h>
19
#include <linux/kthread.h>
20
#include <linux/wait.h>
21
#include <linux/time.h>
22
#include <linux/clockchips.h>
23
#include <linux/hrtimer.h>
24
#include <linux/tick.h>
25
#include <linux/notifier.h>
26
#include <linux/mm.h>
27
#include <linux/mutex.h>
28
#include <linux/smp.h>
29
#include <linux/spinlock.h>
30
#include <linux/string.h>
31
#include <linux/sysfs.h>
32
#include <linux/irqchip/arm-gic.h>
33
#include <linux/moduleparam.h>
34
35
#include <asm/smp_plat.h>
36
#include <asm/cputype.h>
37
#include <asm/suspend.h>
38
#include <asm/mcpm.h>
39
#include <asm/bL_switcher.h>
40
41
#define CREATE_TRACE_POINTS
42
#include <trace/events/power_cpu_migrate.h>
43
44
45
/*
46
* Use our own MPIDR accessors as the generic ones in asm/cputype.h have
47
* __attribute_const__ and we don't want the compiler to assume any
48
* constness here as the value _does_ change along some code paths.
49
*/
50
51
static int read_mpidr(void)
52
{
53
unsigned int id;
54
asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
55
return id & MPIDR_HWID_BITMASK;
56
}
57
58
/*
59
* bL switcher core code.
60
*/
61
62
static void bL_do_switch(void *_arg)
63
{
64
unsigned ib_mpidr, ib_cpu, ib_cluster;
65
long volatile handshake, **handshake_ptr = _arg;
66
67
pr_debug("%s\n", __func__);
68
69
ib_mpidr = cpu_logical_map(smp_processor_id());
70
ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
71
ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
72
73
/* Advertise our handshake location */
74
if (handshake_ptr) {
75
handshake = 0;
76
*handshake_ptr = &handshake;
77
} else
78
handshake = -1;
79
80
/*
81
* Our state has been saved at this point. Let's release our
82
* inbound CPU.
83
*/
84
mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
85
sev();
86
87
/*
88
* From this point, we must assume that our counterpart CPU might
89
* have taken over in its parallel world already, as if execution
90
* just returned from cpu_suspend(). It is therefore important to
91
* be very careful not to make any change the other guy is not
92
* expecting. This is why we need stack isolation.
93
*
94
* Fancy under cover tasks could be performed here. For now
95
* we have none.
96
*/
97
98
/*
99
* Let's wait until our inbound is alive.
100
*/
101
while (!handshake) {
102
wfe();
103
smp_mb();
104
}
105
106
/* Let's put ourself down. */
107
mcpm_cpu_power_down();
108
109
/* should never get here */
110
BUG();
111
}
112
113
/*
114
* Stack isolation. To ensure 'current' remains valid, we just use another
115
* piece of our thread's stack space which should be fairly lightly used.
116
* The selected area starts just above the thread_info structure located
117
* at the very bottom of the stack, aligned to a cache line, and indexed
118
* with the cluster number.
119
*/
120
#define STACK_SIZE 512
121
extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
122
static int bL_switchpoint(unsigned long _arg)
123
{
124
unsigned int mpidr = read_mpidr();
125
unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
126
void *stack = current_thread_info() + 1;
127
stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
128
stack += clusterid * STACK_SIZE + STACK_SIZE;
129
call_with_stack(bL_do_switch, (void *)_arg, stack);
130
BUG();
131
}
132
133
/*
134
* Generic switcher interface
135
*/
136
137
static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
138
static int bL_switcher_cpu_pairing[NR_CPUS];
139
140
/*
141
* bL_switch_to - Switch to a specific cluster for the current CPU
142
* @new_cluster_id: the ID of the cluster to switch to.
143
*
144
* This function must be called on the CPU to be switched.
145
* Returns 0 on success, else a negative status code.
146
*/
147
static int bL_switch_to(unsigned int new_cluster_id)
148
{
149
unsigned int mpidr, this_cpu, that_cpu;
150
unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
151
struct completion inbound_alive;
152
long volatile *handshake_ptr;
153
int ipi_nr, ret;
154
155
this_cpu = smp_processor_id();
156
ob_mpidr = read_mpidr();
157
ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
158
ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
159
BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
160
161
if (new_cluster_id == ob_cluster)
162
return 0;
163
164
that_cpu = bL_switcher_cpu_pairing[this_cpu];
165
ib_mpidr = cpu_logical_map(that_cpu);
166
ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
167
ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
168
169
pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
170
this_cpu, ob_mpidr, ib_mpidr);
171
172
this_cpu = smp_processor_id();
173
174
/* Close the gate for our entry vectors */
175
mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
176
mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
177
178
/* Install our "inbound alive" notifier. */
179
init_completion(&inbound_alive);
180
ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
181
ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
182
mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
183
184
/*
185
* Let's wake up the inbound CPU now in case it requires some delay
186
* to come online, but leave it gated in our entry vector code.
