Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/crypto/sm4-ce-glue.c
52887 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/*
3
* SM4 Cipher Algorithm, using ARMv8 Crypto Extensions
4
* as specified in
5
* https://tools.ietf.org/id/draft-ribose-cfrg-sm4-10.html
6
*
7
* Copyright (C) 2022, Alibaba Group.
8
* Copyright (C) 2022 Tianjia Zhang <[email protected]>
9
*/
10
11
#include <asm/simd.h>
12
#include <crypto/b128ops.h>
13
#include <crypto/internal/hash.h>
14
#include <crypto/internal/skcipher.h>
15
#include <crypto/scatterwalk.h>
16
#include <crypto/sm4.h>
17
#include <crypto/utils.h>
18
#include <crypto/xts.h>
19
#include <linux/cpufeature.h>
20
#include <linux/kernel.h>
21
#include <linux/module.h>
22
#include <linux/string.h>
23
24
#define BYTES2BLKS(nbytes) ((nbytes) >> 4)
25
26
asmlinkage void sm4_ce_expand_key(const u8 *key, u32 *rkey_enc, u32 *rkey_dec,
27
const u32 *fk, const u32 *ck);
28
asmlinkage void sm4_ce_crypt_block(const u32 *rkey, u8 *dst, const u8 *src);
29
asmlinkage void sm4_ce_crypt(const u32 *rkey, u8 *dst, const u8 *src,
30
unsigned int nblks);
31
asmlinkage void sm4_ce_cbc_enc(const u32 *rkey, u8 *dst, const u8 *src,
32
u8 *iv, unsigned int nblocks);
33
asmlinkage void sm4_ce_cbc_dec(const u32 *rkey, u8 *dst, const u8 *src,
34
u8 *iv, unsigned int nblocks);
35
asmlinkage void sm4_ce_cbc_cts_enc(const u32 *rkey, u8 *dst, const u8 *src,
36
u8 *iv, unsigned int nbytes);
37
asmlinkage void sm4_ce_cbc_cts_dec(const u32 *rkey, u8 *dst, const u8 *src,
38
u8 *iv, unsigned int nbytes);
39
asmlinkage void sm4_ce_ctr_enc(const u32 *rkey, u8 *dst, const u8 *src,
40
u8 *iv, unsigned int nblks);
41
asmlinkage void sm4_ce_xts_enc(const u32 *rkey1, u8 *dst, const u8 *src,
42
u8 *tweak, unsigned int nbytes,
43
const u32 *rkey2_enc);
44
asmlinkage void sm4_ce_xts_dec(const u32 *rkey1, u8 *dst, const u8 *src,
45
u8 *tweak, unsigned int nbytes,
46
const u32 *rkey2_enc);
47
asmlinkage void sm4_ce_mac_update(const u32 *rkey_enc, u8 *digest,
48
const u8 *src, unsigned int nblocks,
49
bool enc_before, bool enc_after);
50
51
EXPORT_SYMBOL(sm4_ce_expand_key);
52
EXPORT_SYMBOL(sm4_ce_crypt_block);
53
EXPORT_SYMBOL(sm4_ce_cbc_enc);
54
55
struct sm4_xts_ctx {
56
struct sm4_ctx key1;
57
struct sm4_ctx key2;
58
};
59
60
struct sm4_mac_tfm_ctx {
61
struct sm4_ctx key;
62
u8 __aligned(8) consts[];
63
};
64
65
struct sm4_mac_desc_ctx {
66
u8 digest[SM4_BLOCK_SIZE];
67
};
68
69
static int sm4_setkey(struct crypto_skcipher *tfm, const u8 *key,
70
unsigned int key_len)
71
{
72
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
73
74
if (key_len != SM4_KEY_SIZE)
75
return -EINVAL;
76
77
scoped_ksimd()
78
sm4_ce_expand_key(key, ctx->rkey_enc, ctx->rkey_dec,
79
crypto_sm4_fk, crypto_sm4_ck);
80
return 0;
81
}
82
83
static int sm4_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
84
unsigned int key_len)
85
{
86
struct sm4_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
