Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm/kernel/hw_breakpoint.c
26292 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
*
4
* Copyright (C) 2009, 2010 ARM Limited
5
*
6
* Author: Will Deacon <[email protected]>
7
*/
8
9
/*
10
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
11
* using the CPU's debug registers.
12
*/
13
#define pr_fmt(fmt) "hw-breakpoint: " fmt
14
15
#include <linux/errno.h>
16
#include <linux/hardirq.h>
17
#include <linux/perf_event.h>
18
#include <linux/hw_breakpoint.h>
19
#include <linux/smp.h>
20
#include <linux/cfi.h>
21
#include <linux/cpu_pm.h>
22
#include <linux/coresight.h>
23
24
#include <asm/cacheflush.h>
25
#include <asm/cputype.h>
26
#include <asm/current.h>
27
#include <asm/hw_breakpoint.h>
28
#include <asm/traps.h>
29
30
/* Breakpoint currently in use for each BRP. */
31
static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
32
33
/* Watchpoint currently in use for each WRP. */
34
static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
35
36
/* Number of BRP/WRP registers on this CPU. */
37
static int core_num_brps __ro_after_init;
38
static int core_num_wrps __ro_after_init;
39
40
/* Debug architecture version. */
41
static u8 debug_arch __ro_after_init;
42
43
/* Does debug architecture support OS Save and Restore? */
44
static bool has_ossr __ro_after_init;
45
46
/* Maximum supported watchpoint length. */
47
static u8 max_watchpoint_len __ro_after_init;
48
49
#define READ_WB_REG_CASE(OP2, M, VAL) \
50
case ((OP2 << 4) + M): \
51
ARM_DBG_READ(c0, c ## M, OP2, VAL); \
52
break
53
54
#define WRITE_WB_REG_CASE(OP2, M, VAL) \
55
case ((OP2 << 4) + M): \
56
ARM_DBG_WRITE(c0, c ## M, OP2, VAL); \
57
break
58
59
#define GEN_READ_WB_REG_CASES(OP2, VAL) \
60
READ_WB_REG_CASE(OP2, 0, VAL); \
61
READ_WB_REG_CASE(OP2, 1, VAL); \
62
READ_WB_REG_CASE(OP2, 2, VAL); \
63
READ_WB_REG_CASE(OP2, 3, VAL); \
64
READ_WB_REG_CASE(OP2, 4, VAL); \
65
READ_WB_REG_CASE(OP2, 5, VAL); \
66
READ_WB_REG_CASE(OP2, 6, VAL); \
67
READ_WB_REG_CASE(OP2, 7, VAL); \
68
READ_WB_REG_CASE(OP2, 8, VAL); \
69
READ_WB_REG_CASE(OP2, 9, VAL); \
70
READ_WB_REG_CASE(OP2, 10, VAL); \
71
READ_WB_REG_CASE(OP2, 11, VAL); \
72
READ_WB_REG_CASE(OP2, 12, VAL); \
73
READ_WB_REG_CASE(OP2, 13, VAL); \
74
READ_WB_REG_CASE(OP2, 14, VAL); \
75
READ_WB_REG_CASE(OP2, 15, VAL)
76
77
#define GEN_WRITE_WB_REG_CASES(OP2, VAL) \
78
WRITE_WB_REG_CASE(OP2, 0, VAL); \
79
WRITE_WB_REG_CASE(OP2, 1, VAL); \
80
WRITE_WB_REG_CASE(OP2, 2, VAL); \
81
WRITE_WB_REG_CASE(OP2, 3, VAL); \
82
WRITE_WB_REG_CASE(OP2, 4, VAL); \
83
WRITE_WB_REG_CASE(OP2, 5, VAL); \
84
WRITE_WB_REG_CASE(OP2, 6, VAL); \
85
WRITE_WB_REG_CASE(OP2, 7, VAL); \
86
WRITE_WB_REG_CASE(OP2, 8, VAL); \
87
WRITE_WB_REG_CASE(OP2, 9, VAL); \
88
WRITE_WB_REG_CASE(OP2, 10, VAL); \
89
WRITE_WB_REG_CASE(OP2, 11, VAL); \
90
WRITE_WB_REG_CASE(OP2, 12, VAL); \
91
WRITE_WB_REG_CASE(OP2, 13, VAL); \
92
WRITE_WB_REG_CASE(OP2, 14, VAL); \
93
WRITE_WB_REG_CASE(OP2, 15, VAL)
94
95
static u32 read_wb_reg(int n)
96
{
97
u32 val = 0;
98
99
switch (n) {
100
GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val);
101
GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val);
102
GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val);
103
GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val);
104
default:
105
pr_warn("attempt to read from unknown breakpoint register %d\n",
106
n);
107
}
108
109
return val;
110
}
111
112
static void write_wb_reg(int n, u32 val)
113
{
114
switch (n) {
115
GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val);
116
GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val);
117
GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val);
118
GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val);
119
default:
120
pr_warn("attempt to write to unknown breakpoint register %d\n",
121
n);
122
}
123
isb();
124
}
125
126
/* Determine debug architecture. */
127
static u8 get_debug_arch(void)
128
{
129
u32 didr;
130
131
/* Do we implement the extended CPUID interface? */
132
if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
133
pr_warn_once("CPUID feature registers not supported. "
134
"Assuming v6 debug is present.\n");
135
return ARM_DEBUG_ARCH_V6;
136
}
137
138
ARM_DBG_READ(c0, c0, 0, didr);
139
return (didr >> 16) & 0xf;
140
}
141
142
