Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm/common/mcpm_entry.c
26292 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
4
*
5
* Created by: Nicolas Pitre, March 2012
6
* Copyright: (C) 2012-2013 Linaro Limited
7
*/
8
9
#include <linux/export.h>
10
#include <linux/kernel.h>
11
#include <linux/init.h>
12
#include <linux/irqflags.h>
13
#include <linux/cpu_pm.h>
14
15
#include <asm/mcpm.h>
16
#include <asm/cacheflush.h>
17
#include <asm/idmap.h>
18
#include <asm/cputype.h>
19
#include <asm/suspend.h>
20
21
/*
22
* The public API for this code is documented in arch/arm/include/asm/mcpm.h.
23
* For a comprehensive description of the main algorithm used here, please
24
* see Documentation/arch/arm/cluster-pm-race-avoidance.rst.
25
*/
26
27
struct sync_struct mcpm_sync;
28
29
/*
30
* __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
31
* This must be called at the point of committing to teardown of a CPU.
32
* The CPU cache (SCTRL.C bit) is expected to still be active.
33
*/
34
static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
35
{
36
mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
37
sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
38
}
39
40
/*
41
* __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
42
* cluster can be torn down without disrupting this CPU.
43
* To avoid deadlocks, this must be called before a CPU is powered down.
44
* The CPU cache (SCTRL.C bit) is expected to be off.
45
* However L2 cache might or might not be active.
46
*/
47
static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
48
{
49
dmb();
50
mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
51
sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
52
sev();
53
}
54
55
/*
56
* __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
57
* @state: the final state of the cluster:
58
* CLUSTER_UP: no destructive teardown was done and the cluster has been
59
* restored to the previous state (CPU cache still active); or
60
* CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
61
* (CPU cache disabled, L2 cache either enabled or disabled).
62
*/
63
static void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
64
{
65
dmb();
66
mcpm_sync.clusters[cluster].cluster = state;
67
sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
68
sev();
69
}
70
71
/*
72
* __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
73
* This function should be called by the last man, after local CPU teardown
74
* is complete. CPU cache expected to be active.
75
*
76
* Returns:
77
* false: the critical section was not entered because an inbound CPU was
78
* observed, or the cluster is already being set up;
79
* true: the critical section was entered: it is now safe to tear down the
80
* cluster.
81
*/
82
static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
83
{
84
unsigned int i;
85
struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
86
87
/* Warn inbound CPUs that the cluster is being torn down: */
88
c->cluster = CLUSTER_GOING_DOWN;
89
sync_cache_w(&c->cluster);
90
91
/* Back out if the inbound cluster is already in the critical region: */
92
sync_cache_r(&c->inbound);
93
if (c->inbound == INBOUND_COMING_UP)
94
goto abort;
95
96
/*
97
* Wait for all CPUs to get out of the GOING_DOWN state, so that local
98
* teardown is complete on each CPU before tearing down the cluster.
99
*
100
* If any CPU has been woken up again from the DOWN state, then we
101
* shouldn't be taking the cluster down at all: abort in that case.
102
*/
103
sync_cache_r(&c->cpus);
104
for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
105
int cpustate;
106
107
if (i == cpu)
108
continue;
109
110
while (1) {
111
cpustate = c->cpus[i].cpu;
112
if (cpustate != CPU_GOING_DOWN)
113
break;
114
115
wfe();
116
sync_cache_r(&c->cpus[i].cpu);
117
}
118
119
switch (cpustate) {
120
case CPU_DOWN:
121
continue;
122
123
default:
124
goto abort;
125
}
126
}
127
128
return true;
129
130
abort:
131
__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
132
return false;
133
}
134
135
static int __mcpm_cluster_state(unsigned int cluster)
136
{
137
sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
138
return mcpm_sync.clusters[cluster].cluster;
139
}
140
141
extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
142
143
void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
144
{
145
unsigned long val = ptr ? __pa_symbol(ptr) : 0;
146
mcpm_entry_vectors[cluster][cpu] = val;
147
sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
148
}
149
150
extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
151
152
void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
153
unsigned long poke_phys_addr, unsigned long poke_val)
154
{
155
unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
156
poke[0] = poke_phys_addr;
157
poke[1] = poke_val;
158
__sync_cache_range_w(poke, 2 * sizeof(*poke));
159
}
160
161
static const struct mcpm_platform_ops *platform_ops;
162
163
int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
164
{
165
if (platform_ops)
166
return -EBUSY;
167
platform_ops = ops;
168
return 0;
169
}
170
171
bool mcpm_is_available(void)
172
{
173
return (platform_ops) ? true : false;
174
}
175
EXPORT_SYMBOL_GPL(mcpm_is_available);
176
177
/*
178
* We can't use regular spinlocks. In the switcher case, it is possible
179
* for an outbound CPU to call power_down() after its inbound counterpart
180
* is already live using the same logical CPU number which trips lockdep
181
* debugging.