87
int ret;
88
89
if (key_len != SM4_KEY_SIZE * 2)
90
return -EINVAL;
91
92
ret = xts_verify_key(tfm, key, key_len);
93
if (ret)
94
return ret;
95
96
scoped_ksimd() {
97
sm4_ce_expand_key(key, ctx->key1.rkey_enc,
98
ctx->key1.rkey_dec, crypto_sm4_fk, crypto_sm4_ck);
99
sm4_ce_expand_key(&key[SM4_KEY_SIZE], ctx->key2.rkey_enc,
100
ctx->key2.rkey_dec, crypto_sm4_fk, crypto_sm4_ck);
101
}
102
103
return 0;
104
}
105
106
static int sm4_ecb_do_crypt(struct skcipher_request *req, const u32 *rkey)
107
{
108
struct skcipher_walk walk;
109
unsigned int nbytes;
110
int err;
111
112
err = skcipher_walk_virt(&walk, req, false);
113
114
while ((nbytes = walk.nbytes) > 0) {
115
const u8 *src = walk.src.virt.addr;
116
u8 *dst = walk.dst.virt.addr;
117
unsigned int nblks;
118
119
scoped_ksimd() {
120
nblks = BYTES2BLKS(nbytes);
121
if (nblks) {
122
sm4_ce_crypt(rkey, dst, src, nblks);
123
nbytes -= nblks * SM4_BLOCK_SIZE;
124
}
125
}
126
127
err = skcipher_walk_done(&walk, nbytes);
128
}
129
130
return err;
131
}
132
133
static int sm4_ecb_encrypt(struct skcipher_request *req)
134
{
135
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
136
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
137
138
return sm4_ecb_do_crypt(req, ctx->rkey_enc);
139
}
140
141
static int sm4_ecb_decrypt(struct skcipher_request *req)
142
{
143
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
144
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
145
146
return sm4_ecb_do_crypt(req, ctx->rkey_dec);
147
}
148
149
static int sm4_cbc_crypt(struct skcipher_request *req,
150
struct sm4_ctx *ctx, bool encrypt)
151
{
152
struct skcipher_walk walk;
153
unsigned int nbytes;
154
int err;
155
156
err = skcipher_walk_virt(&walk, req, false);
157
if (err)
158
return err;
159
160
while ((nbytes = walk.nbytes) > 0) {
161
const u8 *src = walk.src.virt.addr;
162
u8 *dst = walk.dst.virt.addr;
163
unsigned int nblocks;
164
165
nblocks = nbytes / SM4_BLOCK_SIZE;
166
if (nblocks) {
167
scoped_ksimd() {
168
if (encrypt)
169
sm4_ce_cbc_enc(ctx->rkey_enc, dst, src,
170
walk.iv, nblocks);
171
else
172
sm4_ce_cbc_dec(ctx->rkey_dec, dst, src,
173
walk.iv, nblocks);
174
}
175
}
176
177
err = skcipher_walk_done(&walk, nbytes % SM4_BLOCK_SIZE);
178
}
179
180
return err;
181
}
182
183
static int sm4_cbc_encrypt(struct skcipher_request *req)
184
{
185
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
186
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
187
188
return sm4_cbc_crypt(req, ctx, true);
189
}
190
191
static int sm4_cbc_decrypt(struct skcipher_request *req)
192
{
193
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
194
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
195
196
return sm4_cbc_crypt(req, ctx, false);
197
}
198
199
static int sm4_cbc_cts_crypt(struct skcipher_request *req, bool encrypt)
200
{
201
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
202
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