u8 arch_get_debug_arch(void)
143
{
144
return debug_arch;
145
}
146
147
static int debug_arch_supported(void)
148
{
149
u8 arch = get_debug_arch();
150
151
/* We don't support the memory-mapped interface. */
152
return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
153
arch >= ARM_DEBUG_ARCH_V7_1;
154
}
155
156
/* Can we determine the watchpoint access type from the fsr? */
157
static int debug_exception_updates_fsr(void)
158
{
159
return get_debug_arch() >= ARM_DEBUG_ARCH_V8;
160
}
161
162
/* Determine number of WRP registers available. */
163
static int get_num_wrp_resources(void)
164
{
165
u32 didr;
166
ARM_DBG_READ(c0, c0, 0, didr);
167
return ((didr >> 28) & 0xf) + 1;
168
}
169
170
/* Determine number of BRP registers available. */
171
static int get_num_brp_resources(void)
172
{
173
u32 didr;
174
ARM_DBG_READ(c0, c0, 0, didr);
175
return ((didr >> 24) & 0xf) + 1;
176
}
177
178
/* Does this core support mismatch breakpoints? */
179
static int core_has_mismatch_brps(void)
180
{
181
return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
182
get_num_brp_resources() > 1);
183
}
184
185
/* Determine number of usable WRPs available. */
186
static int get_num_wrps(void)
187
{
188
/*
189
* On debug architectures prior to 7.1, when a watchpoint fires, the
190
* only way to work out which watchpoint it was is by disassembling
191
* the faulting instruction and working out the address of the memory
192
* access.
193
*
194
* Furthermore, we can only do this if the watchpoint was precise
195
* since imprecise watchpoints prevent us from calculating register
196
* based addresses.
197
*
198
* Providing we have more than 1 breakpoint register, we only report
199
* a single watchpoint register for the time being. This way, we always
200
* know which watchpoint fired. In the future we can either add a
201
* disassembler and address generation emulator, or we can insert a
202
* check to see if the DFAR is set on watchpoint exception entry
203
* [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
204
* that it is set on some implementations].
205
*/
206
if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
207
return 1;
208
209
return get_num_wrp_resources();
210
}
211
212
/* Determine number of usable BRPs available. */
213
static int get_num_brps(void)
214
{
215
int brps = get_num_brp_resources();
216
return core_has_mismatch_brps() ? brps - 1 : brps;
217
}
218
219
/*
220
* In order to access the breakpoint/watchpoint control registers,
221
* we must be running in debug monitor mode. Unfortunately, we can
222
* be put into halting debug mode at any time by an external debugger
223
* but there is nothing we can do to prevent that.
224
*/
225
static int monitor_mode_enabled(void)
226
{
227
u32 dscr;
228
ARM_DBG_READ(c0, c1, 0, dscr);
229
return !!(dscr & ARM_DSCR_MDBGEN);
230
}
231
232
static int enable_monitor_mode(void)
233
{
234
u32 dscr;
235
ARM_DBG_READ(c0, c1, 0, dscr);
236
237
/* If monitor mode is already enabled, just return. */
238
if (dscr & ARM_DSCR_MDBGEN)
239
goto out;
240
241
/* Write to the corresponding DSCR. */
242
switch (get_debug_arch()) {
243
case ARM_DEBUG_ARCH_V6:
244
case ARM_DEBUG_ARCH_V6_1:
245
ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN));
246
break;
247
case ARM_DEBUG_ARCH_V7_ECP14:
248
case ARM_DEBUG_ARCH_V7_1:
249
case ARM_DEBUG_ARCH_V8:
250
case ARM_DEBUG_ARCH_V8_1:
251
case ARM_DEBUG_ARCH_V8_2:
252
case ARM_DEBUG_ARCH_V8_4:
253
ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN));
254
isb();
255
break;
256
default:
257
return -ENODEV;
258
}
259
260
/* Check that the write made it through. */
261
ARM_DBG_READ(c0, c1, 0, dscr);
262
if (!(dscr & ARM_DSCR_MDBGEN)) {
263
pr_warn_once("Failed to enable monitor mode on CPU %d.\n",
264
smp_processor_id());
265
return -EPERM;
266
}
267
268
out:
269
return 0;
270
}
271
272
int hw_breakpoint_slots(int type)
273
{
274
if (!debug_arch_supported())
275
return 0;
276
277
/*
278
* We can be called early, so don't rely on
279
* our static variables being initialised.
280
*/
281
switch (type) {
282
case TYPE_INST:
283
return get_num_brps();
284
case TYPE_DATA:
285
return get_num_wrps();
286
default:
287
pr_warn("unknown slot type: %d\n", type);
288
return 0;
289
}
290
}
291
292
/*
293
* Check if 8-bit byte-address select is available.
