Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm/include/asm/delay.h
26295 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* Copyright (C) 1995-2004 Russell King
4
*
5
* Delay routines, using a pre-computed "loops_per_second" value.
6
*/
7
#ifndef __ASM_ARM_DELAY_H
8
#define __ASM_ARM_DELAY_H
9
10
#include <asm/page.h>
11
#include <asm/param.h> /* HZ */
12
13
/*
14
* Loop (or tick) based delay:
15
*
16
* loops = loops_per_jiffy * jiffies_per_sec * delay_us / us_per_sec
17
*
18
* where:
19
*
20
* jiffies_per_sec = HZ
21
* us_per_sec = 1000000
22
*
23
* Therefore the constant part is HZ / 1000000 which is a small
24
* fractional number. To make this usable with integer math, we
25
* scale up this constant by 2^31, perform the actual multiplication,
26
* and scale the result back down by 2^31 with a simple shift:
27
*
28
* loops = (loops_per_jiffy * delay_us * UDELAY_MULT) >> 31
29
*
30
* where:
31
*
32
* UDELAY_MULT = 2^31 * HZ / 1000000
33
* = (2^31 / 1000000) * HZ
34
* = 2147.483648 * HZ
35
* = 2147 * HZ + 483648 * HZ / 1000000
36
*
37
* 31 is the biggest scale shift value that won't overflow 32 bits for
38
* delay_us * UDELAY_MULT assuming HZ <= 1000 and delay_us <= 2000.
39
*/
40
#define MAX_UDELAY_MS 2
41
#define UDELAY_MULT UL(2147 * HZ + 483648 * HZ / 1000000)
42
#define UDELAY_SHIFT 31
43
44
#ifndef __ASSEMBLY__
45
46
struct delay_timer {
47
unsigned long (*read_current_timer)(void);
48
unsigned long freq;
49
};
50
51
extern struct arm_delay_ops {
52
void (*delay)(unsigned long);
53
void (*const_udelay)(unsigned long);
54
void (*udelay)(unsigned long);
55
unsigned long ticks_per_jiffy;
56
} arm_delay_ops;
57
58
#define __delay(n) arm_delay_ops.delay(n)
59
60
/*
61
* This function intentionally does not exist; if you see references to
62
* it, it means that you're calling udelay() with an out of range value.
63
*
64
* With currently imposed limits, this means that we support a max delay
65
* of 2000us. Further limits: HZ<=1000
66
*/
67
extern void __bad_udelay(void);
68
69
/*
70
* division by multiplication: you don't have to worry about
71
* loss of precision.
72
*
73
* Use only for very small delays ( < 2 msec). Should probably use a
74
* lookup table, really, as the multiplications take much too long with
75
* short delays. This is a "reasonable" implementation, though (and the
76
* first constant multiplications gets optimized away if the delay is
77
* a constant)
78
*/
79
#define __udelay(n) arm_delay_ops.udelay(n)
80
#define __const_udelay(n) arm_delay_ops.const_udelay(n)
81
82
#define udelay(n) \
83
(__builtin_constant_p(n) ? \
84
((n) > (MAX_UDELAY_MS * 1000) ? __bad_udelay() : \
85
__const_udelay((n) * UDELAY_MULT)) : \
86
__udelay(n))
87
88
/* Loop-based definitions for assembly code. */
89
extern void __loop_delay(unsigned long loops);
90
extern void __loop_udelay(unsigned long usecs);
91
extern void __loop_const_udelay(unsigned long);
92
93
/* Delay-loop timer registration. */
94
#define ARCH_HAS_READ_CURRENT_TIMER
95
extern void register_current_timer_delay(const struct delay_timer *timer);
96
97
#endif /* __ASSEMBLY__ */
98
99
#endif /* defined(_ARM_DELAY_H) */
100
101
102