Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kernel/cpufeature.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Contains CPU feature definitions
4
*
5
* Copyright (C) 2015 ARM Ltd.
6
*
7
* A note for the weary kernel hacker: the code here is confusing and hard to
8
* follow! That's partly because it's solving a nasty problem, but also because
9
* there's a little bit of over-abstraction that tends to obscure what's going
10
* on behind a maze of helper functions and macros.
11
*
12
* The basic problem is that hardware folks have started gluing together CPUs
13
* with distinct architectural features; in some cases even creating SoCs where
14
* user-visible instructions are available only on a subset of the available
15
* cores. We try to address this by snapshotting the feature registers of the
16
* boot CPU and comparing these with the feature registers of each secondary
17
* CPU when bringing them up. If there is a mismatch, then we update the
18
* snapshot state to indicate the lowest-common denominator of the feature,
19
* known as the "safe" value. This snapshot state can be queried to view the
20
* "sanitised" value of a feature register.
21
*
22
* The sanitised register values are used to decide which capabilities we
23
* have in the system. These may be in the form of traditional "hwcaps"
24
* advertised to userspace or internal "cpucaps" which are used to configure
25
* things like alternative patching and static keys. While a feature mismatch
26
* may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27
* may prevent a CPU from being onlined at all.
28
*
29
* Some implementation details worth remembering:
30
*
31
* - Mismatched features are *always* sanitised to a "safe" value, which
32
* usually indicates that the feature is not supported.
33
*
34
* - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35
* warning when onlining an offending CPU and the kernel will be tainted
36
* with TAINT_CPU_OUT_OF_SPEC.
37
*
38
* - Features marked as FTR_VISIBLE have their sanitised value visible to
39
* userspace. FTR_VISIBLE features in registers that are only visible
40
* to EL0 by trapping *must* have a corresponding HWCAP so that late
41
* onlining of CPUs cannot lead to features disappearing at runtime.
42
*
43
* - A "feature" is typically a 4-bit register field. A "capability" is the
44
* high-level description derived from the sanitised field value.
45
*
46
* - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47
* scheme for fields in ID registers") to understand when feature fields
48
* may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49
*
50
* - KVM exposes its own view of the feature registers to guest operating
51
* systems regardless of FTR_VISIBLE. This is typically driven from the
52
* sanitised register values to allow virtual CPUs to be migrated between
53
* arbitrary physical CPUs, but some features not present on the host are
54
* also advertised and emulated. Look at sys_reg_descs[] for the gory
55
* details.
56
*
57
* - If the arm64_ftr_bits[] for a register has a missing field, then this
58
* field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59
* This is stronger than FTR_HIDDEN and can be used to hide features from
60
* KVM guests.
61
*/
62
63
#define pr_fmt(fmt) "CPU features: " fmt
64
65
#include <linux/bsearch.h>
66
#include <linux/cpumask.h>
67
#include <linux/crash_dump.h>
68
#include <linux/kstrtox.h>
69
#include <linux/sort.h>
70
#include <linux/stop_machine.h>
71
#include <linux/sysfs.h>
72
#include <linux/types.h>
73
#include <linux/minmax.h>
74
#include <linux/mm.h>
75
#include <linux/cpu.h>
76
#include <linux/kasan.h>
77
#include <linux/percpu.h>
78
#include <linux/sched/isolation.h>
79
80
#include <asm/cpu.h>
81
#include <asm/cpufeature.h>
82
#include <asm/cpu_ops.h>
83
#include <asm/fpsimd.h>
84
#include <asm/hwcap.h>
85
#include <asm/insn.h>
86
#include <asm/kvm_host.h>
87
#include <asm/mmu.h>
88
#include <asm/mmu_context.h>
89
#include <asm/mte.h>
90
#include <asm/hypervisor.h>
91
#include <asm/processor.h>
92
#include <asm/smp.h>
93
#include <asm/sysreg.h>
94
#include <asm/traps.h>
95
#include <asm/vectors.h>
96
#include <asm/virt.h>
97
98
/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
99
static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
100
101
#ifdef CONFIG_COMPAT
102
#define COMPAT_ELF_HWCAP_DEFAULT \
103
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
104
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
105
COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
106
COMPAT_HWCAP_LPAE)
107
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
108
unsigned int compat_elf_hwcap2 __read_mostly;
109
unsigned int compat_elf_hwcap3 __read_mostly;
110
#endif
111
112
DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
113
EXPORT_SYMBOL(system_cpucaps);
114
static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
115
116
DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
117
118
/*
119
* arm64_use_ng_mappings must be placed in the .data section, otherwise it
120
* ends up in the .bss section where it is initialized in early_map_kernel()
121
* after the MMU (with the idmap) was enabled. create_init_idmap() - which
122
* runs before early_map_kernel() and reads the variable via PTE_MAYBE_NG -
123
* may end up generating an incorrect idmap page table attributes.
124
*/
125
bool arm64_use_ng_mappings __read_mostly = false;
126
EXPORT_SYMBOL(arm64_use_ng_mappings);
127
128
DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
129
130
/*
131
* Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
132
* support it?
133
*/
134
static bool __read_mostly allow_mismatched_32bit_el0;
135
136
/*
137
* Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
138
* seen at least one CPU capable of 32-bit EL0.
139
*/
140
DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
141
142
/*
143
* Mask of CPUs supporting 32-bit EL0.
144
* Only valid if arm64_mismatched_32bit_el0 is enabled.
145
*/
146
static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
147
148
void dump_cpu_features(void)
149
{
150
/* file-wide pr_fmt adds "CPU features: " prefix */
151
pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
152
}
153
154
#define __ARM64_MAX_POSITIVE(reg, field) \
155
((reg##_##field##_SIGNED ? \
156
BIT(reg##_##field##_WIDTH - 1) : \
157
BIT(reg##_##field##_WIDTH)) - 1)
158
159
#define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
160
161
#define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
162
.sys_reg = SYS_##reg, \
163
.field_pos = reg##_##field##_SHIFT, \
164
.field_width = reg##_##field##_WIDTH, \
165
.sign = reg##_##field##_SIGNED, \
166
.min_field_value = min_value, \
167
.max_field_value = max_value,
168
169
/*
170
* ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
171
* an implicit maximum that depends on the sign-ess of the field.
172
*
173
* An unsigned field will be capped at all ones, while a signed field
174
* will be limited to the positive half only.
175
*/
176
#define ARM64_CPUID_FIELDS(reg, field, min_value) \
177
__ARM64_CPUID_FIELDS(reg, field, \
178
SYS_FIELD_VALUE(reg, field, min_value), \
179
__ARM64_MAX_POSITIVE(reg, field))
180
181
/*
182
* ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
183
* implicit minimal value to max_value. This should be used when
184
* matching a non-implemented property.
185
*/
186
#define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
187
__ARM64_CPUID_FIELDS(reg, field, \
188
__ARM64_MIN_NEGATIVE(reg, field), \
189
SYS_FIELD_VALUE(reg, field, max_value))
190
191
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
192
{ \
193
.sign = SIGNED, \
194
.visible = VISIBLE, \
195
.strict = STRICT, \
196
.type = TYPE, \
197
.shift = SHIFT, \
198
.width = WIDTH, \
199
.safe_val = SAFE_VAL, \
200
}
201
202
/* Define a feature with unsigned values */
203
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
204
__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
205
206
/* Define a feature with a signed value */
207
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
208
__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
209
210
#define ARM64_FTR_END \
211
{ \
212
.width = 0, \
213
}
214
215
static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
216
217
static bool __system_matches_cap(unsigned int n);
218
219
/*
220
* NOTE: Any changes to the visibility of features should be kept in
221
* sync with the documentation of the CPU feature register ABI.
222
*/
223
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
224
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
225
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
226
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
227
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
228
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
229
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
230
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
231
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
232
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
233
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
234
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
235
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
236
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
237
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
238
ARM64_FTR_END,
239
};
240
241
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
242
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
243
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
244
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
245
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
246
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
247
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
248
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
249
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
250
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
251
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
252
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
253
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
254
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
255
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
256
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
257
FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
258
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
259
FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
260
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
261
ARM64_FTR_END,
262
};
263
264
static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
265
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
266
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
267
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
268
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
269
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
270
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
271
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
272
FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
273
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
274
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
275
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
276
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
277
ARM64_FTR_END,
278
};
279
280
static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
281
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FPRCVT_SHIFT, 4, 0),
282
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
283
ARM64_FTR_END,
284
};
285
286
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
287
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
288
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
289
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
290
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
291
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
292
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
293
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
294
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
295
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
296
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
297
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
298
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
299
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
300
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
301
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
302
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
303
ARM64_FTR_END,
304
};
305
306
static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
307
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_DF2_SHIFT, 4, 0),
308
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
309
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
310
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_frac_SHIFT, 4, 0),
311
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
313
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
314
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
315
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
316
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
317
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
318
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
319
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
320
ARM64_FTR_END,
321
};
322
323
static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
324
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
325
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTEFAR_SHIFT, 4, ID_AA64PFR2_EL1_MTEFAR_NI),
326
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTESTOREONLY_SHIFT, 4, ID_AA64PFR2_EL1_MTESTOREONLY_NI),
327
ARM64_FTR_END,
328
};
329
330
static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
331
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
332
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
333
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
334
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
335
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
336
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F16MM_SHIFT, 4, 0),
337
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
338
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
339
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
340
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
341
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
342
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
343
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
344
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
345
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
346
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
347
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
348
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
349
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
350
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_EltPerm_SHIFT, 4, 0),
351
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
352
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
353
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
354
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
355
ARM64_FTR_END,
356
};
357
358
static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
359
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
360
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
361
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
362
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
363
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
364
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
365
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
366
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
367
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
368
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
369
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
370
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
371
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
372
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
373
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
374
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
375
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
376
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
377
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
378
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
379
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
380
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
381
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
382
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
383
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
384
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
385
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
386
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
387
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
388
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
389
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
390
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
391
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
392
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
393
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
394
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
395
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
396
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SBitPerm_SHIFT, 1, 0),
397
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
398
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_AES_SHIFT, 1, 0),
399
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
400
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SFEXPA_SHIFT, 1, 0),
401
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
402
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_STMOP_SHIFT, 1, 0),
403
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
404
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMOP4_SHIFT, 1, 0),
405
ARM64_FTR_END,
406
};
407
408
static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
409
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
410
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
411
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
412
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
413
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM8_SHIFT, 1, 0),
414
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM4_SHIFT, 1, 0),
415
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
416
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
417
ARM64_FTR_END,
418
};
419
420
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
421
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
422
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
423
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
424
/*
425
* Page size not being supported at Stage-2 is not fatal. You
426
* just give up KVM if PAGE_SIZE isn't supported there. Go fix
427
* your favourite nesting hypervisor.
428
*
429
* There is a small corner case where the hypervisor explicitly
430
* advertises a given granule size at Stage-2 (value 2) on some
431
* vCPUs, and uses the fallback to Stage-1 (value 0) for other
432
* vCPUs. Although this is not forbidden by the architecture, it
433
* indicates that the hypervisor is being silly (or buggy).
434
*
435
* We make no effort to cope with this and pretend that if these
436
* fields are inconsistent across vCPUs, then it isn't worth
437
* trying to bring KVM up.