203
struct scatterlist *src = req->src;
204
struct scatterlist *dst = req->dst;
205
struct scatterlist sg_src[2], sg_dst[2];
206
struct skcipher_request subreq;
207
struct skcipher_walk walk;
208
int cbc_blocks;
209
int err;
210
211
if (req->cryptlen < SM4_BLOCK_SIZE)
212
return -EINVAL;
213
214
if (req->cryptlen == SM4_BLOCK_SIZE)
215
return sm4_cbc_crypt(req, ctx, encrypt);
216
217
skcipher_request_set_tfm(&subreq, tfm);
218
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
219
NULL, NULL);
220
221
/* handle the CBC cryption part */
222
cbc_blocks = DIV_ROUND_UP(req->cryptlen, SM4_BLOCK_SIZE) - 2;
223
if (cbc_blocks) {
224
skcipher_request_set_crypt(&subreq, src, dst,
225
cbc_blocks * SM4_BLOCK_SIZE,
226
req->iv);
227
228
err = sm4_cbc_crypt(&subreq, ctx, encrypt);
229
if (err)
230
return err;
231
232
dst = src = scatterwalk_ffwd(sg_src, src, subreq.cryptlen);
233
if (req->dst != req->src)
234
dst = scatterwalk_ffwd(sg_dst, req->dst,
235
subreq.cryptlen);
236
}
237
238
/* handle ciphertext stealing */
239
skcipher_request_set_crypt(&subreq, src, dst,
240
req->cryptlen - cbc_blocks * SM4_BLOCK_SIZE,
241
req->iv);
242
243
err = skcipher_walk_virt(&walk, &subreq, false);
244
if (err)
245
return err;
246
247
scoped_ksimd() {
248
if (encrypt)
249
sm4_ce_cbc_cts_enc(ctx->rkey_enc, walk.dst.virt.addr,
250
walk.src.virt.addr, walk.iv, walk.nbytes);
251
else
252
sm4_ce_cbc_cts_dec(ctx->rkey_dec, walk.dst.virt.addr,
253
walk.src.virt.addr, walk.iv, walk.nbytes);
254
}
255
256
return skcipher_walk_done(&walk, 0);
257
}
258
259
static int sm4_cbc_cts_encrypt(struct skcipher_request *req)
260
{
261
return sm4_cbc_cts_crypt(req, true);
262
}
263
264
static int sm4_cbc_cts_decrypt(struct skcipher_request *req)
265
{
266
return sm4_cbc_cts_crypt(req, false);
267
}
268
269
static int sm4_ctr_crypt(struct skcipher_request *req)
270
{
271
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
272
struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
273
struct skcipher_walk walk;
274
unsigned int nbytes;
275
int err;
276
277
err = skcipher_walk_virt(&walk, req, false);
278
279
while ((nbytes = walk.nbytes) > 0) {
280
const u8 *src = walk.src.virt.addr;
281
u8 *dst = walk.dst.virt.addr;
282
unsigned int nblks;
283
284
scoped_ksimd() {
285
nblks = BYTES2BLKS(nbytes);
286
if (nblks) {
287
sm4_ce_ctr_enc(ctx->rkey_enc, dst, src, walk.iv, nblks);
288
dst += nblks * SM4_BLOCK_SIZE;
289
src += nblks * SM4_BLOCK_SIZE;
290
nbytes -= nblks * SM4_BLOCK_SIZE;
291
}
292
293
/* tail */
294
if (walk.nbytes == walk.total && nbytes > 0) {
295
u8 keystream[SM4_BLOCK_SIZE];
296
297
sm4_ce_crypt_block(ctx->rkey_enc, keystream, walk.iv);
298
crypto_inc(walk.iv, SM4_BLOCK_SIZE);
299
crypto_xor_cpy(dst, src, keystream, nbytes);
300
nbytes = 0;
301
}
302
}
303
304
err = skcipher_walk_done(&walk, nbytes);
305
}
306
307
return err;
308
}
309
310
static int sm4_xts_crypt(struct skcipher_request *req, bool encrypt)