294
* This clobbers WRP 0.
295
*/
296
static u8 get_max_wp_len(void)
297
{
298
u32 ctrl_reg;
299
struct arch_hw_breakpoint_ctrl ctrl;
300
u8 size = 4;
301
302
if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
303
goto out;
304
305
memset(&ctrl, 0, sizeof(ctrl));
306
ctrl.len = ARM_BREAKPOINT_LEN_8;
307
ctrl_reg = encode_ctrl_reg(ctrl);
308
309
write_wb_reg(ARM_BASE_WVR, 0);
310
write_wb_reg(ARM_BASE_WCR, ctrl_reg);
311
if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg)
312
size = 8;
313
314
out:
315
return size;
316
}
317
318
u8 arch_get_max_wp_len(void)
319
{
320
return max_watchpoint_len;
321
}
322
323
/*
324
* Install a perf counter breakpoint.
325
*/
326
int arch_install_hw_breakpoint(struct perf_event *bp)
327
{
328
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
329
struct perf_event **slot, **slots;
330
int i, max_slots, ctrl_base, val_base;
331
u32 addr, ctrl;
332
333
addr = info->address;
334
ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
335
336
if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
337
/* Breakpoint */
338
ctrl_base = ARM_BASE_BCR;
339
val_base = ARM_BASE_BVR;
340
slots = this_cpu_ptr(bp_on_reg);
341
max_slots = core_num_brps;
342
} else {
343
/* Watchpoint */
344
ctrl_base = ARM_BASE_WCR;
345
val_base = ARM_BASE_WVR;
346
slots = this_cpu_ptr(wp_on_reg);
347
max_slots = core_num_wrps;
348
}
349
350
for (i = 0; i < max_slots; ++i) {
351
slot = &slots[i];
352
353
if (!*slot) {
354
*slot = bp;
355
break;
356
}
357
}
358
359
if (i == max_slots) {
360
pr_warn("Can't find any breakpoint slot\n");
361
return -EBUSY;
362
}
363
364
/* Override the breakpoint data with the step data. */
365
if (info->step_ctrl.enabled) {
366
addr = info->trigger & ~0x3;
367
ctrl = encode_ctrl_reg(info->step_ctrl);
368
if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
369
i = 0;
370
ctrl_base = ARM_BASE_BCR + core_num_brps;
371
val_base = ARM_BASE_BVR + core_num_brps;
372
}
373
}
374
375
/* Setup the address register. */
376
write_wb_reg(val_base + i, addr);
377
378
/* Setup the control register. */
379
write_wb_reg(ctrl_base + i, ctrl);
380
return 0;
381
}
382
383
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
384
{
385
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
386
struct perf_event **slot, **slots;
387
int i, max_slots, base;
388
389
if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
390
/* Breakpoint */
391
base = ARM_BASE_BCR;
392
slots = this_cpu_ptr(bp_on_reg);
393
max_slots = core_num_brps;
394
} else {
395
/* Watchpoint */
396
base = ARM_BASE_WCR;
397
slots = this_cpu_ptr(wp_on_reg);
398
max_slots = core_num_wrps;
399
}
400
401
/* Remove the breakpoint. */
402
for (i = 0; i < max_slots; ++i) {
403
slot = &slots[i];
404
405
if (*slot == bp) {
406
*slot = NULL;
407
break;
408
}
409
}
410
411
if (i == max_slots) {
412
pr_warn("Can't find any breakpoint slot\n");
413
return;
414
}
415
416
/* Ensure that we disable the mismatch breakpoint. */
417
if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
418
info->step_ctrl.enabled) {
419
i = 0;
420
base = ARM_BASE_BCR + core_num_brps;
421
}
422
423
/* Reset the control register. */
424
write_wb_reg(base + i, 0);
425
}
426
427
static int get_hbp_len(u8 hbp_len)
428
{
429
unsigned int len_in_bytes = 0;
430
431
switch (hbp_len) {
432
case ARM_BREAKPOINT_LEN_1:
433
len_in_bytes = 1;
434
break;
435
case ARM_BREAKPOINT_LEN_2:
436
len_in_bytes = 2;
437
break;
438
case ARM_BREAKPOINT_LEN_4:
439
len_in_bytes = 4;
440
break;
441
case ARM_BREAKPOINT_LEN_8:
442
len_in_bytes = 8;
443
break;
444
}
445
446
return len_in_bytes;
447
}
448
449
/*
450
* Check whether bp virtual address is in kernel space.
451
*/
452
int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
453
{
454
unsigned int len;
455
unsigned long va;
456
457
va = hw->address;
458
len = get_hbp_len(hw->ctrl.len);
459
460
return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
461
}
462
463
/*
464
* Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
465
* Hopefully this will disappear when ptrace can bypass the conversion
466
* to generic breakpoint descriptions.