438
*/
439
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
440
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
441
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
442
/*
443
* We already refuse to boot CPUs that don't support our configured
444
* page size, so we can only detect mismatches for a page size other
445
* than the one we're currently using. Unfortunately, SoCs like this
446
* exist in the wild so, even though we don't like it, we'll have to go
447
* along with it and treat them as non-strict.
448
*/
449
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
450
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
451
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
452
453
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
454
/* Linux shouldn't care about secure memory */
455
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
456
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
457
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
458
/*
459
* Differing PARange is fine as long as all peripherals and memory are mapped
460
* within the minimum PARange of all CPUs
461
*/
462
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
463
ARM64_FTR_END,
464
};
465
466
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
467
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
468
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
469
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
470
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
471
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
472
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
473
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
474
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
475
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
476
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
477
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
478
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
479
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
480
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
481
ARM64_FTR_END,
482
};
483
484
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
485
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
486
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
487
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
488
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
489
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
490
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
491
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
492
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
493
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
494
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
495
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
496
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
497
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
498
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
499
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
500
ARM64_FTR_END,
501
};
502
503
static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
504
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
505
FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
506
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
507
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_SCTLRX_SHIFT, 4, 0),
508
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
509
ARM64_FTR_END,
510
};
511
512
static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
513
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
514
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_NV_frac_SHIFT, 4, 0),
515
ARM64_FTR_END,
516
};
517
518
static const struct arm64_ftr_bits ftr_ctr[] = {
519
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
520
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
521
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
522
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
523
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
524
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
525
/*
526
* Linux can handle differing I-cache policies. Userspace JITs will
527
* make use of *minLine.
528
* If we have differing I-cache policies, report it as the weakest - VIPT.
529
*/
530
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
531
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
532
ARM64_FTR_END,
533
};
534
535
static struct arm64_ftr_override __ro_after_init no_override = { };
536
537
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
538
.name = "SYS_CTR_EL0",
539
.ftr_bits = ftr_ctr,
540
.override = &no_override,
541
};
542
543
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
544
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
545
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
546
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
547
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
548
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
549
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
550
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
551
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
552
ARM64_FTR_END,
553
};
554
555
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
556
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
557
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
558
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
559
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
560
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
561
/*
562
* We can instantiate multiple PMU instances with different levels
563
* of support.
564
*/
565
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
566
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
567
ARM64_FTR_END,
568
};
569
570
static const struct arm64_ftr_bits ftr_mvfr0[] = {
571
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
572
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
573
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
574
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
575
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
576
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
577
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
578
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
579
ARM64_FTR_END,
580
};
581
582
static const struct arm64_ftr_bits ftr_mvfr1[] = {
583
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
584
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
585
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
586
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
587
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
588
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
589
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
590
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
591
ARM64_FTR_END,
592
};
593
594
static const struct arm64_ftr_bits ftr_mvfr2[] = {
595
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
596
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
597
ARM64_FTR_END,
598
};
599
600
static const struct arm64_ftr_bits ftr_dczid[] = {
601
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
602
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
603
ARM64_FTR_END,
604
};
605
606
static const struct arm64_ftr_bits ftr_gmid[] = {
607
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
608
ARM64_FTR_END,
609
};
610
611
static const struct arm64_ftr_bits ftr_id_isar0[] = {
612
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
613
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
614
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
615
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
616
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
617
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
618
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
619
ARM64_FTR_END,
620
};
621
622
static const struct arm64_ftr_bits ftr_id_isar5[] = {
623
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
624
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
625
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
626
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
627
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
628
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
629
ARM64_FTR_END,
630
};
631
632
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
633
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
634
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
635
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
636
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
637
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
638
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
639
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
640
641
/*
642
* SpecSEI = 1 indicates that the PE might generate an SError on an
643
* external abort on speculative read. It is safe to assume that an
644
* SError might be generated than it will not be. Hence it has been
645
* classified as FTR_HIGHER_SAFE.
646
*/
647
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
648
ARM64_FTR_END,
649
};
650
651
static const struct arm64_ftr_bits ftr_id_isar4[] = {
652
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
653
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
654
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
655
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
656
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
657
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
658
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
659
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
660
ARM64_FTR_END,
661
};
662
663
static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
664
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
665
ARM64_FTR_END,
666
};
667
668
static const struct arm64_ftr_bits ftr_id_isar6[] = {
669
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
670
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
671
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
672
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
673
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
674
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
675
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
676
ARM64_FTR_END,
677
};
678
679
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
680
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
681
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
682
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
683
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
684
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
685
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
686
ARM64_FTR_END,
687
};
688
689
static const struct arm64_ftr_bits ftr_id_pfr1[] = {
690
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
691
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
692
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
693
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
694
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
695
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
696
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
697
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
698
ARM64_FTR_END,
699
};
700
701
static const struct arm64_ftr_bits ftr_id_pfr2[] = {
702
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
703
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
704
ARM64_FTR_END,
705
};
706
707
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
708
/* [31:28] TraceFilt */
709
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
710
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
711
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
712
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
713
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
714
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
715
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
716
ARM64_FTR_END,
717
};
718
719
static const struct arm64_ftr_bits ftr_id_dfr1[] = {
720
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
721
ARM64_FTR_END,
722
};
723
724
static const struct arm64_ftr_bits ftr_mpamidr[] = {
725
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
726
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
727
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
728
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
729
ARM64_FTR_END,
730
};
731
732
/*
733
* Common ftr bits for a 32bit register with all hidden, strict
734
* attributes, with 4bit feature fields and a default safe value of
735
* 0. Covers the following 32bit registers:
736
* id_isar[1-3], id_mmfr[1-3]
737
*/
738
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
739
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
740
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
741
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
742
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
743
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
744
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
745
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
746
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
747
ARM64_FTR_END,
748
};
749
750
/* Table for a single 32bit feature value */
751
static const struct arm64_ftr_bits ftr_single32[] = {
752
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
753
ARM64_FTR_END,
754
};
755
756
static const struct arm64_ftr_bits ftr_raz[] = {
757
ARM64_FTR_END,
758
};
759
760
#define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
761
.sys_id = id, \
762
.reg = &(struct arm64_ftr_reg){ \
763
.name = id_str, \
764
.override = (ovr), \
765
.ftr_bits = &((table)[0]), \
766
}}
767
768
#define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
769
__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
770
771
#define ARM64_FTR_REG(id, table) \
772
__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
773
774
struct arm64_ftr_override __read_mostly id_aa64mmfr0_override;
775
struct arm64_ftr_override __read_mostly id_aa64mmfr1_override;
776
struct arm64_ftr_override __read_mostly id_aa64mmfr2_override;
777
struct arm64_ftr_override __read_mostly id_aa64pfr0_override;
778
struct arm64_ftr_override __read_mostly id_aa64pfr1_override;
779
struct arm64_ftr_override __read_mostly id_aa64zfr0_override;
780
struct arm64_ftr_override __read_mostly id_aa64smfr0_override;
781
struct arm64_ftr_override __read_mostly id_aa64isar1_override;
782
struct arm64_ftr_override __read_mostly id_aa64isar2_override;
783
784
struct arm64_ftr_override __read_mostly arm64_sw_feature_override;
785
786
static const struct __ftr_reg_entry {
787
u32 sys_id;
788
struct arm64_ftr_reg *reg;
789
} arm64_ftr_regs[] = {
790
791
/* Op1 = 0, CRn = 0, CRm = 1 */
792
ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
793
ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
794
ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
795
ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
796
ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
797
ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
798
ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
799
800
/* Op1 = 0, CRn = 0, CRm = 2 */
801
ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
802
ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
803
ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
804
ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
805
ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
806
ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
807
ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
808
ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
809
810
/* Op1 = 0, CRn = 0, CRm = 3 */
811
ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
812
ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
813
ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
814
ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
815
ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
816
ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
817
818
/* Op1 = 0, CRn = 0, CRm = 4 */
819
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
820
&id_aa64pfr0_override),
821
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
822
&id_aa64pfr1_override),
823
ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
824
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
825
&id_aa64zfr0_override),
826
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
827
&id_aa64smfr0_override),
828
ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
829
830
/* Op1 = 0, CRn = 0, CRm = 5 */
831
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
832
ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
833
834
/* Op1 = 0, CRn = 0, CRm = 6 */
835
ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
836
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
837
&id_aa64isar1_override),
838
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
839
&id_aa64isar2_override),
840
ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
841
842
/* Op1 = 0, CRn = 0, CRm = 7 */
843
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
844
&id_aa64mmfr0_override),
845
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
846
&id_aa64mmfr1_override),
847
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
848
&id_aa64mmfr2_override),
849
ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
850
ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
851
852
/* Op1 = 0, CRn = 10, CRm = 4 */
853
ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
854
855
/* Op1 = 1, CRn = 0, CRm = 0 */
856
ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
857
858
/* Op1 = 3, CRn = 0, CRm = 0 */
859
{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
860
ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
861
862
/* Op1 = 3, CRn = 14, CRm = 0 */
863
ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
864
};
865
866
static int search_cmp_ftr_reg(const void *id, const void *regp)
867
{
868
return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
869
}
870
871
/*
872
* get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
873
* its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
874
* ascending order of sys_id, we use binary search to find a matching
875
* entry.
876
*
877
* returns - Upon success, matching ftr_reg entry for id.
878
* - NULL on failure. It is upto the caller to decide
879
* the impact of a failure.
880
*/
881
static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
882
{
883
const struct __ftr_reg_entry *ret;
884
885
ret = bsearch((const void *)(unsigned long)sys_id,
886
arm64_ftr_regs,
887
ARRAY_SIZE(arm64_ftr_regs),
888
sizeof(arm64_ftr_regs[0]),
889
search_cmp_ftr_reg);
890
if (ret)
891
return ret->reg;
892
return NULL;
893
}
894
895
/*
896
* get_arm64_ftr_reg - Looks up a feature register entry using
897
* its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
898
*
899
* returns - Upon success, matching ftr_reg entry for id.
900
* - NULL on failure but with an WARN_ON().
901
*/
902
struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
903
{
904
struct arm64_ftr_reg *reg;
905
906
reg = get_arm64_ftr_reg_nowarn(sys_id);
907
908
/*
909
* Requesting a non-existent register search is an error. Warn
910
* and let the caller handle it.
911
*/
912
WARN_ON(!reg);
913
return reg;
914
}
915
916
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
917
s64 ftr_val)
918
{
919
u64 mask = arm64_ftr_mask(ftrp);
920
921
reg &= ~mask;
922
reg |= (ftr_val << ftrp->shift) & mask;
923
return reg;
924
}
925
926
s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
927
s64 cur)
928
{
929
s64 ret = 0;
930
931
switch (ftrp->type) {
932
case FTR_EXACT:
933
ret = ftrp->safe_val;
934
break;
935
case FTR_LOWER_SAFE:
936
ret = min(new, cur);
937
break;
938
case FTR_HIGHER_OR_ZERO_SAFE:
939
if (!cur || !new)
940
break;
941
fallthrough;
942
case FTR_HIGHER_SAFE:
943
ret = max(new, cur);
944
break;
945
default:
946
BUG();
947
}
948
949
return ret;
950
}
951
952
static void __init sort_ftr_regs(void)
953
{
954
unsigned int i;
955
956
for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
957
const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
958
const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
959
unsigned int j = 0;
960
961
/*
962
* Features here must be sorted in descending order with respect
963
* to their shift values and should not overlap with each other.