311
{
312
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
313
struct sm4_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
314
int tail = req->cryptlen % SM4_BLOCK_SIZE;
315
const u32 *rkey2_enc = ctx->key2.rkey_enc;
316
struct scatterlist sg_src[2], sg_dst[2];
317
struct skcipher_request subreq;
318
struct scatterlist *src, *dst;
319
struct skcipher_walk walk;
320
unsigned int nbytes;
321
int err;
322
323
if (req->cryptlen < SM4_BLOCK_SIZE)
324
return -EINVAL;
325
326
err = skcipher_walk_virt(&walk, req, false);
327
if (err)
328
return err;
329
330
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
331
int nblocks = DIV_ROUND_UP(req->cryptlen, SM4_BLOCK_SIZE) - 2;
332
333
skcipher_walk_abort(&walk);
334
335
skcipher_request_set_tfm(&subreq, tfm);
336
skcipher_request_set_callback(&subreq,
337
skcipher_request_flags(req),
338
NULL, NULL);
339
skcipher_request_set_crypt(&subreq, req->src, req->dst,
340
nblocks * SM4_BLOCK_SIZE, req->iv);
341
342
err = skcipher_walk_virt(&walk, &subreq, false);
343
if (err)
344
return err;
345
} else {
346
tail = 0;
347
}
348
349
scoped_ksimd() {
350
while ((nbytes = walk.nbytes) >= SM4_BLOCK_SIZE) {
351
if (nbytes < walk.total)
352
nbytes &= ~(SM4_BLOCK_SIZE - 1);
353
354
if (encrypt)
355
sm4_ce_xts_enc(ctx->key1.rkey_enc, walk.dst.virt.addr,
356
walk.src.virt.addr, walk.iv, nbytes,
357
rkey2_enc);
358
else
359
sm4_ce_xts_dec(ctx->key1.rkey_dec, walk.dst.virt.addr,
360
walk.src.virt.addr, walk.iv, nbytes,
361
rkey2_enc);
362
363
rkey2_enc = NULL;
364
365
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
366
if (err)
367
return err;
368
}
369
370
if (likely(tail == 0))
371
return 0;
372
373
/* handle ciphertext stealing */
374
375
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
376
if (req->dst != req->src)
377
dst = scatterwalk_ffwd(sg_dst, req->dst, subreq.cryptlen);
378
379
skcipher_request_set_crypt(&subreq, src, dst,
380
SM4_BLOCK_SIZE + tail, req->iv);
381
382
err = skcipher_walk_virt(&walk, &subreq, false);
383
if (err)
384
return err;
385
386
if (encrypt)
387
sm4_ce_xts_enc(ctx->key1.rkey_enc, walk.dst.virt.addr,
388
walk.src.virt.addr, walk.iv, walk.nbytes,
389
rkey2_enc);
390
else
391
sm4_ce_xts_dec(ctx->key1.rkey_dec, walk.dst.virt.addr,
392
walk.src.virt.addr, walk.iv, walk.nbytes,
393
rkey2_enc);
394
}
395
396
return skcipher_walk_done(&walk, 0);
397
}
398
399
static int sm4_xts_encrypt(struct skcipher_request *req)
400
{
401
return sm4_xts_crypt(req, true);
402
}
403
404
static int sm4_xts_decrypt(struct skcipher_request *req)
405
{
406
return sm4_xts_crypt(req, false);
407
}
408
409
static struct skcipher_alg sm4_algs[] = {
410
{
411
.base = {
412
.cra_name = "ecb(sm4)",
413
.cra_driver_name = "ecb-sm4-ce",
414
.cra_priority = 400,
415
.cra_blocksize = SM4_BLOCK_SIZE,
416
.cra_ctxsize = sizeof(struct sm4_ctx),
417
.cra_module = THIS_MODULE,
418
},
419
.min_keysize = SM4_KEY_SIZE,
420