182
*/
183
static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
184
185
static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
186
187
static inline bool mcpm_cluster_unused(unsigned int cluster)
188
{
189
int i, cnt;
190
for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
191
cnt |= mcpm_cpu_use_count[cluster][i];
192
return !cnt;
193
}
194
195
int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
196
{
197
bool cpu_is_down, cluster_is_down;
198
int ret = 0;
199
200
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
201
if (!platform_ops)
202
return -EUNATCH; /* try not to shadow power_up errors */
203
might_sleep();
204
205
/*
206
* Since this is called with IRQs enabled, and no arch_spin_lock_irq
207
* variant exists, we need to disable IRQs manually here.
208
*/
209
local_irq_disable();
210
arch_spin_lock(&mcpm_lock);
211
212
cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
213
cluster_is_down = mcpm_cluster_unused(cluster);
214
215
mcpm_cpu_use_count[cluster][cpu]++;
216
/*
217
* The only possible values are:
218
* 0 = CPU down
219
* 1 = CPU (still) up
220
* 2 = CPU requested to be up before it had a chance
221
* to actually make itself down.
222
* Any other value is a bug.
223
*/
224
BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
225
mcpm_cpu_use_count[cluster][cpu] != 2);
226
227
if (cluster_is_down)
228
ret = platform_ops->cluster_powerup(cluster);
229
if (cpu_is_down && !ret)
230
ret = platform_ops->cpu_powerup(cpu, cluster);
231
232
arch_spin_unlock(&mcpm_lock);
233
local_irq_enable();
234
return ret;
235
}
236
237
typedef typeof(cpu_reset) phys_reset_t;
238
239
void mcpm_cpu_power_down(void)
240
{
241
unsigned int mpidr, cpu, cluster;
242
bool cpu_going_down, last_man;
243
phys_reset_t phys_reset;
244
245
mpidr = read_cpuid_mpidr();
246
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
247
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
248
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
249
if (WARN_ON_ONCE(!platform_ops))
250
return;
251
BUG_ON(!irqs_disabled());
252
253
setup_mm_for_reboot();
254
255
__mcpm_cpu_going_down(cpu, cluster);
256
arch_spin_lock(&mcpm_lock);
257
BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
258
259
mcpm_cpu_use_count[cluster][cpu]--;
260
BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
261
mcpm_cpu_use_count[cluster][cpu] != 1);
262
cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
263
last_man = mcpm_cluster_unused(cluster);
264
265
if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
266
platform_ops->cpu_powerdown_prepare(cpu, cluster);
267
platform_ops->cluster_powerdown_prepare(cluster);
268
arch_spin_unlock(&mcpm_lock);
269
platform_ops->cluster_cache_disable();
270
__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
271
} else {
272
if (cpu_going_down)
273
platform_ops->cpu_powerdown_prepare(cpu, cluster);
274
arch_spin_unlock(&mcpm_lock);
275
/*
276
* If cpu_going_down is false here, that means a power_up
277
* request raced ahead of us. Even if we do not want to
278
* shut this CPU down, the caller still expects execution
279
* to return through the system resume entry path, like
280
* when the WFI is aborted due to a new IRQ or the like..
281
* So let's continue with cache cleaning in all cases.
282
*/
283
platform_ops->cpu_cache_disable();
284
}
285
286
__mcpm_cpu_down(cpu, cluster);
287
288
/* Now we are prepared for power-down, do it: */
289
if (cpu_going_down)
290
wfi();
291
292
/*
293
* It is possible for a power_up request to happen concurrently
294
* with a power_down request for the same CPU. In this case the
295
* CPU might not be able to actually enter a powered down state
296
* with the WFI instruction if the power_up request has removed
297
* the required reset condition. We must perform a re-entry in
298
* the kernel as if the power_up method just had deasserted reset
299
* on the CPU.