964
*/
965
for (; ftr_bits->width != 0; ftr_bits++, j++) {
966
unsigned int width = ftr_reg->ftr_bits[j].width;
967
unsigned int shift = ftr_reg->ftr_bits[j].shift;
968
unsigned int prev_shift;
969
970
WARN((shift + width) > 64,
971
"%s has invalid feature at shift %d\n",
972
ftr_reg->name, shift);
973
974
/*
975
* Skip the first feature. There is nothing to
976
* compare against for now.
977
*/
978
if (j == 0)
979
continue;
980
981
prev_shift = ftr_reg->ftr_bits[j - 1].shift;
982
WARN((shift + width) > prev_shift,
983
"%s has feature overlap at shift %d\n",
984
ftr_reg->name, shift);
985
}
986
987
/*
988
* Skip the first register. There is nothing to
989
* compare against for now.
990
*/
991
if (i == 0)
992
continue;
993
/*
994
* Registers here must be sorted in ascending order with respect
995
* to sys_id for subsequent binary search in get_arm64_ftr_reg()
996
* to work correctly.
997
*/
998
BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
999
}
1000
}
1001
1002
/*
1003
* Initialise the CPU feature register from Boot CPU values.
1004
* Also initiliases the strict_mask for the register.
1005
* Any bits that are not covered by an arm64_ftr_bits entry are considered
1006
* RES0 for the system-wide value, and must strictly match.
1007
*/
1008
static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
1009
{
1010
u64 val = 0;
1011
u64 strict_mask = ~0x0ULL;
1012
u64 user_mask = 0;
1013
u64 valid_mask = 0;
1014
1015
const struct arm64_ftr_bits *ftrp;
1016
struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
1017
1018
if (!reg)
1019
return;
1020
1021
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1022
u64 ftr_mask = arm64_ftr_mask(ftrp);
1023
s64 ftr_new = arm64_ftr_value(ftrp, new);
1024
s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
1025
1026
if ((ftr_mask & reg->override->mask) == ftr_mask) {
1027
s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
1028
char *str = NULL;
1029
1030
if (ftr_ovr != tmp) {
1031
/* Unsafe, remove the override */
1032
reg->override->mask &= ~ftr_mask;
1033
reg->override->val &= ~ftr_mask;
1034
tmp = ftr_ovr;
1035
str = "ignoring override";
1036
} else if (ftr_new != tmp) {
1037
/* Override was valid */
1038
ftr_new = tmp;
1039
str = "forced";
1040
} else {
1041
/* Override was the safe value */
1042
str = "already set";
1043
}
1044
1045
pr_warn("%s[%d:%d]: %s to %llx\n",
1046
reg->name,
1047
ftrp->shift + ftrp->width - 1,
1048
ftrp->shift, str,
1049
tmp & (BIT(ftrp->width) - 1));
1050
} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1051
reg->override->val &= ~ftr_mask;
1052
pr_warn("%s[%d:%d]: impossible override, ignored\n",
1053
reg->name,
1054
ftrp->shift + ftrp->width - 1,
1055
ftrp->shift);
1056
}
1057
1058
val = arm64_ftr_set_value(ftrp, val, ftr_new);
1059
1060
valid_mask |= ftr_mask;
1061
if (!ftrp->strict)
1062
strict_mask &= ~ftr_mask;
1063
if (ftrp->visible)
1064
user_mask |= ftr_mask;
1065
else
1066
reg->user_val = arm64_ftr_set_value(ftrp,
1067
reg->user_val,
1068
ftrp->safe_val);
1069
}
1070
1071
val &= valid_mask;
1072
1073
reg->sys_val = val;
1074
reg->strict_mask = strict_mask;
1075
reg->user_mask = user_mask;
1076
}
1077
1078
extern const struct arm64_cpu_capabilities arm64_errata[];
1079
static const struct arm64_cpu_capabilities arm64_features[];
1080
1081
static void __init
1082
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1083
{
1084
for (; caps->matches; caps++) {
1085
if (WARN(caps->capability >= ARM64_NCAPS,
1086
"Invalid capability %d\n", caps->capability))
1087
continue;
1088
if (WARN(cpucap_ptrs[caps->capability],
1089
"Duplicate entry for capability %d\n",
1090
caps->capability))
1091
continue;
1092
cpucap_ptrs[caps->capability] = caps;
1093
}
1094
}
1095
1096
static void __init init_cpucap_indirect_list(void)
1097
{
1098
init_cpucap_indirect_list_from_array(arm64_features);
1099
init_cpucap_indirect_list_from_array(arm64_errata);
1100
}
1101
1102
static void __init setup_boot_cpu_capabilities(void);
1103
1104
static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1105
{
1106
init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1107
init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1108
init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1109
init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1110
init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1111
init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1112
init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1113
init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1114
init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1115
init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1116
init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1117
init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1118
init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1119
init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1120
init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1121
init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1122
init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1123
init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1124
init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1125
init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1126
init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1127
}
1128
1129
#ifdef CONFIG_ARM64_PSEUDO_NMI
1130
static bool enable_pseudo_nmi;
1131
1132
static int __init early_enable_pseudo_nmi(char *p)
1133
{
1134
return kstrtobool(p, &enable_pseudo_nmi);
1135
}
1136
early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1137
1138
static __init void detect_system_supports_pseudo_nmi(void)
1139
{
1140
struct device_node *np;
1141
1142
if (!enable_pseudo_nmi)
1143
return;
1144
1145
/*
1146
* Detect broken MediaTek firmware that doesn't properly save and
1147
* restore GIC priorities.
1148
*/
1149
np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1150
if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1151
pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1152
enable_pseudo_nmi = false;
1153
}
1154
of_node_put(np);
1155
}
1156
#else /* CONFIG_ARM64_PSEUDO_NMI */
1157
static inline void detect_system_supports_pseudo_nmi(void) { }
1158
#endif
1159
1160
void __init init_cpu_features(struct cpuinfo_arm64 *info)
1161
{
1162
/* Before we start using the tables, make sure it is sorted */
1163
sort_ftr_regs();
1164
1165
init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1166
init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1167
init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1168
init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1169
init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1170
init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1171
init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1172
init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1173
init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1174
init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1175
init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1176
init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1177
init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1178
init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1179
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1180
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1181
init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1182
init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1183
init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1184
init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1185
1186
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1187
init_32bit_cpu_features(&info->aarch32);
1188
1189
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1190
id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1191
unsigned long cpacr = cpacr_save_enable_kernel_sve();
1192
1193
vec_init_vq_map(ARM64_VEC_SVE);
1194
1195
cpacr_restore(cpacr);
1196
}
1197
1198
if (IS_ENABLED(CONFIG_ARM64_SME) &&
1199
id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1200
unsigned long cpacr = cpacr_save_enable_kernel_sme();
1201
1202
vec_init_vq_map(ARM64_VEC_SME);
1203
1204
cpacr_restore(cpacr);
1205
}
1206
1207
if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1208
info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1209
init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1210
}
1211
1212
if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1213
init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1214
}
1215
1216
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1217
{
1218
const struct arm64_ftr_bits *ftrp;
1219
1220
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1221
s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1222
s64 ftr_new = arm64_ftr_value(ftrp, new);
1223
1224
if (ftr_cur == ftr_new)
1225
continue;
1226
/* Find a safe value */
1227
ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1228
reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1229
}
1230
1231
}
1232
1233
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1234
{
1235
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1236
1237
if (!regp)
1238
return 0;
1239
1240
update_cpu_ftr_reg(regp, val);
1241
if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1242
return 0;
1243
pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1244
regp->name, boot, cpu, val);
1245
return 1;
1246
}
1247
1248
static void relax_cpu_ftr_reg(u32 sys_id, int field)
1249
{
1250
const struct arm64_ftr_bits *ftrp;
1251
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1252
1253
if (!regp)
1254
return;
1255
1256
for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1257
if (ftrp->shift == field) {
1258
regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1259
break;
1260
}
1261
}
1262
1263
/* Bogus field? */
1264
WARN_ON(!ftrp->width);
1265
}
1266
1267
static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1268
struct cpuinfo_arm64 *boot)
1269
{
1270
static bool boot_cpu_32bit_regs_overridden = false;
1271
1272
if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1273
return;
1274
1275
if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1276
return;
1277
1278
boot->aarch32 = info->aarch32;
1279
init_32bit_cpu_features(&boot->aarch32);
1280
boot_cpu_32bit_regs_overridden = true;
1281
}
1282
1283
static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1284
struct cpuinfo_32bit *boot)
1285
{
1286
int taint = 0;
1287
u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1288
1289
/*
1290
* If we don't have AArch32 at EL1, then relax the strictness of
1291
* EL1-dependent register fields to avoid spurious sanity check fails.
1292
*/
1293
if (!id_aa64pfr0_32bit_el1(pfr0)) {
1294
relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1295
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1296
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1297
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1298
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1299
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1300
}
1301
1302
taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1303
info->reg_id_dfr0, boot->reg_id_dfr0);
1304
taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1305
info->reg_id_dfr1, boot->reg_id_dfr1);
1306
taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1307
info->reg_id_isar0, boot->reg_id_isar0);
1308
taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1309
info->reg_id_isar1, boot->reg_id_isar1);
1310
taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1311
info->reg_id_isar2, boot->reg_id_isar2);
1312
taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1313
info->reg_id_isar3, boot->reg_id_isar3);
1314
taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1315
info->reg_id_isar4, boot->reg_id_isar4);
1316
taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1317
info->reg_id_isar5, boot->reg_id_isar5);
1318
taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1319
info->reg_id_isar6, boot->reg_id_isar6);
1320
1321
/*
1322
* Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1323
* ACTLR formats could differ across CPUs and therefore would have to
1324
* be trapped for virtualization anyway.
1325
*/
1326
taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1327
info->reg_id_mmfr0, boot->reg_id_mmfr0);
1328
taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1329
info->reg_id_mmfr1, boot->reg_id_mmfr1);
1330
taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1331
info->reg_id_mmfr2, boot->reg_id_mmfr2);
1332
taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1333
info->reg_id_mmfr3, boot->reg_id_mmfr3);
1334
taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1335
info->reg_id_mmfr4, boot->reg_id_mmfr4);
1336
taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1337
info->reg_id_mmfr5, boot->reg_id_mmfr5);
1338
taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1339
info->reg_id_pfr0, boot->reg_id_pfr0);
1340
taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1341
info->reg_id_pfr1, boot->reg_id_pfr1);
1342
taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1343
info->reg_id_pfr2, boot->reg_id_pfr2);
1344
taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1345
info->reg_mvfr0, boot->reg_mvfr0);
1346
taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1347
info->reg_mvfr1, boot->reg_mvfr1);
1348
taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1349
info->reg_mvfr2, boot->reg_mvfr2);
1350
1351
return taint;
1352
}
1353
1354
/*
1355
* Update system wide CPU feature registers with the values from a
1356
* non-boot CPU. Also performs SANITY checks to make sure that there
1357
* aren't any insane variations from that of the boot CPU.
1358
*/
1359
void update_cpu_features(int cpu,
1360
struct cpuinfo_arm64 *info,
1361
struct cpuinfo_arm64 *boot)
1362
{
1363
int taint = 0;
1364
1365
/*
1366
* The kernel can handle differing I-cache policies, but otherwise
1367
* caches should look identical. Userspace JITs will make use of
1368
* *minLine.
1369
*/
1370
taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1371
info->reg_ctr, boot->reg_ctr);
1372
1373
/*
1374
* Userspace may perform DC ZVA instructions. Mismatched block sizes
1375
* could result in too much or too little memory being zeroed if a
1376
* process is preempted and migrated between CPUs.