187
*/
188
ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
189
if (ret) {
190
pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
191
return ret;
192
}
193
194
/*
195
* Raise a SGI on the inbound CPU to make sure it doesn't stall
196
* in a possible WFI, such as in bL_power_down().
197
*/
198
gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
199
200
/*
201
* Wait for the inbound to come up. This allows for other
202
* tasks to be scheduled in the mean time.
203
*/
204
wait_for_completion(&inbound_alive);
205
mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
206
207
/*
208
* From this point we are entering the switch critical zone
209
* and can't take any interrupts anymore.
210
*/
211
local_irq_disable();
212
local_fiq_disable();
213
trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
214
215
/* redirect GIC's SGIs to our counterpart */
216
gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
217
218
tick_suspend_local();
219
220
ret = cpu_pm_enter();
221
222
/* we can not tolerate errors at this point */
223
if (ret)
224
panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
225
226
/* Swap the physical CPUs in the logical map for this logical CPU. */
227
cpu_logical_map(this_cpu) = ib_mpidr;
228
cpu_logical_map(that_cpu) = ob_mpidr;
229
230
/* Let's do the actual CPU switch. */
231
ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
232
if (ret > 0)
233
panic("%s: cpu_suspend() returned %d\n", __func__, ret);
234
235
/* We are executing on the inbound CPU at this point */
236
mpidr = read_mpidr();
237
pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
238
BUG_ON(mpidr != ib_mpidr);
239
240
mcpm_cpu_powered_up();
241
242
ret = cpu_pm_exit();
243
244
tick_resume_local();
245
246
trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
247
local_fiq_enable();
248
local_irq_enable();
249
250
*handshake_ptr = 1;
251
dsb_sev();
252
253
if (ret)
254
pr_err("%s exiting with error %d\n", __func__, ret);
255
return ret;
256
}
257
258
struct bL_thread {
259
spinlock_t lock;
260
struct task_struct *task;
261
wait_queue_head_t wq;
262
int wanted_cluster;
263
struct completion started;
264
bL_switch_completion_handler completer;
265
void *completer_cookie;
266
};
267
268
static struct bL_thread bL_threads[NR_CPUS];
269
270
static int bL_switcher_thread(void *arg)
271
{
272
struct bL_thread *t = arg;
273
int cluster;
274
bL_switch_completion_handler completer;
275
void *completer_cookie;
276
277
sched_set_fifo_low(current);
278
complete(&t->started);
279
280
do {
281
if (signal_pending(current))
282
flush_signals(current);
283
wait_event_interruptible(t->wq,
284
t->wanted_cluster != -1 ||
285
kthread_should_stop());
286
287
spin_lock(&t->lock);
288
cluster = t->wanted_cluster;
289
completer = t->completer;
290
completer_cookie = t->completer_cookie;
291
t->wanted_cluster = -1;
292
t->completer = NULL;
293
spin_unlock(&t->lock);
294
295
if (cluster != -1) {
296
bL_switch_to(cluster);
297
298
if (completer)
299
completer(completer_cookie);
300
}
301
} while (!kthread_should_stop());
302
303
return 0;
304
}
305
306
static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
307
{
308
struct task_struct *task;
309
310
task = kthread_run_on_cpu(bL_switcher_thread, arg,
311
cpu, "kswitcher_%d");
312
if (IS_ERR(task))
313
pr_err("%s failed for CPU %d\n", __func__, cpu);
314
315
return task;
316
}
317
318
/*
319
* bL_switch_request_cb - Switch to a specific cluster for the given CPU,
320
* with completion notification via a callback
321
*
322
* @cpu: the CPU to switch
323
* @new_cluster_id: the ID of the cluster to switch to.
324
* @completer: switch completion callback. if non-NULL,
325
* @completer(@completer_cookie) will be called on completion of
326
* the switch, in non-atomic context.
327
* @completer_cookie: opaque context argument for @completer.
328
*
329
* This function causes a cluster switch on the given CPU by waking up
330
* the appropriate switcher thread. This function may or may not return
331
* before the switch has occurred.
332
*
333
* If a @completer callback function is supplied, it will be called when
334
* the switch is complete. This can be used to determine asynchronously
335
* when the switch is complete, regardless of when bL_switch_request()
336
* returns. When @completer is supplied, no new switch request is permitted
337
* for the affected CPU until after the switch is complete, and @completer
338
* has returned.