467
*/
468
int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
469
int *gen_len, int *gen_type)
470
{
471
/* Type */
472
switch (ctrl.type) {
473
case ARM_BREAKPOINT_EXECUTE:
474
*gen_type = HW_BREAKPOINT_X;
475
break;
476
case ARM_BREAKPOINT_LOAD:
477
*gen_type = HW_BREAKPOINT_R;
478
break;
479
case ARM_BREAKPOINT_STORE:
480
*gen_type = HW_BREAKPOINT_W;
481
break;
482
case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
483
*gen_type = HW_BREAKPOINT_RW;
484
break;
485
default:
486
return -EINVAL;
487
}
488
489
/* Len */
490
switch (ctrl.len) {
491
case ARM_BREAKPOINT_LEN_1:
492
*gen_len = HW_BREAKPOINT_LEN_1;
493
break;
494
case ARM_BREAKPOINT_LEN_2:
495
*gen_len = HW_BREAKPOINT_LEN_2;
496
break;
497
case ARM_BREAKPOINT_LEN_4:
498
*gen_len = HW_BREAKPOINT_LEN_4;
499
break;
500
case ARM_BREAKPOINT_LEN_8:
501
*gen_len = HW_BREAKPOINT_LEN_8;
502
break;
503
default:
504
return -EINVAL;
505
}
506
507
return 0;
508
}
509
510
/*
511
* Construct an arch_hw_breakpoint from a perf_event.
512
*/
513
static int arch_build_bp_info(struct perf_event *bp,
514
const struct perf_event_attr *attr,
515
struct arch_hw_breakpoint *hw)
516
{
517
/* Type */
518
switch (attr->bp_type) {
519
case HW_BREAKPOINT_X:
520
hw->ctrl.type = ARM_BREAKPOINT_EXECUTE;
521
break;
522
case HW_BREAKPOINT_R:
523
hw->ctrl.type = ARM_BREAKPOINT_LOAD;
524
break;
525
case HW_BREAKPOINT_W:
526
hw->ctrl.type = ARM_BREAKPOINT_STORE;
527
break;
528
case HW_BREAKPOINT_RW:
529
hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
530
break;
531
default:
532
return -EINVAL;
533
}
534
535
/* Len */
536
switch (attr->bp_len) {
537
case HW_BREAKPOINT_LEN_1:
538
hw->ctrl.len = ARM_BREAKPOINT_LEN_1;
539
break;
540
case HW_BREAKPOINT_LEN_2:
541
hw->ctrl.len = ARM_BREAKPOINT_LEN_2;
542
break;
543
case HW_BREAKPOINT_LEN_4:
544
hw->ctrl.len = ARM_BREAKPOINT_LEN_4;
545
break;
546
case HW_BREAKPOINT_LEN_8:
547
hw->ctrl.len = ARM_BREAKPOINT_LEN_8;
548
if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE)
549
&& max_watchpoint_len >= 8)
550
break;
551
fallthrough;
552
default:
553
return -EINVAL;
554
}
555
556
/*
557
* Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
558
* Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
559
* by the hardware and must be aligned to the appropriate number of
560
* bytes.
561
*/
562
if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
563
hw->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
564
hw->ctrl.len != ARM_BREAKPOINT_LEN_4)
565
return -EINVAL;
566
567
/* Address */
568
hw->address = attr->bp_addr;
569
570
/* Privilege */
571
hw->ctrl.privilege = ARM_BREAKPOINT_USER;
572
if (arch_check_bp_in_kernelspace(hw))
573
hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
574
575
/* Enabled? */
576
hw->ctrl.enabled = !attr->disabled;
577
578
/* Mismatch */
579
hw->ctrl.mismatch = 0;
580
581
return 0;
582
}
583
584
/*
585
* Validate the arch-specific HW Breakpoint register settings.
586
*/
587
int hw_breakpoint_arch_parse(struct perf_event *bp,
588
const struct perf_event_attr *attr,
589
struct arch_hw_breakpoint *hw)
590
{
591
int ret = 0;
592
u32 offset, alignment_mask = 0x3;
593
594
/* Ensure that we are in monitor debug mode. */
595
if (!monitor_mode_enabled())
596
return -ENODEV;
597
598
/* Build the arch_hw_breakpoint. */
599
ret = arch_build_bp_info(bp, attr, hw);
600
if (ret)
601
goto out;
602
603
/* Check address alignment. */
604
if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8)
605
alignment_mask = 0x7;
606
offset = hw->address & alignment_mask;
607
switch (offset) {
608
case 0:
609
/* Aligned */
610
break;
611
case 1:
612
case 2:
613
/* Allow halfword watchpoints and breakpoints. */
614
if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2)
615
break;
616
fallthrough;
617
case 3:
618
/* Allow single byte watchpoint. */
619
if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1)
620
break;
621
fallthrough;
622
default:
623
ret = -EINVAL;
624
goto out;
625
}
626
627
hw->address &= ~alignment_mask;
628
hw->ctrl.len <<= offset;
629
630
if (is_default_overflow_handler(bp)) {
631
/*
632
* Mismatch breakpoints are required for single-stepping
633
* breakpoints.
634
*/
635
if (!core_has_mismatch_brps())
636
return -EINVAL;
637
638
/* We don't allow mismatch breakpoints in kernel space. */
639
if (arch_check_bp_in_kernelspace(hw))
640
return -EPERM;
641
642
/*
643
* Per-cpu breakpoints are not supported by our stepping
644
* mechanism.