1377
*/
1378
taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1379
info->reg_dczid, boot->reg_dczid);
1380
1381
/* If different, timekeeping will be broken (especially with KVM) */
1382
taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1383
info->reg_cntfrq, boot->reg_cntfrq);
1384
1385
/*
1386
* The kernel uses self-hosted debug features and expects CPUs to
1387
* support identical debug features. We presently need CTX_CMPs, WRPs,
1388
* and BRPs to be identical.
1389
* ID_AA64DFR1 is currently RES0.
1390
*/
1391
taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1392
info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1393
taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1394
info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1395
/*
1396
* Even in big.LITTLE, processors should be identical instruction-set
1397
* wise.
1398
*/
1399
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1400
info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1401
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1402
info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1403
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1404
info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1405
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1406
info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1407
1408
/*
1409
* Differing PARange support is fine as long as all peripherals and
1410
* memory are mapped within the minimum PARange of all CPUs.
1411
* Linux should not care about secure memory.
1412
*/
1413
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1414
info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1415
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1416
info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1417
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1418
info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1419
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1420
info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1421
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR4_EL1, cpu,
1422
info->reg_id_aa64mmfr4, boot->reg_id_aa64mmfr4);
1423
1424
taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1425
info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1426
taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1427
info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1428
taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1429
info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1430
1431
taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1432
info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1433
1434
taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1435
info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1436
1437
taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1438
info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1439
1440
/* Probe vector lengths */
1441
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1442
id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1443
if (!system_capabilities_finalized()) {
1444
unsigned long cpacr = cpacr_save_enable_kernel_sve();
1445
1446
vec_update_vq_map(ARM64_VEC_SVE);
1447
1448
cpacr_restore(cpacr);
1449
}
1450
}
1451
1452
if (IS_ENABLED(CONFIG_ARM64_SME) &&
1453
id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1454
unsigned long cpacr = cpacr_save_enable_kernel_sme();
1455
1456
/* Probe vector lengths */
1457
if (!system_capabilities_finalized())
1458
vec_update_vq_map(ARM64_VEC_SME);
1459
1460
cpacr_restore(cpacr);
1461
}
1462
1463
if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1464
info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1465
taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1466
info->reg_mpamidr, boot->reg_mpamidr);
1467
}
1468
1469
/*
1470
* The kernel uses the LDGM/STGM instructions and the number of tags
1471
* they read/write depends on the GMID_EL1.BS field. Check that the
1472
* value is the same on all CPUs.
1473
*/
1474
if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1475
id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1476
taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1477
info->reg_gmid, boot->reg_gmid);
1478
}
1479
1480
/*
1481
* If we don't have AArch32 at all then skip the checks entirely
1482
* as the register values may be UNKNOWN and we're not going to be
1483
* using them for anything.
1484
*
1485
* This relies on a sanitised view of the AArch64 ID registers
1486
* (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1487
*/
1488
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1489
lazy_init_32bit_cpu_features(info, boot);
1490
taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1491
&boot->aarch32);
1492
}
1493
1494
/*
1495
* Mismatched CPU features are a recipe for disaster. Don't even
1496
* pretend to support them.
1497
*/
1498
if (taint) {
1499
pr_warn_once("Unsupported CPU feature variation detected.\n");
1500
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1501
}
1502
}
1503
1504
u64 read_sanitised_ftr_reg(u32 id)
1505
{
1506
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1507
1508
if (!regp)
1509
return 0;
1510
return regp->sys_val;
1511
}
1512
EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1513
1514
#define read_sysreg_case(r) \
1515
case r: val = read_sysreg_s(r); break;
1516
1517
/*
1518
* __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1519
* Read the system register on the current CPU
1520
*/
1521
u64 __read_sysreg_by_encoding(u32 sys_id)
1522
{
1523
struct arm64_ftr_reg *regp;
1524
u64 val;
1525
1526
switch (sys_id) {
1527
read_sysreg_case(SYS_ID_PFR0_EL1);
1528
read_sysreg_case(SYS_ID_PFR1_EL1);
1529
read_sysreg_case(SYS_ID_PFR2_EL1);
1530
read_sysreg_case(SYS_ID_DFR0_EL1);
1531
read_sysreg_case(SYS_ID_DFR1_EL1);
1532
read_sysreg_case(SYS_ID_MMFR0_EL1);
1533
read_sysreg_case(SYS_ID_MMFR1_EL1);
1534
read_sysreg_case(SYS_ID_MMFR2_EL1);
1535
read_sysreg_case(SYS_ID_MMFR3_EL1);
1536
read_sysreg_case(SYS_ID_MMFR4_EL1);
1537
read_sysreg_case(SYS_ID_MMFR5_EL1);
1538
read_sysreg_case(SYS_ID_ISAR0_EL1);
1539
read_sysreg_case(SYS_ID_ISAR1_EL1);
1540
read_sysreg_case(SYS_ID_ISAR2_EL1);
1541
read_sysreg_case(SYS_ID_ISAR3_EL1);
1542
read_sysreg_case(SYS_ID_ISAR4_EL1);
1543
read_sysreg_case(SYS_ID_ISAR5_EL1);
1544
read_sysreg_case(SYS_ID_ISAR6_EL1);
1545
read_sysreg_case(SYS_MVFR0_EL1);
1546
read_sysreg_case(SYS_MVFR1_EL1);
1547
read_sysreg_case(SYS_MVFR2_EL1);
1548
1549
read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1550
read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1551
read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1552
read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1553
read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1554
read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1555
read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1556
read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1557
read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1558
read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1559
read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1560
read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1561
read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1562
read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1563
read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1564
read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1565
read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1566
1567
read_sysreg_case(SYS_CNTFRQ_EL0);
1568
read_sysreg_case(SYS_CTR_EL0);
1569
read_sysreg_case(SYS_DCZID_EL0);
1570
1571
default:
1572
BUG();
1573
return 0;
1574
}
1575
1576
regp = get_arm64_ftr_reg(sys_id);
1577
if (regp) {
1578
val &= ~regp->override->mask;
1579
val |= (regp->override->val & regp->override->mask);
1580
}
1581
1582
return val;
1583
}
1584
1585
#include <linux/irqchip/arm-gic-v3.h>
1586
1587
static bool
1588
has_always(const struct arm64_cpu_capabilities *entry, int scope)
1589
{
1590
return true;
1591
}
1592
1593
static bool
1594
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1595
{
1596
int val, min, max;
1597
u64 tmp;
1598
1599
val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1600
entry->field_width,
1601
entry->sign);
1602
1603
tmp = entry->min_field_value;
1604
tmp <<= entry->field_pos;
1605
1606
min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1607
entry->field_width,
1608
entry->sign);
1609
1610
tmp = entry->max_field_value;
1611
tmp <<= entry->field_pos;
1612
1613
max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1614
entry->field_width,
1615
entry->sign);
1616
1617
return val >= min && val <= max;
1618
}
1619
1620
static u64
1621
read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1622
{
1623
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1624
if (scope == SCOPE_SYSTEM)
1625
return read_sanitised_ftr_reg(entry->sys_reg);
1626
else
1627
return __read_sysreg_by_encoding(entry->sys_reg);
1628
}
1629
1630
static bool
1631
has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1632
{
1633
int mask;
1634
struct arm64_ftr_reg *regp;
1635
u64 val = read_scoped_sysreg(entry, scope);
1636
1637
regp = get_arm64_ftr_reg(entry->sys_reg);
1638
if (!regp)
1639
return false;
1640
1641
mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1642
entry->field_pos,
1643
entry->field_width);
1644
if (!mask)
1645
return false;
1646
1647
return feature_matches(val, entry);
1648
}
1649
1650
static bool
1651
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1652
{
1653
u64 val = read_scoped_sysreg(entry, scope);
1654
return feature_matches(val, entry);
1655
}
1656
1657
const struct cpumask *system_32bit_el0_cpumask(void)
1658
{
1659
if (!system_supports_32bit_el0())
1660
return cpu_none_mask;
1661
1662
if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1663
return cpu_32bit_el0_mask;
1664
1665
return cpu_possible_mask;
1666
}
1667
1668
const struct cpumask *task_cpu_fallback_mask(struct task_struct *p)
1669
{
1670
return __task_cpu_possible_mask(p, housekeeping_cpumask(HK_TYPE_TICK));
1671
}
1672
1673
static int __init parse_32bit_el0_param(char *str)
1674
{
1675
allow_mismatched_32bit_el0 = true;
1676
return 0;
1677
}
1678
early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1679
1680
static ssize_t aarch32_el0_show(struct device *dev,
1681
struct device_attribute *attr, char *buf)
1682
{
1683
const struct cpumask *mask = system_32bit_el0_cpumask();
1684
1685
return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1686
}
1687
static const DEVICE_ATTR_RO(aarch32_el0);
1688
1689
static int __init aarch32_el0_sysfs_init(void)
1690
{
1691
struct device *dev_root;
1692
int ret = 0;
1693
1694
if (!allow_mismatched_32bit_el0)
1695
return 0;
1696
1697
dev_root = bus_get_dev_root(&cpu_subsys);
1698
if (dev_root) {
1699
ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1700
put_device(dev_root);
1701
}
1702
return ret;
1703
}
1704
device_initcall(aarch32_el0_sysfs_init);
1705
1706
static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1707
{
1708
if (!has_cpuid_feature(entry, scope))
1709
return allow_mismatched_32bit_el0;
1710
1711
if (scope == SCOPE_SYSTEM)
1712
pr_info("detected: 32-bit EL0 Support\n");
1713
1714
return true;
1715
}
1716
1717
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1718
{
1719
bool has_sre;
1720
1721
if (!has_cpuid_feature(entry, scope))
1722
return false;
1723
1724
has_sre = gic_enable_sre();
1725
if (!has_sre)
1726
pr_warn_once("%s present but disabled by higher exception level\n",
1727
entry->desc);
1728
1729
return has_sre;
1730
}
1731
1732
static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1733
int scope)
1734
{
1735
u64 ctr;
1736
1737
if (scope == SCOPE_SYSTEM)
1738
ctr = arm64_ftr_reg_ctrel0.sys_val;
1739
else
1740
ctr = read_cpuid_effective_cachetype();
1741
1742
return ctr & BIT(CTR_EL0_IDC_SHIFT);
1743
}
1744
1745
static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1746
{
1747
/*
1748
* If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1749
* CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1750
* to the CTR_EL0 on this CPU and emulate it with the real/safe
1751
* value.
1752
*/
1753
if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1754
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1755
}
1756
1757
static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1758
int scope)
1759
{
1760
u64 ctr;
1761
1762
if (scope == SCOPE_SYSTEM)
1763
ctr = arm64_ftr_reg_ctrel0.sys_val;
1764
else
1765
ctr = read_cpuid_cachetype();
1766
1767
return ctr & BIT(CTR_EL0_DIC_SHIFT);
1768
}
1769
1770
static bool __maybe_unused
1771
has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1772
{
1773
/*
1774
* Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1775
* may share TLB entries with a CPU stuck in the crashed
1776
* kernel.