.max_keysize = SM4_KEY_SIZE,
421
.setkey = sm4_setkey,
422
.encrypt = sm4_ecb_encrypt,
423
.decrypt = sm4_ecb_decrypt,
424
}, {
425
.base = {
426
.cra_name = "cbc(sm4)",
427
.cra_driver_name = "cbc-sm4-ce",
428
.cra_priority = 400,
429
.cra_blocksize = SM4_BLOCK_SIZE,
430
.cra_ctxsize = sizeof(struct sm4_ctx),
431
.cra_module = THIS_MODULE,
432
},
433
.min_keysize = SM4_KEY_SIZE,
434
.max_keysize = SM4_KEY_SIZE,
435
.ivsize = SM4_BLOCK_SIZE,
436
.setkey = sm4_setkey,
437
.encrypt = sm4_cbc_encrypt,
438
.decrypt = sm4_cbc_decrypt,
439
}, {
440
.base = {
441
.cra_name = "ctr(sm4)",
442
.cra_driver_name = "ctr-sm4-ce",
443
.cra_priority = 400,
444
.cra_blocksize = 1,
445
.cra_ctxsize = sizeof(struct sm4_ctx),
446
.cra_module = THIS_MODULE,
447
},
448
.min_keysize = SM4_KEY_SIZE,
449
.max_keysize = SM4_KEY_SIZE,
450
.ivsize = SM4_BLOCK_SIZE,
451
.chunksize = SM4_BLOCK_SIZE,
452
.setkey = sm4_setkey,
453
.encrypt = sm4_ctr_crypt,
454
.decrypt = sm4_ctr_crypt,
455
}, {
456
.base = {
457
.cra_name = "cts(cbc(sm4))",
458
.cra_driver_name = "cts-cbc-sm4-ce",
459
.cra_priority = 400,
460
.cra_blocksize = SM4_BLOCK_SIZE,
461
.cra_ctxsize = sizeof(struct sm4_ctx),
462
.cra_module = THIS_MODULE,
463
},
464
.min_keysize = SM4_KEY_SIZE,
465
.max_keysize = SM4_KEY_SIZE,
466
.ivsize = SM4_BLOCK_SIZE,
467
.walksize = SM4_BLOCK_SIZE * 2,
468
.setkey = sm4_setkey,
469
.encrypt = sm4_cbc_cts_encrypt,
470
.decrypt = sm4_cbc_cts_decrypt,
471
}, {
472
.base = {
473
.cra_name = "xts(sm4)",
474
.cra_driver_name = "xts-sm4-ce",
475
.cra_priority = 400,
476
.cra_blocksize = SM4_BLOCK_SIZE,
477
.cra_ctxsize = sizeof(struct sm4_xts_ctx),
478
.cra_module = THIS_MODULE,
479
},
480
.min_keysize = SM4_KEY_SIZE * 2,
481
.max_keysize = SM4_KEY_SIZE * 2,
482
.ivsize = SM4_BLOCK_SIZE,
483
.walksize = SM4_BLOCK_SIZE * 2,
484
.setkey = sm4_xts_setkey,
485
.encrypt = sm4_xts_encrypt,
486
.decrypt = sm4_xts_decrypt,
487
}
488
};
489
490
static int sm4_cbcmac_setkey(struct crypto_shash *tfm, const u8 *key,
491
unsigned int key_len)
492
{
493
struct sm4_mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
494
495
if (key_len != SM4_KEY_SIZE)
496
return -EINVAL;
497
498
scoped_ksimd()
499
sm4_ce_expand_key(key, ctx->key.rkey_enc, ctx->key.rkey_dec,
500
crypto_sm4_fk, crypto_sm4_ck);
501
return 0;
502
}
503
504
static int sm4_cmac_setkey(struct crypto_shash *tfm, const u8 *key,
505
unsigned int key_len)
506
{
507
struct sm4_mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
508
be128 *consts = (be128 *)ctx->consts;
509
u64 a, b;
510
511
if (key_len != SM4_KEY_SIZE)
512
return -EINVAL;
513
514
memset(consts, 0, SM4_BLOCK_SIZE);
515
516
scoped_ksimd() {
517
sm4_ce_expand_key(key, ctx->key.rkey_enc, ctx->key.rkey_dec,
518
crypto_sm4_fk, crypto_sm4_ck);
519
520
/* encrypt the zero block */
521
sm4_ce_crypt_block(ctx->key.rkey_enc, (u8 *)consts, (const u8 *)consts);
522
}
523
524
/* gf(2^128) multiply zero-ciphertext with u and u^2 */