645
*/
646
if (!bp->hw.target)
647
return -EINVAL;
648
649
/*
650
* We only support specific access types if the fsr
651
* reports them.
652
*/
653
if (!debug_exception_updates_fsr() &&
654
(hw->ctrl.type == ARM_BREAKPOINT_LOAD ||
655
hw->ctrl.type == ARM_BREAKPOINT_STORE))
656
return -EINVAL;
657
}
658
659
out:
660
return ret;
661
}
662
663
/*
664
* Enable/disable single-stepping over the breakpoint bp at address addr.
665
*/
666
static void enable_single_step(struct perf_event *bp, u32 addr)
667
{
668
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
669
670
arch_uninstall_hw_breakpoint(bp);
671
info->step_ctrl.mismatch = 1;
672
info->step_ctrl.len = ARM_BREAKPOINT_LEN_4;
673
info->step_ctrl.type = ARM_BREAKPOINT_EXECUTE;
674
info->step_ctrl.privilege = info->ctrl.privilege;
675
info->step_ctrl.enabled = 1;
676
info->trigger = addr;
677
arch_install_hw_breakpoint(bp);
678
}
679
680
static void disable_single_step(struct perf_event *bp)
681
{
682
arch_uninstall_hw_breakpoint(bp);
683
counter_arch_bp(bp)->step_ctrl.enabled = 0;
684
arch_install_hw_breakpoint(bp);
685
}
686
687
/*
688
* Arm32 hardware does not always report a watchpoint hit address that matches
689
* one of the watchpoints set. It can also report an address "near" the
690
* watchpoint if a single instruction access both watched and unwatched
691
* addresses. There is no straight-forward way, short of disassembling the
692
* offending instruction, to map that address back to the watchpoint. This
693
* function computes the distance of the memory access from the watchpoint as a
694
* heuristic for the likelyhood that a given access triggered the watchpoint.
695
*
696
* See this same function in the arm64 platform code, which has the same
697
* problem.
698
*
699
* The function returns the distance of the address from the bytes watched by
700
* the watchpoint. In case of an exact match, it returns 0.
701
*/
702
static u32 get_distance_from_watchpoint(unsigned long addr, u32 val,
703
struct arch_hw_breakpoint_ctrl *ctrl)
704
{
705
u32 wp_low, wp_high;
706
u32 lens, lene;
707
708
lens = __ffs(ctrl->len);
709
lene = __fls(ctrl->len);
710
711
wp_low = val + lens;
712
wp_high = val + lene;
713
if (addr < wp_low)
714
return wp_low - addr;
715
else if (addr > wp_high)
716
return addr - wp_high;
717
else
718
return 0;
719
}
720
721
static int watchpoint_fault_on_uaccess(struct pt_regs *regs,
722
struct arch_hw_breakpoint *info)
723
{
724
return !user_mode(regs) && info->ctrl.privilege == ARM_BREAKPOINT_USER;
725
}
726
727
static void watchpoint_handler(unsigned long addr, unsigned int fsr,
728
struct pt_regs *regs)
729
{
730
int i, access, closest_match = 0;
731
u32 min_dist = -1, dist;
732
u32 val, ctrl_reg;
733
struct perf_event *wp, **slots;
734
struct arch_hw_breakpoint *info;
735
struct arch_hw_breakpoint_ctrl ctrl;
736
737
slots = this_cpu_ptr(wp_on_reg);
738
739
/*
740
* Find all watchpoints that match the reported address. If no exact
741
* match is found. Attribute the hit to the closest watchpoint.
742
*/
743
rcu_read_lock();
744
for (i = 0; i < core_num_wrps; ++i) {
745
wp = slots[i];
746
if (wp == NULL)
747
continue;
748
749
/*
750
* The DFAR is an unknown value on debug architectures prior
751
* to 7.1. Since we only allow a single watchpoint on these
752
* older CPUs, we can set the trigger to the lowest possible
753
* faulting address.
754
*/
755
if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
756
BUG_ON(i > 0);
757
info = counter_arch_bp(wp);
758
info->trigger = wp->attr.bp_addr;
759
} else {
760
/* Check that the access type matches. */
761
if (debug_exception_updates_fsr()) {
762
access = (fsr & ARM_FSR_ACCESS_MASK) ?
763
HW_BREAKPOINT_W : HW_BREAKPOINT_R;
764
if (!(access & hw_breakpoint_type(wp)))
765
continue;
766
}
767
768
val = read_wb_reg(ARM_BASE_WVR + i);
769
ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
770
decode_ctrl_reg(ctrl_reg, &ctrl);
771
dist = get_distance_from_watchpoint(addr, val, &ctrl);
772
if (dist < min_dist) {
773
min_dist = dist;
774
closest_match = i;
775
}
776
/* Is this an exact match? */
777
if (dist != 0)
778
continue;
779
780
/* We have a winner. */
781
info = counter_arch_bp(wp);
782
info->trigger = addr;
783
}
784
785
pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
786
787
/*
788
* If we triggered a user watchpoint from a uaccess routine,
789
* then handle the stepping ourselves since userspace really
790
* can't help us with this.