300
*/
301
phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
302
phys_reset(__pa_symbol(mcpm_entry_point), false);
303
304
/* should never get here */
305
BUG();
306
}
307
308
int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
309
{
310
int ret;
311
312
if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
313
return -EUNATCH;
314
315
ret = platform_ops->wait_for_powerdown(cpu, cluster);
316
if (ret)
317
pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
318
__func__, cpu, cluster, ret);
319
320
return ret;
321
}
322
323
void mcpm_cpu_suspend(void)
324
{
325
if (WARN_ON_ONCE(!platform_ops))
326
return;
327
328
/* Some platforms might have to enable special resume modes, etc. */
329
if (platform_ops->cpu_suspend_prepare) {
330
unsigned int mpidr = read_cpuid_mpidr();
331
unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
332
unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
333
arch_spin_lock(&mcpm_lock);
334
platform_ops->cpu_suspend_prepare(cpu, cluster);
335
arch_spin_unlock(&mcpm_lock);
336
}
337
mcpm_cpu_power_down();
338
}
339
340
int mcpm_cpu_powered_up(void)
341
{
342
unsigned int mpidr, cpu, cluster;
343
bool cpu_was_down, first_man;
344
unsigned long flags;
345
346
if (!platform_ops)
347
return -EUNATCH;
348
349
mpidr = read_cpuid_mpidr();
350
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
351
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
352
local_irq_save(flags);
353
arch_spin_lock(&mcpm_lock);
354
355
cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
356
first_man = mcpm_cluster_unused(cluster);
357
358
if (first_man && platform_ops->cluster_is_up)
359
platform_ops->cluster_is_up(cluster);
360
if (cpu_was_down)
361
mcpm_cpu_use_count[cluster][cpu] = 1;
362
if (platform_ops->cpu_is_up)
363
platform_ops->cpu_is_up(cpu, cluster);
364
365
arch_spin_unlock(&mcpm_lock);
366
local_irq_restore(flags);
367
368
return 0;
369
}
370
371
#ifdef CONFIG_ARM_CPU_SUSPEND
372
373
static int __init nocache_trampoline(unsigned long _arg)
374
{
375
void (*cache_disable)(void) = (void *)_arg;
376
unsigned int mpidr = read_cpuid_mpidr();
377
unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
378
unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
379
phys_reset_t phys_reset;
380
381
mcpm_set_entry_vector(cpu, cluster, cpu_resume_no_hyp);
382
setup_mm_for_reboot();
383
384
__mcpm_cpu_going_down(cpu, cluster);
385
BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
386
cache_disable();
387
__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
388
__mcpm_cpu_down(cpu, cluster);
389
390
phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
391
phys_reset(__pa_symbol(mcpm_entry_point), false);
392
BUG();
393
}
394
395
int __init mcpm_loopback(void (*cache_disable)(void))
396
{
397
int ret;
398
399
/*
400
* We're going to soft-restart the current CPU through the
401
* low-level MCPM code by leveraging the suspend/resume
402
* infrastructure. Let's play it safe by using cpu_pm_enter()
403
* in case the CPU init code path resets the VFP or similar.
404
*/
405
local_irq_disable();
406
local_fiq_disable();
407
ret = cpu_pm_enter();
408
if (!ret) {
409
ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
410
cpu_pm_exit();
411
}
412
local_fiq_enable();
413
local_irq_enable();
414
if (ret)
415
pr_err("%s returned %d\n", __func__, ret);
416
return ret;
417
}
418
419
#endif
420
421
extern unsigned long mcpm_power_up_setup_phys;
422
423
int __init mcpm_sync_init(
424
void (*power_up_setup)(unsigned int affinity_level))
425
{
426
unsigned int i, j, mpidr, this_cluster;
427
428
BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
429
BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
430
431
/*
432
* Set initial CPU and cluster states.
433
* Only one cluster is assumed to be active at this point.
434
*/
435
for (i = 0; i < MAX_NR_CLUSTERS; i++) {
436
mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
437
mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
438
for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
439
mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
440
}
441
mpidr = read_cpuid_mpidr();
442
this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
443
for_each_online_cpu(i) {
444
mcpm_cpu_use_count[this_cluster][i] = 1;
445
mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
446
}
447
mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
448
sync_cache_w(&mcpm_sync);
449
450
if (power_up_setup) {
451
mcpm_power_up_setup_phys = __pa_symbol(power_up_setup);
452
sync_cache_w(&mcpm_power_up_setup_phys);
453
}
454
455
return 0;
456
}
457
458