525
a = be64_to_cpu(consts[0].a);
526
b = be64_to_cpu(consts[0].b);
527
consts[0].a = cpu_to_be64((a << 1) | (b >> 63));
528
consts[0].b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
529
530
a = be64_to_cpu(consts[0].a);
531
b = be64_to_cpu(consts[0].b);
532
consts[1].a = cpu_to_be64((a << 1) | (b >> 63));
533
consts[1].b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
534
535
return 0;
536
}
537
538
static int sm4_xcbc_setkey(struct crypto_shash *tfm, const u8 *key,
539
unsigned int key_len)
540
{
541
struct sm4_mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
542
u8 __aligned(8) key2[SM4_BLOCK_SIZE];
543
static u8 const ks[3][SM4_BLOCK_SIZE] = {
544
{ [0 ... SM4_BLOCK_SIZE - 1] = 0x1},
545
{ [0 ... SM4_BLOCK_SIZE - 1] = 0x2},
546
{ [0 ... SM4_BLOCK_SIZE - 1] = 0x3},
547
};
548
549
if (key_len != SM4_KEY_SIZE)
550
return -EINVAL;
551
552
scoped_ksimd() {
553
sm4_ce_expand_key(key, ctx->key.rkey_enc, ctx->key.rkey_dec,
554
crypto_sm4_fk, crypto_sm4_ck);
555
556
sm4_ce_crypt_block(ctx->key.rkey_enc, key2, ks[0]);
557
sm4_ce_crypt(ctx->key.rkey_enc, ctx->consts, ks[1], 2);
558
559
sm4_ce_expand_key(key2, ctx->key.rkey_enc, ctx->key.rkey_dec,
560
crypto_sm4_fk, crypto_sm4_ck);
561
}
562
563
return 0;
564
}
565
566
static int sm4_mac_init(struct shash_desc *desc)
567
{
568
struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc);
569
570
memset(ctx->digest, 0, SM4_BLOCK_SIZE);
571
return 0;
572
}
573
574
static int sm4_mac_update(struct shash_desc *desc, const u8 *p,
575
unsigned int len)
576
{
577
struct sm4_mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
578
struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc);
579
unsigned int nblocks = len / SM4_BLOCK_SIZE;
580
581
len %= SM4_BLOCK_SIZE;
582
scoped_ksimd()
583
sm4_ce_mac_update(tctx->key.rkey_enc, ctx->digest, p,
584
nblocks, false, true);
585
return len;
586
}
587
588
static int sm4_cmac_finup(struct shash_desc *desc, const u8 *src,
589
unsigned int len, u8 *out)
590
{
591
struct sm4_mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
592
struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc);
593
const u8 *consts = tctx->consts;
594
595
crypto_xor(ctx->digest, src, len);
596
if (len != SM4_BLOCK_SIZE) {
597
ctx->digest[len] ^= 0x80;
598
consts += SM4_BLOCK_SIZE;
599
}
600
scoped_ksimd()
601
sm4_ce_mac_update(tctx->key.rkey_enc, ctx->digest, consts, 1,
602
false, true);
603
memcpy(out, ctx->digest, SM4_BLOCK_SIZE);
604
return 0;
605
}
606
607
static int sm4_cbcmac_finup(struct shash_desc *desc, const u8 *src,
608
unsigned int len, u8 *out)
609
{
610
struct sm4_mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
611
struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc);
612
613
if (len) {
614
crypto_xor(ctx->digest, src, len);
615
scoped_ksimd()
616
sm4_ce_crypt_block(tctx->key.rkey_enc, ctx->digest,
617
ctx->digest);
618
}
619
memcpy(out, ctx->digest, SM4_BLOCK_SIZE);