791
*/
792
if (watchpoint_fault_on_uaccess(regs, info))
793
goto step;
794
795
perf_bp_event(wp, regs);
796
797
/*
798
* Defer stepping to the overflow handler if one is installed.
799
* Otherwise, insert a temporary mismatch breakpoint so that
800
* we can single-step over the watchpoint trigger.
801
*/
802
if (!is_default_overflow_handler(wp))
803
continue;
804
step:
805
enable_single_step(wp, instruction_pointer(regs));
806
}
807
808
if (min_dist > 0 && min_dist != -1) {
809
/* No exact match found. */
810
wp = slots[closest_match];
811
info = counter_arch_bp(wp);
812
info->trigger = addr;
813
pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
814
perf_bp_event(wp, regs);
815
if (is_default_overflow_handler(wp))
816
enable_single_step(wp, instruction_pointer(regs));
817
}
818
819
rcu_read_unlock();
820
}
821
822
static void watchpoint_single_step_handler(unsigned long pc)
823
{
824
int i;
825
struct perf_event *wp, **slots;
826
struct arch_hw_breakpoint *info;
827
828
slots = this_cpu_ptr(wp_on_reg);
829
830
for (i = 0; i < core_num_wrps; ++i) {
831
rcu_read_lock();
832
833
wp = slots[i];
834
835
if (wp == NULL)
836
goto unlock;
837
838
info = counter_arch_bp(wp);
839
if (!info->step_ctrl.enabled)
840
goto unlock;
841
842
/*
843
* Restore the original watchpoint if we've completed the
844
* single-step.
845
*/
846
if (info->trigger != pc)
847
disable_single_step(wp);
848
849
unlock:
850
rcu_read_unlock();
851
}
852
}
853
854
static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
855
{
856
int i;
857
u32 ctrl_reg, val, addr;
858
struct perf_event *bp, **slots;
859
struct arch_hw_breakpoint *info;
860
struct arch_hw_breakpoint_ctrl ctrl;
861
862
slots = this_cpu_ptr(bp_on_reg);
863
864
/* The exception entry code places the amended lr in the PC. */
865
addr = regs->ARM_pc;
866
867
/* Check the currently installed breakpoints first. */
868
for (i = 0; i < core_num_brps; ++i) {
869
rcu_read_lock();
870
871
bp = slots[i];
872
873
if (bp == NULL)
874
goto unlock;
875
876
info = counter_arch_bp(bp);
877
878
/* Check if the breakpoint value matches. */
879
val = read_wb_reg(ARM_BASE_BVR + i);
880
if (val != (addr & ~0x3))
881
goto mismatch;
882
883
/* Possible match, check the byte address select to confirm. */
884
ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
885
decode_ctrl_reg(ctrl_reg, &ctrl);
886
if ((1 << (addr & 0x3)) & ctrl.len) {
887
info->trigger = addr;
888
pr_debug("breakpoint fired: address = 0x%x\n", addr);
889
perf_bp_event(bp, regs);
890
if (is_default_overflow_handler(bp))
891
enable_single_step(bp, addr);
892
goto unlock;
893
}
894
895
mismatch:
896
/* If we're stepping a breakpoint, it can now be restored. */
897
if (info->step_ctrl.enabled)
898
disable_single_step(bp);
899
unlock:
900
rcu_read_unlock();
901
}
902
903
/* Handle any pending watchpoint single-step breakpoints. */
904
watchpoint_single_step_handler(addr);
905
}
906
907
#ifdef CONFIG_CFI_CLANG
908
static void hw_breakpoint_cfi_handler(struct pt_regs *regs)
909
{
910
/*
911
* TODO: implementing target and type to pass to CFI using the more
912
* elaborate report_cfi_failure() requires compiler work. To be able
913
* to properly extract target information the compiler needs to
914
* emit a stable instructions sequence for the CFI checks so we can
915
* decode the instructions preceding the trap and figure out which
916
* registers were used.
917
*/
918
919
switch (report_cfi_failure_noaddr(regs, instruction_pointer(regs))) {
920
case BUG_TRAP_TYPE_BUG:
921
die("Oops - CFI", regs, 0);
922
break;
923
case BUG_TRAP_TYPE_WARN:
924
/* Skip the breaking instruction */
925
instruction_pointer(regs) += 4;
926
break;
927
default:
928
die("Unknown CFI error", regs, 0);
929
break;
930
}
931
}
932
#else
933
static void hw_breakpoint_cfi_handler(struct pt_regs *regs)
934
{
935
}
936
#endif
937
938
/*
939
* Called from either the Data Abort Handler [watchpoint] or the
940
* Prefetch Abort Handler [breakpoint] with interrupts disabled.
