Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm/include/asm/bitops.h
26295 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* Copyright 1995, Russell King.
4
* Various bits and pieces copyrights include:
5
* Linus Torvalds (test_bit).
6
* Big endian support: Copyright 2001, Nicolas Pitre
7
* reworked by rmk.
8
*
9
* bit 0 is the LSB of an "unsigned long" quantity.
10
*
11
* Please note that the code in this file should never be included
12
* from user space. Many of these are not implemented in assembler
13
* since they would be too costly. Also, they require privileged
14
* instructions (which are not available from user mode) to ensure
15
* that they are atomic.
16
*/
17
18
#ifndef __ASM_ARM_BITOPS_H
19
#define __ASM_ARM_BITOPS_H
20
21
#ifdef __KERNEL__
22
23
#ifndef _LINUX_BITOPS_H
24
#error only <linux/bitops.h> can be included directly
25
#endif
26
27
#include <linux/compiler.h>
28
#include <linux/irqflags.h>
29
#include <asm/barrier.h>
30
31
/*
32
* These functions are the basis of our bit ops.
33
*
34
* First, the atomic bitops. These use native endian.
35
*/
36
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
37
{
38
unsigned long flags;
39
unsigned long mask = BIT_MASK(bit);
40
41
p += BIT_WORD(bit);
42
43
raw_local_irq_save(flags);
44
*p |= mask;
45
raw_local_irq_restore(flags);
46
}
47
48
static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
49
{
50
unsigned long flags;
51
unsigned long mask = BIT_MASK(bit);
52
53
p += BIT_WORD(bit);
54
55
raw_local_irq_save(flags);
56
*p &= ~mask;
57
raw_local_irq_restore(flags);
58
}
59
60
static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
61
{
62
unsigned long flags;
63
unsigned long mask = BIT_MASK(bit);
64
65
p += BIT_WORD(bit);
66
67
raw_local_irq_save(flags);
68
*p ^= mask;
69
raw_local_irq_restore(flags);
70
}
71
72
static inline int
73
____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
74
{
75
unsigned long flags;
76
unsigned int res;
77
unsigned long mask = BIT_MASK(bit);
78
79
p += BIT_WORD(bit);
80
81
raw_local_irq_save(flags);
82
res = *p;
83
*p = res | mask;
84
raw_local_irq_restore(flags);
85
86
return (res & mask) != 0;
87
}
88
89
static inline int
90
____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
91
{
92
unsigned long flags;
93
unsigned int res;
94
unsigned long mask = BIT_MASK(bit);
95
96
p += BIT_WORD(bit);
97
98
raw_local_irq_save(flags);
99
res = *p;
100
*p = res & ~mask;
101
raw_local_irq_restore(flags);
102
103
return (res & mask) != 0;
104
}
105
106
static inline int
107
____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
108
{
109
unsigned long flags;
110
unsigned int res;
111
unsigned long mask = BIT_MASK(bit);
112
113
p += BIT_WORD(bit);
114
115
raw_local_irq_save(flags);
116
res = *p;
117
*p = res ^ mask;
118
raw_local_irq_restore(flags);
119
120
return (res & mask) != 0;
121
}
122
123
#include <asm-generic/bitops/non-atomic.h>
124
125
/*
126
* A note about Endian-ness.
127
* -------------------------
128
*
129
* When the ARM is put into big endian mode via CR15, the processor
130
* merely swaps the order of bytes within words, thus:
131
*
132
* ------------ physical data bus bits -----------
133
* D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
134
* little byte 3 byte 2 byte 1 byte 0
135
* big byte 0 byte 1 byte 2 byte 3
136
*
137
* This means that reading a 32-bit word at address 0 returns the same
138
* value irrespective of the endian mode bit.
139
*
140
* Peripheral devices should be connected with the data bus reversed in
141
* "Big Endian" mode. ARM Application Note 61 is applicable, and is
142
* available from http://www.arm.com/.
143
*
144
* The following assumes that the data bus connectivity for big endian
145
* mode has been followed.
146
*
147
* Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
148
*/
149
150
/*
151
* Native endian assembly bitops. nr = 0 -> word 0 bit 0.