1777
*/
1778
if (is_kdump_kernel())
1779
return false;
1780
1781
if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1782
return false;
1783
1784
return has_cpuid_feature(entry, scope);
1785
}
1786
1787
static bool __meltdown_safe = true;
1788
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1789
1790
static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1791
int scope)
1792
{
1793
/* List of CPUs that are not vulnerable and don't need KPTI */
1794
static const struct midr_range kpti_safe_list[] = {
1795
MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1796
MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1797
MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1798
MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1799
MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1800
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1801
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1802
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1803
MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1804
MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1805
MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1806
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1807
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1808
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1809
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1810
{ /* sentinel */ }
1811
};
1812
char const *str = "kpti command line option";
1813
bool meltdown_safe;
1814
1815
meltdown_safe = is_midr_in_range_list(kpti_safe_list);
1816
1817
/* Defer to CPU feature registers */
1818
if (has_cpuid_feature(entry, scope))
1819
meltdown_safe = true;
1820
1821
if (!meltdown_safe)
1822
__meltdown_safe = false;
1823
1824
/*
1825
* For reasons that aren't entirely clear, enabling KPTI on Cavium
1826
* ThunderX leads to apparent I-cache corruption of kernel text, which
1827
* ends as well as you might imagine. Don't even try. We cannot rely
1828
* on the cpus_have_*cap() helpers here to detect the CPU erratum
1829
* because cpucap detection order may change. However, since we know
1830
* affected CPUs are always in a homogeneous configuration, it is
1831
* safe to rely on this_cpu_has_cap() here.
1832
*/
1833
if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1834
str = "ARM64_WORKAROUND_CAVIUM_27456";
1835
__kpti_forced = -1;
1836
}
1837
1838
/* Useful for KASLR robustness */
1839
if (kaslr_enabled() && kaslr_requires_kpti()) {
1840
if (!__kpti_forced) {
1841
str = "KASLR";
1842
__kpti_forced = 1;
1843
}
1844
}
1845
1846
if (cpu_mitigations_off() && !__kpti_forced) {
1847
str = "mitigations=off";
1848
__kpti_forced = -1;
1849
}
1850
1851
if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1852
pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1853
return false;
1854
}
1855
1856
/* Forced? */
1857
if (__kpti_forced) {
1858
pr_info_once("kernel page table isolation forced %s by %s\n",
1859
__kpti_forced > 0 ? "ON" : "OFF", str);
1860
return __kpti_forced > 0;
1861
}
1862
1863
return !meltdown_safe;
1864
}
1865
1866
static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1867
{
1868
/*
1869
* Although the Apple M2 family appears to support NV1, the
1870
* PTW barfs on the nVHE EL2 S1 page table format. Pretend
1871
* that it doesn't support NV1 at all.
1872
*/
1873
static const struct midr_range nv1_ni_list[] = {
1874
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1875
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1876
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1877
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1878
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1879
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1880
{}
1881
};
1882
1883
return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1884
!(has_cpuid_feature(entry, scope) ||
1885
is_midr_in_range_list(nv1_ni_list)));
1886
}
1887
1888
#if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1889
static bool has_lpa2_at_stage1(u64 mmfr0)
1890
{
1891
unsigned int tgran;
1892
1893
tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1894
ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1895
return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1896
}
1897
1898
static bool has_lpa2_at_stage2(u64 mmfr0)
1899
{
1900
unsigned int tgran;
1901
1902
tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1903
ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1904
return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1905
}
1906
1907
static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1908
{
1909
u64 mmfr0;
1910
1911
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1912
return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1913
}
1914
#else
1915
static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1916
{
1917
return false;
1918
}
1919
#endif
1920
1921
#ifdef CONFIG_HW_PERF_EVENTS
1922
static bool has_pmuv3(const struct arm64_cpu_capabilities *entry, int scope)
1923
{
1924
u64 dfr0 = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1925
unsigned int pmuver;
1926
1927
/*
1928
* PMUVer follows the standard ID scheme for an unsigned field with the
1929
* exception of 0xF (IMP_DEF) which is treated specially and implies
1930
* FEAT_PMUv3 is not implemented.
1931
*
1932
* See DDI0487L.a D24.1.3.2 for more details.
1933
*/
1934
pmuver = cpuid_feature_extract_unsigned_field(dfr0,
1935
ID_AA64DFR0_EL1_PMUVer_SHIFT);
1936
if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1937
return false;
1938
1939
return pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP;
1940
}
1941
#endif
1942
1943
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1944
#define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1945
1946
extern
1947
void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1948
phys_addr_t size, pgprot_t prot,
1949
phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags);
1950
1951
static phys_addr_t __initdata kpti_ng_temp_alloc;
1952
1953
static phys_addr_t __init kpti_ng_pgd_alloc(enum pgtable_type type)
1954
{
1955
kpti_ng_temp_alloc -= PAGE_SIZE;
1956
return kpti_ng_temp_alloc;
1957
}
1958
1959
static int __init __kpti_install_ng_mappings(void *__unused)
1960
{
1961
typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1962
extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1963
kpti_remap_fn *remap_fn;
1964
1965
int cpu = smp_processor_id();
1966
int levels = CONFIG_PGTABLE_LEVELS;
1967
int order = order_base_2(levels);
1968
u64 kpti_ng_temp_pgd_pa = 0;
1969
pgd_t *kpti_ng_temp_pgd;
1970
u64 alloc = 0;
1971
1972
if (levels == 5 && !pgtable_l5_enabled())
1973
levels = 4;
1974
else if (levels == 4 && !pgtable_l4_enabled())
1975
levels = 3;
1976
1977
remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1978
1979
if (!cpu) {
1980
alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1981
kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1982
kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1983
1984
//
1985
// Create a minimal page table hierarchy that permits us to map
1986
// the swapper page tables temporarily as we traverse them.
1987
//
1988
// The physical pages are laid out as follows:
1989
//
1990
// +--------+-/-------+-/------ +-/------ +-\\\--------+
1991
// : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1992
// +--------+-\-------+-\------ +-\------ +-///--------+
1993
// ^
1994
// The first page is mapped into this hierarchy at a PMD_SHIFT
1995
// aligned virtual address, so that we can manipulate the PTE
1996
// level entries while the mapping is active. The first entry
1997
// covers the PTE[] page itself, the remaining entries are free
1998
// to be used as a ad-hoc fixmap.
1999
//
2000
create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
2001
KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
2002
kpti_ng_pgd_alloc, 0);
2003
}
2004
2005
cpu_install_idmap();
2006
remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
2007
cpu_uninstall_idmap();
2008
2009
if (!cpu) {
2010
free_pages(alloc, order);
2011
arm64_use_ng_mappings = true;
2012
}
2013
2014
return 0;
2015
}
2016
2017
static void __init kpti_install_ng_mappings(void)
2018
{
2019
/* Check whether KPTI is going to be used */
2020
if (!arm64_kernel_unmapped_at_el0())
2021
return;
2022
2023
/*
2024
* We don't need to rewrite the page-tables if either we've done
2025
* it already or we have KASLR enabled and therefore have not
2026
* created any global mappings at all.
2027
*/
2028
if (arm64_use_ng_mappings)
2029
return;
2030
2031
stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
2032
}
2033
2034
#else
2035
static inline void kpti_install_ng_mappings(void)
2036
{
2037
}
2038
#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
2039
2040
static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
2041
{
2042
if (__this_cpu_read(this_cpu_vector) == vectors) {
2043
const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
2044
2045
__this_cpu_write(this_cpu_vector, v);
2046
}
2047
2048
}
2049
2050
static int __init parse_kpti(char *str)
2051
{
2052
bool enabled;
2053
int ret = kstrtobool(str, &enabled);
2054
2055
if (ret)
2056
return ret;
2057
2058
__kpti_forced = enabled ? 1 : -1;
2059
return 0;
2060
}
2061
early_param("kpti", parse_kpti);
2062
2063
#ifdef CONFIG_ARM64_HW_AFDBM
2064
static struct cpumask dbm_cpus __read_mostly;
2065
2066
static inline void __cpu_enable_hw_dbm(void)
2067
{
2068
u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
2069
2070
write_sysreg(tcr, tcr_el1);
2071
isb();
2072
local_flush_tlb_all();
2073
}
2074
2075
static bool cpu_has_broken_dbm(void)
2076
{
2077
/* List of CPUs which have broken DBM support. */
2078
static const struct midr_range cpus[] = {
2079
#ifdef CONFIG_ARM64_ERRATUM_1024718
2080
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2081
/* Kryo4xx Silver (rdpe => r1p0) */
2082
MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2083
#endif
2084
#ifdef CONFIG_ARM64_ERRATUM_2051678
2085
MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2086
#endif
2087
{},
2088
};
2089
2090
return is_midr_in_range_list(cpus);
2091
}
2092
2093
static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2094
{
2095
return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2096
!cpu_has_broken_dbm();
2097
}
2098
2099
static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2100
{
2101
if (cpu_can_use_dbm(cap)) {
2102
__cpu_enable_hw_dbm();
2103
cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2104
}
2105
}
2106
2107
static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2108
int __unused)
2109
{
2110
/*
2111
* DBM is a non-conflicting feature. i.e, the kernel can safely
2112
* run a mix of CPUs with and without the feature. So, we
2113
* unconditionally enable the capability to allow any late CPU
2114
* to use the feature. We only enable the control bits on the
2115
* CPU, if it is supported.
2116
*/
2117
2118
return true;
2119
}
2120
2121
#endif
2122
2123
#ifdef CONFIG_ARM64_AMU_EXTN
2124
2125
/*
2126
* The "amu_cpus" cpumask only signals that the CPU implementation for the
2127
* flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2128
* information regarding all the events that it supports. When a CPU bit is
2129
* set in the cpumask, the user of this feature can only rely on the presence
2130
* of the 4 fixed counters for that CPU. But this does not guarantee that the
2131
* counters are enabled or access to these counters is enabled by code
2132
* executed at higher exception levels (firmware).
2133
*/
2134
static struct cpumask amu_cpus __read_mostly;
2135
2136
bool cpu_has_amu_feat(int cpu)
2137
{
2138
return cpumask_test_cpu(cpu, &amu_cpus);
2139
}
2140
2141
int get_cpu_with_amu_feat(void)
2142
{
2143
return cpumask_any(&amu_cpus);
2144
}
2145
2146
static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2147
{
2148
if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2149
cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2150
2151
/* 0 reference values signal broken/disabled counters */
2152
if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2153
update_freq_counters_refs();
2154
}
2155
}
2156
2157
static bool has_amu(const struct arm64_cpu_capabilities *cap,
2158
int __unused)
2159
{
2160
/*
2161
* The AMU extension is a non-conflicting feature: the kernel can
2162
* safely run a mix of CPUs with and without support for the
2163
* activity monitors extension. Therefore, unconditionally enable
2164
* the capability to allow any late CPU to use the feature.
2165
*
2166
* With this feature unconditionally enabled, the cpu_enable
2167
* function will be called for all CPUs that match the criteria,
2168
* including secondary and hotplugged, marking this feature as
2169
* present on that respective CPU. The enable function will also
2170
* print a detection message.
2171
*/
2172
2173
return true;
2174
}
2175
#else
2176
int get_cpu_with_amu_feat(void)
2177
{
2178
return nr_cpu_ids;
2179
}
2180
#endif
2181
2182
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2183
{
2184
return is_kernel_in_hyp_mode();
2185
}
2186
2187
static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2188
{
2189
/*
2190
* Copy register values that aren't redirected by hardware.