941
*/
942
static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
943
struct pt_regs *regs)
944
{
945
int ret = 0;
946
u32 dscr;
947
948
preempt_disable();
949
950
if (interrupts_enabled(regs))
951
local_irq_enable();
952
953
/* We only handle watchpoints and hardware breakpoints. */
954
ARM_DBG_READ(c0, c1, 0, dscr);
955
956
/* Perform perf callbacks. */
957
switch (ARM_DSCR_MOE(dscr)) {
958
case ARM_ENTRY_BREAKPOINT:
959
breakpoint_handler(addr, regs);
960
break;
961
case ARM_ENTRY_ASYNC_WATCHPOINT:
962
WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
963
fallthrough;
964
case ARM_ENTRY_SYNC_WATCHPOINT:
965
watchpoint_handler(addr, fsr, regs);
966
break;
967
case ARM_ENTRY_CFI_BREAKPOINT:
968
hw_breakpoint_cfi_handler(regs);
969
break;
970
default:
971
ret = 1; /* Unhandled fault. */
972
}
973
974
preempt_enable();
975
976
return ret;
977
}
978
979
#ifdef CONFIG_ARM_ERRATA_764319
980
static int oslsr_fault;
981
982
static int debug_oslsr_trap(struct pt_regs *regs, unsigned int instr)
983
{
984
oslsr_fault = 1;
985
instruction_pointer(regs) += 4;
986
return 0;
987
}
988
989
static struct undef_hook debug_oslsr_hook = {
990
.instr_mask = 0xffffffff,
991
.instr_val = 0xee115e91,
992
.fn = debug_oslsr_trap,
993
};
994
#endif
995
996
/*
997
* One-time initialisation.
998
*/
999
static cpumask_t debug_err_mask;
1000
1001
static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
1002
{
1003
int cpu = smp_processor_id();
1004
1005
pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
1006
instr, cpu);
1007
1008
/* Set the error flag for this CPU and skip the faulting instruction. */
1009
cpumask_set_cpu(cpu, &debug_err_mask);
1010
instruction_pointer(regs) += 4;
1011
return 0;
1012
}
1013
1014
static struct undef_hook debug_reg_hook = {
1015
.instr_mask = 0x0fe80f10,
1016
.instr_val = 0x0e000e10,
1017
.fn = debug_reg_trap,
1018
};
1019
1020
/* Does this core support OS Save and Restore? */
1021
static bool core_has_os_save_restore(void)
1022
{
1023
u32 oslsr;
1024
1025
switch (get_debug_arch()) {
1026
case ARM_DEBUG_ARCH_V7_1:
1027
return true;
1028
case ARM_DEBUG_ARCH_V7_ECP14:
1029
#ifdef CONFIG_ARM_ERRATA_764319
1030
oslsr_fault = 0;
1031
register_undef_hook(&debug_oslsr_hook);
1032
ARM_DBG_READ(c1, c1, 4, oslsr);
1033
unregister_undef_hook(&debug_oslsr_hook);
1034
if (oslsr_fault)
1035
return false;
1036
#else
1037
ARM_DBG_READ(c1, c1, 4, oslsr);
1038
#endif
1039
if (oslsr & ARM_OSLSR_OSLM0)
1040
return true;
1041
fallthrough;
1042
default:
1043
return false;
1044
}
1045
}
1046
1047
static void reset_ctrl_regs(unsigned int cpu)
1048
{
1049
int i, raw_num_brps, err = 0;
1050
u32 val;
1051
1052
/*
1053
* v7 debug contains save and restore registers so that debug state
1054
* can be maintained across low-power modes without leaving the debug
1055
* logic powered up. It is IMPLEMENTATION DEFINED whether we can access
1056
* the debug registers out of reset, so we must unlock the OS Lock
1057
* Access Register to avoid taking undefined instruction exceptions
1058
* later on.
1059
*/
1060
switch (debug_arch) {
1061
case ARM_DEBUG_ARCH_V6:
1062
case ARM_DEBUG_ARCH_V6_1:
1063
/* ARMv6 cores clear the registers out of reset. */
1064
goto out_mdbgen;
1065
case ARM_DEBUG_ARCH_V7_ECP14:
1066
/*
1067
* Ensure sticky power-down is clear (i.e. debug logic is
1068
* powered up).
1069
*/
1070
ARM_DBG_READ(c1, c5, 4, val);
1071
if ((val & 0x1) == 0)
1072
err = -EPERM;
1073
1074
if (!has_ossr)
1075
goto clear_vcr;
1076
break;
1077
case ARM_DEBUG_ARCH_V7_1:
1078
/*
1079
* Ensure the OS double lock is clear.
1080
*/
1081
ARM_DBG_READ(c1, c3, 4, val);
1082
if ((val & 0x1) == 1)
1083
err = -EPERM;
1084
break;
1085
}
1086
1087
if (err) {
1088
pr_warn_once("CPU %d debug is powered down!\n", cpu);
1089
cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1090
return;
1091
}
1092
1093
/*
1094
* Unconditionally clear the OS lock by writing a value
1095
* other than CS_LAR_KEY to the access register.
1096
*/
1097
ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK);
1098
isb();
1099
1100
/*
1101
* Clear any configured vector-catch events before
1102
* enabling monitor mode.