152
*/
153
extern void _set_bit(int nr, volatile unsigned long * p);
154
extern void _clear_bit(int nr, volatile unsigned long * p);
155
extern void _change_bit(int nr, volatile unsigned long * p);
156
extern int _test_and_set_bit(int nr, volatile unsigned long * p);
157
extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
158
extern int _test_and_change_bit(int nr, volatile unsigned long * p);
159
160
/*
161
* Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
162
*/
163
unsigned long _find_first_zero_bit_le(const unsigned long *p, unsigned long size);
164
unsigned long _find_next_zero_bit_le(const unsigned long *p,
165
unsigned long size, unsigned long offset);
166
unsigned long _find_first_bit_le(const unsigned long *p, unsigned long size);
167
unsigned long _find_next_bit_le(const unsigned long *p, unsigned long size, unsigned long offset);
168
169
/*
170
* Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
171
*/
172
unsigned long _find_first_zero_bit_be(const unsigned long *p, unsigned long size);
173
unsigned long _find_next_zero_bit_be(const unsigned long *p,
174
unsigned long size, unsigned long offset);
175
unsigned long _find_first_bit_be(const unsigned long *p, unsigned long size);
176
unsigned long _find_next_bit_be(const unsigned long *p, unsigned long size, unsigned long offset);
177
178
#ifndef CONFIG_SMP
179
/*
180
* The __* form of bitops are non-atomic and may be reordered.
181
*/
182
#define ATOMIC_BITOP(name,nr,p) \
183
(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
184
#else
185
#define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
186
#endif
187
188
/*
189
* Native endian atomic definitions.
190
*/
191
#define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
192
#define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
193
#define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
194
#define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
195
#define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
196
#define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
197
198
#ifndef __ARMEB__
199
/*
200
* These are the little endian, atomic definitions.
201
*/
202
#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
203
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
204
#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
205
#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
206
207
#else
208
/*
209
* These are the big endian, atomic definitions.
210
*/
211
#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
212
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
213
#define find_first_bit(p,sz) _find_first_bit_be(p,sz)
214
#define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
215
216
#endif
217
218
#if __LINUX_ARM_ARCH__ < 5
219
220
#include <asm-generic/bitops/__fls.h>
221
#include <asm-generic/bitops/__ffs.h>
222
#include <asm-generic/bitops/fls.h>
223
#include <asm-generic/bitops/ffs.h>
224
225
#else
226
227
/*
228
* On ARMv5 and above, the gcc built-ins may rely on the clz instruction
229
* and produce optimal inlined code in all cases. On ARMv7 it is even
230
* better by also using the rbit instruction.
231
*/
232
#include <asm-generic/bitops/builtin-__fls.h>
233
#include <asm-generic/bitops/builtin-__ffs.h>
234
#include <asm-generic/bitops/builtin-fls.h>
235
#include <asm-generic/bitops/builtin-ffs.h>
236
237
#endif
238
239
#include <asm-generic/bitops/ffz.h>
240
241
#include <asm-generic/bitops/fls64.h>
242
243
#include <asm-generic/bitops/sched.h>
244
#include <asm-generic/bitops/hweight.h>
245
#include <asm-generic/bitops/lock.h>
246
247
#ifdef __ARMEB__
248
249
static inline int find_first_zero_bit_le(const void *p, unsigned size)
250
{
251
return _find_first_zero_bit_le(p, size);
252
}
253
#define find_first_zero_bit_le find_first_zero_bit_le
254
255
static inline int find_next_zero_bit_le(const void *p, int size, int offset)
256
{
257
return _find_next_zero_bit_le(p, size, offset);
258
}
259
#define find_next_zero_bit_le find_next_zero_bit_le
260
261
static inline int find_next_bit_le(const void *p, int size, int offset)
262
{
263
return _find_next_bit_le(p, size, offset);
264
}
265
#define find_next_bit_le find_next_bit_le
266
267
#endif
268
269
#include <asm-generic/bitops/le.h>
270
271
/*
272
* Ext2 is defined to use little-endian byte ordering.
273
*/
274
#include <asm-generic/bitops/ext2-atomic-setbit.h>
275
276
#endif /* __KERNEL__ */
277
278
#endif /* _ARM_BITOPS_H */
279
280