2191
*
2192
* Before code patching, we only set tpidr_el1, all CPUs need to copy
2193
* this value to tpidr_el2 before we patch the code. Once we've done
2194
* that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2195
* do anything here.
2196
*/
2197
if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2198
write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2199
}
2200
2201
static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2202
int scope)
2203
{
2204
if (kvm_get_mode() != KVM_MODE_NV)
2205
return false;
2206
2207
if (!cpucap_multi_entry_cap_matches(cap, scope)) {
2208
pr_warn("unavailable: %s\n", cap->desc);
2209
return false;
2210
}
2211
2212
return true;
2213
}
2214
2215
static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2216
int __unused)
2217
{
2218
return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2219
}
2220
2221
static bool has_bbml2_noabort(const struct arm64_cpu_capabilities *caps, int scope)
2222
{
2223
/*
2224
* We want to allow usage of BBML2 in as wide a range of kernel contexts
2225
* as possible. This list is therefore an allow-list of known-good
2226
* implementations that both support BBML2 and additionally, fulfill the
2227
* extra constraint of never generating TLB conflict aborts when using
2228
* the relaxed BBML2 semantics (such aborts make use of BBML2 in certain
2229
* kernel contexts difficult to prove safe against recursive aborts).
2230
*
2231
* Note that implementations can only be considered "known-good" if their
2232
* implementors attest to the fact that the implementation never raises
2233
* TLB conflict aborts for BBML2 mapping granularity changes.
2234
*/
2235
static const struct midr_range supports_bbml2_noabort_list[] = {
2236
MIDR_REV_RANGE(MIDR_CORTEX_X4, 0, 3, 0xf),
2237
MIDR_REV_RANGE(MIDR_NEOVERSE_V3, 0, 2, 0xf),
2238
{}
2239
};
2240
2241
/* Does our cpu guarantee to never raise TLB conflict aborts? */
2242
if (!is_midr_in_range_list(supports_bbml2_noabort_list))
2243
return false;
2244
2245
/*
2246
* We currently ignore the ID_AA64MMFR2_EL1 register, and only care
2247
* about whether the MIDR check passes.
2248
*/
2249
2250
return true;
2251
}
2252
2253
#ifdef CONFIG_ARM64_PAN
2254
static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2255
{
2256
/*
2257
* We modify PSTATE. This won't work from irq context as the PSTATE
2258
* is discarded once we return from the exception.
2259
*/
2260
WARN_ON_ONCE(in_interrupt());
2261
2262
sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2263
set_pstate_pan(1);
2264
}
2265
#endif /* CONFIG_ARM64_PAN */
2266
2267
#ifdef CONFIG_ARM64_RAS_EXTN
2268
static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2269
{
2270
/* Firmware may have left a deferred SError in this register. */
2271
write_sysreg_s(0, SYS_DISR_EL1);
2272
}
2273
static bool has_rasv1p1(const struct arm64_cpu_capabilities *__unused, int scope)
2274
{
2275
const struct arm64_cpu_capabilities rasv1p1_caps[] = {
2276
{
2277
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, V1P1)
2278
},
2279
{
2280
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2281
},
2282
{
2283
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, RAS_frac, RASv1p1)
2284
},
2285
};
2286
2287
return (has_cpuid_feature(&rasv1p1_caps[0], scope) ||
2288
(has_cpuid_feature(&rasv1p1_caps[1], scope) &&
2289
has_cpuid_feature(&rasv1p1_caps[2], scope)));
2290
}
2291
#endif /* CONFIG_ARM64_RAS_EXTN */
2292
2293
#ifdef CONFIG_ARM64_PTR_AUTH
2294
static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2295
{
2296
int boot_val, sec_val;
2297
2298
/* We don't expect to be called with SCOPE_SYSTEM */
2299
WARN_ON(scope == SCOPE_SYSTEM);
2300
/*
2301
* The ptr-auth feature levels are not intercompatible with lower
2302
* levels. Hence we must match ptr-auth feature level of the secondary
2303
* CPUs with that of the boot CPU. The level of boot cpu is fetched
2304
* from the sanitised register whereas direct register read is done for
2305
* the secondary CPUs.
2306
* The sanitised feature state is guaranteed to match that of the
2307
* boot CPU as a mismatched secondary CPU is parked before it gets
2308
* a chance to update the state, with the capability.
2309
*/
2310
boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2311
entry->field_pos, entry->sign);
2312
if (scope & SCOPE_BOOT_CPU)
2313
return boot_val >= entry->min_field_value;
2314
/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2315
sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2316
entry->field_pos, entry->sign);
2317
return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2318
}
2319
2320
static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2321
int scope)
2322
{
2323
bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2324
bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2325
bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2326
2327
return apa || apa3 || api;
2328
}
2329
2330
static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2331
int __unused)
2332
{
2333
bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2334
bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2335
bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2336
2337
return gpa || gpa3 || gpi;
2338
}
2339
#endif /* CONFIG_ARM64_PTR_AUTH */
2340
2341
#ifdef CONFIG_ARM64_E0PD
2342
static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2343
{
2344
if (this_cpu_has_cap(ARM64_HAS_E0PD))
2345
sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2346
}
2347
#endif /* CONFIG_ARM64_E0PD */
2348
2349
#ifdef CONFIG_ARM64_PSEUDO_NMI
2350
static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2351
int scope)
2352
{
2353
/*
2354
* ARM64_HAS_GICV3_CPUIF has a lower index, and is a boot CPU
2355
* feature, so will be detected earlier.
2356
*/
2357
BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GICV3_CPUIF);
2358
if (!cpus_have_cap(ARM64_HAS_GICV3_CPUIF))
2359
return false;
2360
2361
return enable_pseudo_nmi;
2362
}
2363
2364
static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2365
int scope)
2366
{
2367
/*
2368
* If we're not using priority masking then we won't be poking PMR_EL1,
2369
* and there's no need to relax synchronization of writes to it, and
2370
* ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2371
* that.
2372
*
2373
* ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2374
* feature, so will be detected earlier.
2375
*/
2376
BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2377
if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2378
return false;
2379
2380
/*
2381
* When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2382
* hint for interrupt distribution, a DSB is not necessary when
2383
* unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2384
*
2385
* Linux itself doesn't use 1:N distribution, so has no need to
2386
* set PMHE. The only reason to have it set is if EL3 requires it
2387
* (and we can't change it).
2388
*/
2389
return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2390
}
2391
#endif
2392
2393
#ifdef CONFIG_ARM64_BTI
2394
static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2395
{
2396
/*
2397
* Use of X16/X17 for tail-calls and trampolines that jump to
2398
* function entry points using BR is a requirement for
2399
* marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2400
* So, be strict and forbid other BRs using other registers to
2401
* jump onto a PACIxSP instruction:
2402
*/
2403
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2404
isb();
2405
}
2406
#endif /* CONFIG_ARM64_BTI */
2407
2408
#ifdef CONFIG_ARM64_MTE
2409
static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2410
{
2411
sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2412
2413
mte_cpu_setup();
2414
2415
/*
2416
* Clear the tags in the zero page. This needs to be done via the
2417
* linear map which has the Tagged attribute.
2418
*/
2419
if (try_page_mte_tagging(ZERO_PAGE(0))) {
2420
mte_clear_page_tags(lm_alias(empty_zero_page));
2421
set_page_mte_tagged(ZERO_PAGE(0));
2422
}
2423
2424
kasan_init_hw_tags_cpu();
2425
}
2426
#endif /* CONFIG_ARM64_MTE */
2427
2428
static void user_feature_fixup(void)
2429
{
2430
if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2431
struct arm64_ftr_reg *regp;
2432
2433
regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2434
if (regp)
2435
regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2436
}
2437
2438
if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2439
struct arm64_ftr_reg *regp;
2440
2441
regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2442
if (regp)
2443
regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2444
}
2445
}
2446
2447
static void elf_hwcap_fixup(void)
2448
{
2449
#ifdef CONFIG_COMPAT
2450
if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2451
compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2452
#endif /* CONFIG_COMPAT */
2453
}
2454
2455
#ifdef CONFIG_KVM
2456
static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2457
{
2458
return kvm_get_mode() == KVM_MODE_PROTECTED;
2459
}
2460
#endif /* CONFIG_KVM */
2461
2462
static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2463
{
2464
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2465
}
2466
2467
static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2468
{
2469
set_pstate_dit(1);
2470
}
2471
2472
static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2473
{
2474
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2475
}
2476
2477
#ifdef CONFIG_ARM64_POE
2478
static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2479
{
2480
sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2481
sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2482
}
2483
#endif
2484
2485
#ifdef CONFIG_ARM64_GCS
2486
static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2487
{
2488
/* GCSPR_EL0 is always readable */
2489
write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2490
}
2491
#endif
2492
2493
/* Internal helper functions to match cpu capability type */
2494
static bool
2495
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2496
{
2497
return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2498
}
2499
2500
static bool
2501
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2502
{
2503
return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2504
}
2505
2506
static bool
2507
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2508
{
2509
return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2510
}
2511
2512
static bool
2513
test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2514
{
2515
if (!has_cpuid_feature(entry, scope))
2516
return false;
2517
2518
/* Check firmware actually enabled MPAM on this cpu. */
2519
return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2520
}
2521
2522
static void
2523
cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2524
{
2525
/*
2526
* Access by the kernel (at EL1) should use the reserved PARTID
2527
* which is configured unrestricted. This avoids priority-inversion
2528
* where latency sensitive tasks have to wait for a task that has
2529
* been throttled to release the lock.