339
*/
340
int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
341
bL_switch_completion_handler completer,
342
void *completer_cookie)
343
{
344
struct bL_thread *t;
345
346
if (cpu >= ARRAY_SIZE(bL_threads)) {
347
pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
348
return -EINVAL;
349
}
350
351
t = &bL_threads[cpu];
352
353
if (IS_ERR(t->task))
354
return PTR_ERR(t->task);
355
if (!t->task)
356
return -ESRCH;
357
358
spin_lock(&t->lock);
359
if (t->completer) {
360
spin_unlock(&t->lock);
361
return -EBUSY;
362
}
363
t->completer = completer;
364
t->completer_cookie = completer_cookie;
365
t->wanted_cluster = new_cluster_id;
366
spin_unlock(&t->lock);
367
wake_up(&t->wq);
368
return 0;
369
}
370
EXPORT_SYMBOL_GPL(bL_switch_request_cb);
371
372
/*
373
* Activation and configuration code.
374
*/
375
376
static DEFINE_MUTEX(bL_switcher_activation_lock);
377
static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
378
static unsigned int bL_switcher_active;
379
static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
380
static cpumask_t bL_switcher_removed_logical_cpus;
381
382
int bL_switcher_register_notifier(struct notifier_block *nb)
383
{
384
return blocking_notifier_chain_register(&bL_activation_notifier, nb);
385
}
386
EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
387
388
int bL_switcher_unregister_notifier(struct notifier_block *nb)
389
{
390
return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
391
}
392
EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
393
394
static int bL_activation_notify(unsigned long val)
395
{
396
int ret;
397
398
ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
399
if (ret & NOTIFY_STOP_MASK)
400
pr_err("%s: notifier chain failed with status 0x%x\n",
401
__func__, ret);
402
return notifier_to_errno(ret);
403
}
404
405
static void bL_switcher_restore_cpus(void)
406
{
407
int i;
408
409
for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
410
struct device *cpu_dev = get_cpu_device(i);
411
int ret = device_online(cpu_dev);
412
if (ret)
413
dev_err(cpu_dev, "switcher: unable to restore CPU\n");
414
}
415
}
416
417
static int bL_switcher_halve_cpus(void)
418
{
419
int i, j, cluster_0, gic_id, ret;
420
unsigned int cpu, cluster, mask;
421
cpumask_t available_cpus;
422
423
/* First pass to validate what we have */
424
mask = 0;
425
for_each_online_cpu(i) {
426
cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
427
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
428
if (cluster >= 2) {
429
pr_err("%s: only dual cluster systems are supported\n", __func__);
430
return -EINVAL;
431
}
432
if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
433
return -EINVAL;
434
mask |= (1 << cluster);
435
}
436
if (mask != 3) {
437
pr_err("%s: no CPU pairing possible\n", __func__);
438
return -EINVAL;
439
}
440
441
/*
442
* Now let's do the pairing. We match each CPU with another CPU
443
* from a different cluster. To get a uniform scheduling behavior
444
* without fiddling with CPU topology and compute capacity data,
445
* we'll use logical CPUs initially belonging to the same cluster.
446
*/
447
memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
448
cpumask_copy(&available_cpus, cpu_online_mask);
449
cluster_0 = -1;
450
for_each_cpu(i, &available_cpus) {
451
int match = -1;
452
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
453
if (cluster_0 == -1)
454
cluster_0 = cluster;
455
if (cluster != cluster_0)
456
continue;
457
cpumask_clear_cpu(i, &available_cpus);
458
for_each_cpu(j, &available_cpus) {
459
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
460
/*
461
* Let's remember the last match to create "odd"
462
* pairings on purpose in order for other code not
463
* to assume any relation between physical and
464
* logical CPU numbers.
465
*/
466
if (cluster != cluster_0)
467
match = j;
468
}
469
if (match != -1) {
470
bL_switcher_cpu_pairing[i] = match;
471
cpumask_clear_cpu(match, &available_cpus);
472
pr_info("CPU%d paired with CPU%d\n", i, match);
473
}
474
}
475
476
/*
477
* Now we disable the unwanted CPUs i.e. everything that has no
478
* pairing information (that includes the pairing counterparts).