620
return 0;
621
}
622
623
static struct shash_alg sm4_mac_algs[] = {
624
{
625
.base = {
626
.cra_name = "cmac(sm4)",
627
.cra_driver_name = "cmac-sm4-ce",
628
.cra_priority = 400,
629
.cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY |
630
CRYPTO_AHASH_ALG_FINAL_NONZERO,
631
.cra_blocksize = SM4_BLOCK_SIZE,
632
.cra_ctxsize = sizeof(struct sm4_mac_tfm_ctx)
633
+ SM4_BLOCK_SIZE * 2,
634
.cra_module = THIS_MODULE,
635
},
636
.digestsize = SM4_BLOCK_SIZE,
637
.init = sm4_mac_init,
638
.update = sm4_mac_update,
639
.finup = sm4_cmac_finup,
640
.setkey = sm4_cmac_setkey,
641
.descsize = sizeof(struct sm4_mac_desc_ctx),
642
}, {
643
.base = {
644
.cra_name = "xcbc(sm4)",
645
.cra_driver_name = "xcbc-sm4-ce",
646
.cra_priority = 400,
647
.cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY |
648
CRYPTO_AHASH_ALG_FINAL_NONZERO,
649
.cra_blocksize = SM4_BLOCK_SIZE,
650
.cra_ctxsize = sizeof(struct sm4_mac_tfm_ctx)
651
+ SM4_BLOCK_SIZE * 2,
652
.cra_module = THIS_MODULE,
653
},
654
.digestsize = SM4_BLOCK_SIZE,
655
.init = sm4_mac_init,
656
.update = sm4_mac_update,
657
.finup = sm4_cmac_finup,
658
.setkey = sm4_xcbc_setkey,
659
.descsize = sizeof(struct sm4_mac_desc_ctx),
660
}, {
661
.base = {
662
.cra_name = "cbcmac(sm4)",
663
.cra_driver_name = "cbcmac-sm4-ce",
664
.cra_priority = 400,
665
.cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY,
666
.cra_blocksize = SM4_BLOCK_SIZE,
667
.cra_ctxsize = sizeof(struct sm4_mac_tfm_ctx),
668
.cra_module = THIS_MODULE,
669
},
670
.digestsize = SM4_BLOCK_SIZE,
671
.init = sm4_mac_init,
672
.update = sm4_mac_update,
673
.finup = sm4_cbcmac_finup,
674
.setkey = sm4_cbcmac_setkey,
675
.descsize = sizeof(struct sm4_mac_desc_ctx),
676
}
677
};
678
679
static int __init sm4_init(void)
680
{
681
int err;
682
683
err = crypto_register_skciphers(sm4_algs, ARRAY_SIZE(sm4_algs));
684
if (err)
685
return err;
686
687
err = crypto_register_shashes(sm4_mac_algs, ARRAY_SIZE(sm4_mac_algs));
688
if (err)
689
goto out_err;
690
691
return 0;
692
693
out_err:
694
crypto_unregister_skciphers(sm4_algs, ARRAY_SIZE(sm4_algs));
695
return err;
696
}
697
698
static void __exit sm4_exit(void)
699
{
700
crypto_unregister_shashes(sm4_mac_algs, ARRAY_SIZE(sm4_mac_algs));
701
crypto_unregister_skciphers(sm4_algs, ARRAY_SIZE(sm4_algs));
702
}
703
704
module_cpu_feature_match(SM4, sm4_init);
705
module_exit(sm4_exit);
706
707
MODULE_DESCRIPTION("SM4 ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
708
MODULE_ALIAS_CRYPTO("sm4-ce");
709
MODULE_ALIAS_CRYPTO("sm4");
710
MODULE_ALIAS_CRYPTO("ecb(sm4)");
711
MODULE_ALIAS_CRYPTO("cbc(sm4)");
712
MODULE_ALIAS_CRYPTO("ctr(sm4)");
713
MODULE_ALIAS_CRYPTO("cts(cbc(sm4))");
714
MODULE_ALIAS_CRYPTO("xts(sm4)");
715
MODULE_ALIAS_CRYPTO("cmac(sm4)");
716
MODULE_ALIAS_CRYPTO("xcbc(sm4)");
717
MODULE_ALIAS_CRYPTO("cbcmac(sm4)");
718
MODULE_AUTHOR("Tianjia Zhang <[email protected]>");
719
MODULE_LICENSE("GPL v2");
720
721