2530
*/
2531
write_sysreg_s(0, SYS_MPAM1_EL1);
2532
}
2533
2534
static bool
2535
test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2536
{
2537
u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2538
2539
return idr & MPAMIDR_EL1_HAS_HCR;
2540
}
2541
2542
static const struct arm64_cpu_capabilities arm64_features[] = {
2543
{
2544
.capability = ARM64_ALWAYS_BOOT,
2545
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2546
.matches = has_always,
2547
},
2548
{
2549
.capability = ARM64_ALWAYS_SYSTEM,
2550
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2551
.matches = has_always,
2552
},
2553
{
2554
.desc = "GICv3 CPU interface",
2555
.capability = ARM64_HAS_GICV3_CPUIF,
2556
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2557
.matches = has_useable_gicv3_cpuif,
2558
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2559
},
2560
{
2561
.desc = "Enhanced Counter Virtualization",
2562
.capability = ARM64_HAS_ECV,
2563
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2564
.matches = has_cpuid_feature,
2565
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2566
},
2567
{
2568
.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2569
.capability = ARM64_HAS_ECV_CNTPOFF,
2570
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2571
.matches = has_cpuid_feature,
2572
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2573
},
2574
#ifdef CONFIG_ARM64_PAN
2575
{
2576
.desc = "Privileged Access Never",
2577
.capability = ARM64_HAS_PAN,
2578
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2579
.matches = has_cpuid_feature,
2580
.cpu_enable = cpu_enable_pan,
2581
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2582
},
2583
#endif /* CONFIG_ARM64_PAN */
2584
#ifdef CONFIG_ARM64_EPAN
2585
{
2586
.desc = "Enhanced Privileged Access Never",
2587
.capability = ARM64_HAS_EPAN,
2588
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2589
.matches = has_cpuid_feature,
2590
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2591
},
2592
#endif /* CONFIG_ARM64_EPAN */
2593
#ifdef CONFIG_ARM64_LSE_ATOMICS
2594
{
2595
.desc = "LSE atomic instructions",
2596
.capability = ARM64_HAS_LSE_ATOMICS,
2597
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2598
.matches = has_cpuid_feature,
2599
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2600
},
2601
#endif /* CONFIG_ARM64_LSE_ATOMICS */
2602
{
2603
.desc = "Virtualization Host Extensions",
2604
.capability = ARM64_HAS_VIRT_HOST_EXTN,
2605
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2606
.matches = runs_at_el2,
2607
.cpu_enable = cpu_copy_el2regs,
2608
},
2609
{
2610
.desc = "Nested Virtualization Support",
2611
.capability = ARM64_HAS_NESTED_VIRT,
2612
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2613
.matches = has_nested_virt_support,
2614
.match_list = (const struct arm64_cpu_capabilities []){
2615
{
2616
.matches = has_cpuid_feature,
2617
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2618
},
2619
{
2620
.matches = has_cpuid_feature,
2621
ARM64_CPUID_FIELDS(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)
2622
},
2623
{ /* Sentinel */ }
2624
},
2625
},
2626
{
2627
.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2628
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2629
.matches = has_32bit_el0,
2630
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2631
},
2632
#ifdef CONFIG_KVM
2633
{
2634
.desc = "32-bit EL1 Support",
2635
.capability = ARM64_HAS_32BIT_EL1,
2636
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2637
.matches = has_cpuid_feature,
2638
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2639
},
2640
{
2641
.desc = "Protected KVM",
2642
.capability = ARM64_KVM_PROTECTED_MODE,
2643
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2644
.matches = is_kvm_protected_mode,
2645
},
2646
{
2647
.desc = "HCRX_EL2 register",
2648
.capability = ARM64_HAS_HCX,
2649
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2650
.matches = has_cpuid_feature,
2651
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2652
},
2653
#endif
2654
{
2655
.desc = "Kernel page table isolation (KPTI)",
2656
.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2657
.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2658
.cpu_enable = cpu_enable_kpti,
2659
.matches = unmap_kernel_at_el0,
2660
/*
2661
* The ID feature fields below are used to indicate that
2662
* the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2663
* more details.
2664
*/
2665
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2666
},
2667
{
2668
.capability = ARM64_HAS_FPSIMD,
2669
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2670
.matches = has_cpuid_feature,
2671
.cpu_enable = cpu_enable_fpsimd,
2672
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2673
},
2674
#ifdef CONFIG_ARM64_PMEM
2675
{
2676
.desc = "Data cache clean to Point of Persistence",
2677
.capability = ARM64_HAS_DCPOP,
2678
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2679
.matches = has_cpuid_feature,
2680
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2681
},
2682
{
2683
.desc = "Data cache clean to Point of Deep Persistence",
2684
.capability = ARM64_HAS_DCPODP,
2685
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2686
.matches = has_cpuid_feature,
2687
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2688
},
2689
#endif
2690
#ifdef CONFIG_ARM64_SVE
2691
{
2692
.desc = "Scalable Vector Extension",
2693
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2694
.capability = ARM64_SVE,
2695
.cpu_enable = cpu_enable_sve,
2696
.matches = has_cpuid_feature,
2697
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2698
},
2699
#endif /* CONFIG_ARM64_SVE */
2700
#ifdef CONFIG_ARM64_RAS_EXTN
2701
{
2702
.desc = "RAS Extension Support",
2703
.capability = ARM64_HAS_RAS_EXTN,
2704
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2705
.matches = has_cpuid_feature,
2706
.cpu_enable = cpu_clear_disr,
2707
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2708
},
2709
{
2710
.desc = "RASv1p1 Extension Support",
2711
.capability = ARM64_HAS_RASV1P1_EXTN,
2712
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2713
.matches = has_rasv1p1,
2714
},
2715
#endif /* CONFIG_ARM64_RAS_EXTN */
2716
#ifdef CONFIG_ARM64_AMU_EXTN
2717
{
2718
.desc = "Activity Monitors Unit (AMU)",
2719
.capability = ARM64_HAS_AMU_EXTN,
2720
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2721
.matches = has_amu,
2722
.cpu_enable = cpu_amu_enable,
2723
.cpus = &amu_cpus,
2724
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2725
},
2726
#endif /* CONFIG_ARM64_AMU_EXTN */
2727
{
2728
.desc = "Data cache clean to the PoU not required for I/D coherence",
2729
.capability = ARM64_HAS_CACHE_IDC,
2730
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2731
.matches = has_cache_idc,
2732
.cpu_enable = cpu_emulate_effective_ctr,
2733
},
2734
{
2735
.desc = "Instruction cache invalidation not required for I/D coherence",
2736
.capability = ARM64_HAS_CACHE_DIC,
2737
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2738
.matches = has_cache_dic,
2739
},
2740
{
2741
.desc = "Stage-2 Force Write-Back",
2742
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2743
.capability = ARM64_HAS_STAGE2_FWB,
2744
.matches = has_cpuid_feature,
2745
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2746
},
2747
{
2748
.desc = "ARMv8.4 Translation Table Level",
2749
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2750
.capability = ARM64_HAS_ARMv8_4_TTL,
2751
.matches = has_cpuid_feature,
2752
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2753
},
2754
{
2755
.desc = "TLB range maintenance instructions",
2756
.capability = ARM64_HAS_TLB_RANGE,
2757
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2758
.matches = has_cpuid_feature,
2759
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2760
},
2761
#ifdef CONFIG_ARM64_HW_AFDBM
2762
{
2763
.desc = "Hardware dirty bit management",
2764
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2765
.capability = ARM64_HW_DBM,
2766
.matches = has_hw_dbm,
2767
.cpu_enable = cpu_enable_hw_dbm,
2768
.cpus = &dbm_cpus,
2769
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2770
},
2771
#endif
2772
#ifdef CONFIG_ARM64_HAFT
2773
{
2774
.desc = "Hardware managed Access Flag for Table Descriptors",
2775
/*
2776
* Contrary to the page/block access flag, the table access flag
2777
* cannot be emulated in software (no access fault will occur).
2778
* Therefore this should be used only if it's supported system
2779
* wide.
2780
*/
2781
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2782
.capability = ARM64_HAFT,
2783
.matches = has_cpuid_feature,
2784
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2785
},
2786
#endif
2787
{
2788
.desc = "CRC32 instructions",
2789
.capability = ARM64_HAS_CRC32,
2790
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2791
.matches = has_cpuid_feature,
2792
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2793
},
2794
{
2795
.desc = "Speculative Store Bypassing Safe (SSBS)",
2796
.capability = ARM64_SSBS,
2797
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2798
.matches = has_cpuid_feature,
2799
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2800
},
2801
#ifdef CONFIG_ARM64_CNP
2802
{
2803
.desc = "Common not Private translations",
2804
.capability = ARM64_HAS_CNP,
2805
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2806
.matches = has_useable_cnp,
2807
.cpu_enable = cpu_enable_cnp,
2808
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2809
},
2810
#endif
2811
{
2812
.desc = "Speculation barrier (SB)",
2813
.capability = ARM64_HAS_SB,
2814
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2815
.matches = has_cpuid_feature,
2816
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2817
},
2818
#ifdef CONFIG_ARM64_PTR_AUTH
2819
{
2820
.desc = "Address authentication (architected QARMA5 algorithm)",
2821
.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2822
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2823
.matches = has_address_auth_cpucap,
2824
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2825
},
2826
{
2827
.desc = "Address authentication (architected QARMA3 algorithm)",
2828
.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2829
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2830
.matches = has_address_auth_cpucap,
2831
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2832
},
2833
{
2834
.desc = "Address authentication (IMP DEF algorithm)",
2835
.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2836
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2837
.matches = has_address_auth_cpucap,
2838
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2839
},
2840
{
2841
.capability = ARM64_HAS_ADDRESS_AUTH,
2842
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2843
.matches = has_address_auth_metacap,
2844
},
2845
{
2846
.desc = "Generic authentication (architected QARMA5 algorithm)",
2847
.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2848
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2849
.matches = has_cpuid_feature,
2850
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2851
},
2852
{
2853
.desc = "Generic authentication (architected QARMA3 algorithm)",
2854
.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2855
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2856
.matches = has_cpuid_feature,
2857
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2858
},
2859
{
2860
.desc = "Generic authentication (IMP DEF algorithm)",
2861
.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2862
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2863
.matches = has_cpuid_feature,
2864
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2865
},
2866
{
2867
.capability = ARM64_HAS_GENERIC_AUTH,
2868
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2869
.matches = has_generic_auth,
2870
},
2871
#endif /* CONFIG_ARM64_PTR_AUTH */
2872
#ifdef CONFIG_ARM64_PSEUDO_NMI
2873
{
2874
/*
2875
* Depends on having GICv3
2876
*/
2877
.desc = "IRQ priority masking",
2878
.capability = ARM64_HAS_GIC_PRIO_MASKING,
2879
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2880
.matches = can_use_gic_priorities,
2881
},
2882
{
2883
/*
2884
* Depends on ARM64_HAS_GIC_PRIO_MASKING
2885
*/
2886
.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2887
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2888
.matches = has_gic_prio_relaxed_sync,
2889
},
2890
#endif
2891
#ifdef CONFIG_ARM64_E0PD
2892
{
2893
.desc = "E0PD",
2894
.capability = ARM64_HAS_E0PD,
2895
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2896
.cpu_enable = cpu_enable_e0pd,
2897
.matches = has_cpuid_feature,
2898
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2899
},
2900
#endif
2901
{
2902
.desc = "Random Number Generator",
2903
.capability = ARM64_HAS_RNG,
2904
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2905
.matches = has_cpuid_feature,
2906
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2907
},
2908
#ifdef CONFIG_ARM64_BTI
2909
{
2910
.desc = "Branch Target Identification",
2911
.capability = ARM64_BTI,
2912
#ifdef CONFIG_ARM64_BTI_KERNEL
2913
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2914
#else
2915
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2916
#endif
2917
.matches = has_cpuid_feature,
2918
.cpu_enable = bti_enable,
2919
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2920
},
2921
#endif
2922
#ifdef CONFIG_ARM64_MTE
2923
{
2924
.desc = "Memory Tagging Extension",
2925
.capability = ARM64_MTE,
2926
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2927
.matches = has_cpuid_feature,
2928
.cpu_enable = cpu_enable_mte,
2929
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2930
},
2931
{
2932
.desc = "Asymmetric MTE Tag Check Fault",
2933
.capability = ARM64_MTE_ASYMM,
2934
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2935
.matches = has_cpuid_feature,
2936
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2937
},
2938
{
2939
.desc = "FAR on MTE Tag Check Fault",
2940
.capability = ARM64_MTE_FAR,
2941
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2942
.matches = has_cpuid_feature,
2943
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTEFAR, IMP)
2944
},
2945
{
2946
.desc = "Store Only MTE Tag Check",
2947
.capability = ARM64_MTE_STORE_ONLY,
2948
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2949
.matches = has_cpuid_feature,
2950
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTESTOREONLY, IMP)
2951
},
2952
#endif /* CONFIG_ARM64_MTE */
2953
{
2954
.desc = "RCpc load-acquire (LDAPR)",
2955
.capability = ARM64_HAS_LDAPR,
2956
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2957
.matches = has_cpuid_feature,
2958
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2959
},
2960
{
2961
.desc = "Fine Grained Traps",
2962
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2963
.capability = ARM64_HAS_FGT,
2964
.matches = has_cpuid_feature,
2965
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2966
},
2967
{
2968
.desc = "Fine Grained Traps 2",
2969
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2970
.capability = ARM64_HAS_FGT2,
2971
.matches = has_cpuid_feature,
2972
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, FGT2)
2973
},
2974
#ifdef CONFIG_ARM64_SME
2975
{
2976
.desc = "Scalable Matrix Extension",
2977
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2978
.capability = ARM64_SME,
2979
.matches = has_cpuid_feature,
2980
.cpu_enable = cpu_enable_sme,
2981
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2982
},
2983
/* FA64 should be sorted after the base SME capability */
2984