479
*/
480
cpumask_clear(&bL_switcher_removed_logical_cpus);
481
for_each_online_cpu(i) {
482
cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
483
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
484
485
/* Let's take note of the GIC ID for this CPU */
486
gic_id = gic_get_cpu_id(i);
487
if (gic_id < 0) {
488
pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
489
bL_switcher_restore_cpus();
490
return -EINVAL;
491
}
492
bL_gic_id[cpu][cluster] = gic_id;
493
pr_info("GIC ID for CPU %u cluster %u is %u\n",
494
cpu, cluster, gic_id);
495
496
if (bL_switcher_cpu_pairing[i] != -1) {
497
bL_switcher_cpu_original_cluster[i] = cluster;
498
continue;
499
}
500
501
ret = device_offline(get_cpu_device(i));
502
if (ret) {
503
bL_switcher_restore_cpus();
504
return ret;
505
}
506
cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
507
}
508
509
return 0;
510
}
511
512
/* Determine the logical CPU a given physical CPU is grouped on. */
513
int bL_switcher_get_logical_index(u32 mpidr)
514
{
515
int cpu;
516
517
if (!bL_switcher_active)
518
return -EUNATCH;
519
520
mpidr &= MPIDR_HWID_BITMASK;
521
for_each_online_cpu(cpu) {
522
int pairing = bL_switcher_cpu_pairing[cpu];
523
if (pairing == -1)
524
continue;
525
if ((mpidr == cpu_logical_map(cpu)) ||
526
(mpidr == cpu_logical_map(pairing)))
527
return cpu;
528
}
529
return -EINVAL;
530
}
531
532
static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
533
{
534
trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
535
}
536
537
int bL_switcher_trace_trigger(void)
538
{
539
preempt_disable();
540
541
bL_switcher_trace_trigger_cpu(NULL);
542
smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
543
544
preempt_enable();
545
546
return 0;
547
}
548
EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
549
550
static int bL_switcher_enable(void)
551
{
552
int cpu, ret;
553
554
mutex_lock(&bL_switcher_activation_lock);
555
lock_device_hotplug();
556
if (bL_switcher_active) {
557
unlock_device_hotplug();
558
mutex_unlock(&bL_switcher_activation_lock);
559
return 0;
560
}
561
562
pr_info("big.LITTLE switcher initializing\n");
563
564
ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
565
if (ret)
566
goto error;
567
568
ret = bL_switcher_halve_cpus();
569
if (ret)
570
goto error;
571
572
bL_switcher_trace_trigger();
573
574
for_each_online_cpu(cpu) {
575
struct bL_thread *t = &bL_threads[cpu];
576
spin_lock_init(&t->lock);
577
init_waitqueue_head(&t->wq);
578
init_completion(&t->started);
579
t->wanted_cluster = -1;
580
t->task = bL_switcher_thread_create(cpu, t);
581
}
582
583
bL_switcher_active = 1;
584
bL_activation_notify(BL_NOTIFY_POST_ENABLE);
585
pr_info("big.LITTLE switcher initialized\n");
586
goto out;
587
588
error:
589
pr_warn("big.LITTLE switcher initialization failed\n");
590
bL_activation_notify(BL_NOTIFY_POST_DISABLE);
591
592
out:
593
unlock_device_hotplug();
594
mutex_unlock(&bL_switcher_activation_lock);
595
return ret;
596
}
597
598
#ifdef CONFIG_SYSFS
599
600
static void bL_switcher_disable(void)
601
{
602
unsigned int cpu, cluster;
603
struct bL_thread *t;
604
struct task_struct *task;
605
606
mutex_lock(&bL_switcher_activation_lock);
607
lock_device_hotplug();
608
609
if (!bL_switcher_active)
610
goto out;
611
612
if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
613
bL_activation_notify(BL_NOTIFY_POST_ENABLE);
614
goto out;
615
}
616
617
bL_switcher_active = 0;
618
619
/*
620
* To deactivate the switcher, we must shut down the switcher
621
* threads to prevent any other requests from being accepted.
622
* Then, if the final cluster for given logical CPU is not the
623
* same as the original one, we'll recreate a switcher thread
624
* just for the purpose of switching the CPU back without any
625
* possibility for interference from external requests.