1103
*/
1104
clear_vcr:
1105
ARM_DBG_WRITE(c0, c7, 0, 0);
1106
isb();
1107
1108
if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1109
pr_warn_once("CPU %d failed to disable vector catch\n", cpu);
1110
return;
1111
}
1112
1113
/*
1114
* The control/value register pairs are UNKNOWN out of reset so
1115
* clear them to avoid spurious debug events.
1116
*/
1117
raw_num_brps = get_num_brp_resources();
1118
for (i = 0; i < raw_num_brps; ++i) {
1119
write_wb_reg(ARM_BASE_BCR + i, 0UL);
1120
write_wb_reg(ARM_BASE_BVR + i, 0UL);
1121
}
1122
1123
for (i = 0; i < core_num_wrps; ++i) {
1124
write_wb_reg(ARM_BASE_WCR + i, 0UL);
1125
write_wb_reg(ARM_BASE_WVR + i, 0UL);
1126
}
1127
1128
if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1129
pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu);
1130
return;
1131
}
1132
1133
/*
1134
* Have a crack at enabling monitor mode. We don't actually need
1135
* it yet, but reporting an error early is useful if it fails.
1136
*/
1137
out_mdbgen:
1138
if (enable_monitor_mode())
1139
cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1140
}
1141
1142
static int dbg_reset_online(unsigned int cpu)
1143
{
1144
local_irq_disable();
1145
reset_ctrl_regs(cpu);
1146
local_irq_enable();
1147
return 0;
1148
}
1149
1150
#ifdef CONFIG_CPU_PM
1151
static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action,
1152
void *v)
1153
{
1154
if (action == CPU_PM_EXIT)
1155
reset_ctrl_regs(smp_processor_id());
1156
1157
return NOTIFY_OK;
1158
}
1159
1160
static struct notifier_block dbg_cpu_pm_nb = {
1161
.notifier_call = dbg_cpu_pm_notify,
1162
};
1163
1164
static void __init pm_init(void)
1165
{
1166
cpu_pm_register_notifier(&dbg_cpu_pm_nb);
1167
}
1168
#else
1169
static inline void pm_init(void)
1170
{
1171
}
1172
#endif
1173
1174
static int __init arch_hw_breakpoint_init(void)
1175
{
1176
int ret;
1177
1178
debug_arch = get_debug_arch();
1179
1180
if (!debug_arch_supported()) {
1181
pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
1182
return 0;
1183
}
1184
1185
/*
1186
* Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD
1187
* whenever a WFI is issued, even if the core is not powered down, in
1188
* violation of the architecture. When DBGPRSR.SPD is set, accesses to
1189
* breakpoint and watchpoint registers are treated as undefined, so
1190
* this results in boot time and runtime failures when these are
1191
* accessed and we unexpectedly take a trap.
1192
*
1193
* It's not clear if/how this can be worked around, so we blacklist
1194
* Scorpion CPUs to avoid these issues.
1195
*/
1196
if (read_cpuid_part() == ARM_CPU_PART_SCORPION) {
1197
pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n");
1198
return 0;
1199
}
1200
1201
has_ossr = core_has_os_save_restore();
1202
1203
/* Determine how many BRPs/WRPs are available. */
1204
core_num_brps = get_num_brps();
1205
core_num_wrps = get_num_wrps();
1206
1207
/*
1208
* We need to tread carefully here because DBGSWENABLE may be
1209
* driven low on this core and there isn't an architected way to
1210
* determine that.
1211
*/
1212
cpus_read_lock();
1213
register_undef_hook(&debug_reg_hook);
1214
1215
/*
1216
* Register CPU notifier which resets the breakpoint resources. We
1217
* assume that a halting debugger will leave the world in a nice state
1218
* for us.
1219
*/
1220
ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
1221
"arm/hw_breakpoint:online",
1222
dbg_reset_online, NULL);
1223
unregister_undef_hook(&debug_reg_hook);
1224
if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) {
1225
core_num_brps = 0;
1226
core_num_wrps = 0;
1227
if (ret > 0)
1228
cpuhp_remove_state_nocalls_cpuslocked(ret);
1229
cpus_read_unlock();
1230
return 0;
1231
}
1232
1233
pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
1234
core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
1235
"", core_num_wrps);
1236
1237
/* Work out the maximum supported watchpoint length. */
1238
max_watchpoint_len = get_max_wp_len();
1239
pr_info("maximum watchpoint size is %u bytes.\n",
1240
max_watchpoint_len);
1241
1242
/* Register debug fault handler. */
1243
hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1244
TRAP_HWBKPT, "watchpoint debug exception");
1245
hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1246
TRAP_HWBKPT, "breakpoint debug exception");
1247
cpus_read_unlock();
1248
1249
/* Register PM notifiers. */
1250
pm_init();
1251
return 0;
1252
}
1253
arch_initcall(arch_hw_breakpoint_init);
1254
1255
void hw_breakpoint_pmu_read(struct perf_event *bp)
1256
{
1257
}
1258
1259
/*
1260
* Dummy function to register with die_notifier.
1261
*/
1262
int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
1263
unsigned long val, void *data)
1264
{
1265
return NOTIFY_DONE;
1266
}
1267
1268