626
*/
627
for_each_online_cpu(cpu) {
628
t = &bL_threads[cpu];
629
task = t->task;
630
t->task = NULL;
631
if (!task || IS_ERR(task))
632
continue;
633
kthread_stop(task);
634
/* no more switch may happen on this CPU at this point */
635
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
636
if (cluster == bL_switcher_cpu_original_cluster[cpu])
637
continue;
638
init_completion(&t->started);
639
t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
640
task = bL_switcher_thread_create(cpu, t);
641
if (!IS_ERR(task)) {
642
wait_for_completion(&t->started);
643
kthread_stop(task);
644
cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
645
if (cluster == bL_switcher_cpu_original_cluster[cpu])
646
continue;
647
}
648
/* If execution gets here, we're in trouble. */
649
pr_crit("%s: unable to restore original cluster for CPU %d\n",
650
__func__, cpu);
651
pr_crit("%s: CPU %d can't be restored\n",
652
__func__, bL_switcher_cpu_pairing[cpu]);
653
cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
654
&bL_switcher_removed_logical_cpus);
655
}
656
657
bL_switcher_restore_cpus();
658
bL_switcher_trace_trigger();
659
660
bL_activation_notify(BL_NOTIFY_POST_DISABLE);
661
662
out:
663
unlock_device_hotplug();
664
mutex_unlock(&bL_switcher_activation_lock);
665
}
666
667
static ssize_t bL_switcher_active_show(struct kobject *kobj,
668
struct kobj_attribute *attr, char *buf)
669
{
670
return sprintf(buf, "%u\n", bL_switcher_active);
671
}
672
673
static ssize_t bL_switcher_active_store(struct kobject *kobj,
674
struct kobj_attribute *attr, const char *buf, size_t count)
675
{
676
int ret;
677
678
switch (buf[0]) {
679
case '0':
680
bL_switcher_disable();
681
ret = 0;
682
break;
683
case '1':
684
ret = bL_switcher_enable();
685
break;
686
default:
687
ret = -EINVAL;
688
}
689
690
return (ret >= 0) ? count : ret;
691
}
692
693
static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
694
struct kobj_attribute *attr, const char *buf, size_t count)
695
{
696
int ret = bL_switcher_trace_trigger();
697
698
return ret ? ret : count;
699
}
700
701
static struct kobj_attribute bL_switcher_active_attr =
702
__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
703
704
static struct kobj_attribute bL_switcher_trace_trigger_attr =
705
__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
706
707
static struct attribute *bL_switcher_attrs[] = {
708
&bL_switcher_active_attr.attr,
709
&bL_switcher_trace_trigger_attr.attr,
710
NULL,
711
};
712
713
static struct attribute_group bL_switcher_attr_group = {
714
.attrs = bL_switcher_attrs,
715
};
716
717
static struct kobject *bL_switcher_kobj;
718
719
static int __init bL_switcher_sysfs_init(void)
720
{
721
int ret;
722
723
bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
724
if (!bL_switcher_kobj)
725
return -ENOMEM;
726
ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
727
if (ret)
728
kobject_put(bL_switcher_kobj);
729
return ret;
730
}
731
732
#endif /* CONFIG_SYSFS */
733
734
bool bL_switcher_get_enabled(void)
735
{
736
mutex_lock(&bL_switcher_activation_lock);
737
738
return bL_switcher_active;
739
}
740
EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
741
742
void bL_switcher_put_enabled(void)
743
{
744
mutex_unlock(&bL_switcher_activation_lock);
745
}
746
EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
747
748
/*
749
* Veto any CPU hotplug operation on those CPUs we've removed
750
* while the switcher is active.
751
* We're just not ready to deal with that given the trickery involved.
752
*/
753
static int bL_switcher_cpu_pre(unsigned int cpu)
754
{
755
int pairing;
756
757
if (!bL_switcher_active)
758
return 0;
759
760
pairing = bL_switcher_cpu_pairing[cpu];
761
762
if (pairing == -1)
763
return -EINVAL;
764
return 0;
765
}
766
767
static bool no_bL_switcher;
768
core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
769
770
static int __init bL_switcher_init(void)
771
{
772
int ret;
773
774
if (!mcpm_is_available())
775
return -ENODEV;
776
777
cpuhp_setup_state_nocalls(CPUHP_ARM_BL_PREPARE, "arm/bl:prepare",
778
bL_switcher_cpu_pre, NULL);
779
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "arm/bl:predown",
780
NULL, bL_switcher_cpu_pre);
781
if (ret < 0) {
782
cpuhp_remove_state_nocalls(CPUHP_ARM_BL_PREPARE);
783
pr_err("bL_switcher: Failed to allocate a hotplug state\n");
784
return ret;
785
}
786
if (!no_bL_switcher) {
787
ret = bL_switcher_enable();
788
if (ret)
789
return ret;
790
}
791
792
#ifdef CONFIG_SYSFS
793
ret = bL_switcher_sysfs_init();
794
if (ret)
795
pr_err("%s: unable to create sysfs entry\n", __func__);
796
#endif
797
798
return 0;
799
}
800
801
late_initcall(bL_switcher_init);
802
803