{
2985
.desc = "FA64",
2986
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2987
.capability = ARM64_SME_FA64,
2988
.matches = has_cpuid_feature,
2989
.cpu_enable = cpu_enable_fa64,
2990
ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2991
},
2992
{
2993
.desc = "SME2",
2994
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2995
.capability = ARM64_SME2,
2996
.matches = has_cpuid_feature,
2997
.cpu_enable = cpu_enable_sme2,
2998
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2999
},
3000
#endif /* CONFIG_ARM64_SME */
3001
{
3002
.desc = "WFx with timeout",
3003
.capability = ARM64_HAS_WFXT,
3004
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3005
.matches = has_cpuid_feature,
3006
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
3007
},
3008
{
3009
.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
3010
.capability = ARM64_HAS_TIDCP1,
3011
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3012
.matches = has_cpuid_feature,
3013
.cpu_enable = cpu_trap_el0_impdef,
3014
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
3015
},
3016
{
3017
.desc = "Data independent timing control (DIT)",
3018
.capability = ARM64_HAS_DIT,
3019
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3020
.matches = has_cpuid_feature,
3021
.cpu_enable = cpu_enable_dit,
3022
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
3023
},
3024
{
3025
.desc = "Memory Copy and Memory Set instructions",
3026
.capability = ARM64_HAS_MOPS,
3027
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3028
.matches = has_cpuid_feature,
3029
.cpu_enable = cpu_enable_mops,
3030
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
3031
},
3032
{
3033
.capability = ARM64_HAS_TCR2,
3034
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3035
.matches = has_cpuid_feature,
3036
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
3037
},
3038
{
3039
.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
3040
.capability = ARM64_HAS_S1PIE,
3041
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3042
.matches = has_cpuid_feature,
3043
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
3044
},
3045
{
3046
.desc = "VHE for hypervisor only",
3047
.capability = ARM64_KVM_HVHE,
3048
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3049
.matches = hvhe_possible,
3050
},
3051
{
3052
.desc = "Enhanced Virtualization Traps",
3053
.capability = ARM64_HAS_EVT,
3054
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3055
.matches = has_cpuid_feature,
3056
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
3057
},
3058
{
3059
.desc = "BBM Level 2 without TLB conflict abort",
3060
.capability = ARM64_HAS_BBML2_NOABORT,
3061
.type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
3062
.matches = has_bbml2_noabort,
3063
},
3064
{
3065
.desc = "52-bit Virtual Addressing for KVM (LPA2)",
3066
.capability = ARM64_HAS_LPA2,
3067
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3068
.matches = has_lpa2,
3069
},
3070
{
3071
.desc = "FPMR",
3072
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3073
.capability = ARM64_HAS_FPMR,
3074
.matches = has_cpuid_feature,
3075
.cpu_enable = cpu_enable_fpmr,
3076
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
3077
},
3078
#ifdef CONFIG_ARM64_VA_BITS_52
3079
{
3080
.capability = ARM64_HAS_VA52,
3081
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3082
.matches = has_cpuid_feature,
3083
#ifdef CONFIG_ARM64_64K_PAGES
3084
.desc = "52-bit Virtual Addressing (LVA)",
3085
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
3086
#else
3087
.desc = "52-bit Virtual Addressing (LPA2)",
3088
#ifdef CONFIG_ARM64_4K_PAGES
3089
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
3090
#else
3091
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
3092
#endif
3093
#endif
3094
},
3095
#endif
3096
{
3097
.desc = "Memory Partitioning And Monitoring",
3098
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3099
.capability = ARM64_MPAM,
3100
.matches = test_has_mpam,
3101
.cpu_enable = cpu_enable_mpam,
3102
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
3103
},
3104
{
3105
.desc = "Memory Partitioning And Monitoring Virtualisation",
3106
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3107
.capability = ARM64_MPAM_HCR,
3108
.matches = test_has_mpam_hcr,
3109
},
3110
{
3111
.desc = "NV1",
3112
.capability = ARM64_HAS_HCR_NV1,
3113
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3114
.matches = has_nv1,
3115
ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
3116
},
3117
#ifdef CONFIG_ARM64_POE
3118
{
3119
.desc = "Stage-1 Permission Overlay Extension (S1POE)",
3120
.capability = ARM64_HAS_S1POE,
3121
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3122
.matches = has_cpuid_feature,
3123
.cpu_enable = cpu_enable_poe,
3124
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
3125
},
3126
#endif
3127
#ifdef CONFIG_ARM64_GCS
3128
{
3129
.desc = "Guarded Control Stack (GCS)",
3130
.capability = ARM64_HAS_GCS,
3131
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3132
.cpu_enable = cpu_enable_gcs,
3133
.matches = has_cpuid_feature,
3134
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
3135
},
3136
#endif
3137
#ifdef CONFIG_HW_PERF_EVENTS
3138
{
3139
.desc = "PMUv3",
3140
.capability = ARM64_HAS_PMUV3,
3141
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3142
.matches = has_pmuv3,
3143
},
3144
#endif
3145
{
3146
.desc = "SCTLR2",
3147
.capability = ARM64_HAS_SCTLR2,
3148
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3149
.matches = has_cpuid_feature,
3150
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, SCTLRX, IMP)
3151
},
3152
{
3153
.desc = "GICv5 CPU interface",
3154
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
3155
.capability = ARM64_HAS_GICV5_CPUIF,
3156
.matches = has_cpuid_feature,
3157
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, GCIE, IMP)
3158
},
3159
{},
3160
};
3161
3162
#define HWCAP_CPUID_MATCH(reg, field, min_value) \
3163
.matches = has_user_cpuid_feature, \
3164
ARM64_CPUID_FIELDS(reg, field, min_value)
3165
3166
#define __HWCAP_CAP(name, cap_type, cap) \
3167
.desc = name, \
3168
.type = ARM64_CPUCAP_SYSTEM_FEATURE, \
3169
.hwcap_type = cap_type, \
3170
.hwcap = cap, \
3171
3172
#define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
3173
{ \
3174
__HWCAP_CAP(#cap, cap_type, cap) \
3175
HWCAP_CPUID_MATCH(reg, field, min_value) \
3176
}
3177
3178
#define HWCAP_MULTI_CAP(list, cap_type, cap) \
3179
{ \
3180
__HWCAP_CAP(#cap, cap_type, cap) \
3181
.matches = cpucap_multi_entry_cap_matches, \
3182
.match_list = list, \
3183
}
3184
3185
#define HWCAP_CAP_MATCH(match, cap_type, cap) \
3186
{ \
3187
__HWCAP_CAP(#cap, cap_type, cap) \
3188
.matches = match, \
3189
}
3190
3191
#define HWCAP_CAP_MATCH_ID(match, reg, field, min_value, cap_type, cap) \
3192
{ \
3193
__HWCAP_CAP(#cap, cap_type, cap) \
3194
HWCAP_CPUID_MATCH(reg, field, min_value) \
3195
.matches = match, \
3196
}
3197
3198
#ifdef CONFIG_ARM64_PTR_AUTH
3199
static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3200
{
3201
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3202
},
3203
{
3204
HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3205
},
3206
{
3207
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3208
},
3209
{},
3210
};
3211
3212
static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3213
{
3214
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3215
},
3216
{
3217
HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3218
},
3219
{
3220
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3221
},
3222
{},
3223
};
3224
#endif
3225
3226
#ifdef CONFIG_ARM64_SVE
3227
static bool has_sve_feature(const struct arm64_cpu_capabilities *cap, int scope)
3228
{
3229
return system_supports_sve() && has_user_cpuid_feature(cap, scope);
3230
}
3231
#endif
3232
3233
#ifdef CONFIG_ARM64_SME
3234
static bool has_sme_feature(const struct arm64_cpu_capabilities *cap, int scope)
3235
{
3236
return system_supports_sme() && has_user_cpuid_feature(cap, scope);
3237
}
3238
#endif
3239
3240
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3241
HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3242
HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3243
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3244
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3245
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3246
HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3247
HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3248
HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3249
HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3250
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3251
HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3252
HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3253
HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3254
HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3255
HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3256
HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3257
HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3258
HWCAP_CAP(ID_AA64ISAR3_EL1, FPRCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_FPRCVT),
3259
HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3260
HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3261
HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3262
HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3263
HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3264
HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3265
HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3266
HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3267
HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3268
HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3269
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3270
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3271
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3272
HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3273
HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3274
HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3275
HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3276
HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3277
HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3278
HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3279
HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3280
HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3281
#ifdef CONFIG_ARM64_SVE
3282
HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3283
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p2, CAP_HWCAP, KERNEL_HWCAP_SVE2P2),
3284
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3285
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3286
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3287
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3288
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, AES2, CAP_HWCAP, KERNEL_HWCAP_SVE_AES2),
3289
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3290
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3291
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, BFSCALE, CAP_HWCAP, KERNEL_HWCAP_SVE_BFSCALE),
3292
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3293
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3294
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3295
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3296
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3297
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3298
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3299
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F16MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_F16MM),
3300
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, EltPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_ELTPERM),
3301
#endif
3302
#ifdef CONFIG_ARM64_GCS
3303
HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3304
#endif
3305
HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3306
#ifdef CONFIG_ARM64_BTI
3307
HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3308
#endif
3309
#ifdef CONFIG_ARM64_PTR_AUTH
3310
HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3311
HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3312
#endif
3313
#ifdef CONFIG_ARM64_MTE
3314
HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3315
HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3316
HWCAP_CAP(ID_AA64PFR2_EL1, MTEFAR, IMP, CAP_HWCAP, KERNEL_HWCAP_MTE_FAR),
3317
HWCAP_CAP(ID_AA64PFR2_EL1, MTESTOREONLY, IMP, CAP_HWCAP , KERNEL_HWCAP_MTE_STORE_ONLY),
3318
#endif /* CONFIG_ARM64_MTE */
3319
HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3320
HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3321
HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3322
HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, CMPBR, CAP_HWCAP, KERNEL_HWCAP_CMPBR),
3323
HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3324
HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3325
HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3326
HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3327
HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3328
#ifdef CONFIG_ARM64_SME
3329
HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3330
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3331
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3332
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p2, CAP_HWCAP, KERNEL_HWCAP_SME2P2),
3333
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3334
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3335
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3336
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3337
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3338
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3339
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3340
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3341
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3342
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3343
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3344
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3345
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3346
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3347
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3348
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3349
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3350
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SBitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SBITPERM),
3351
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_AES),
3352
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SFEXPA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SFEXPA),
3353
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, STMOP, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_STMOP),
3354
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMOP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SMOP4),
3355
#endif /* CONFIG_ARM64_SME */
3356
HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3357
HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3358
HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3359
HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3360
HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM8, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM8),
3361
HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM4),
3362
HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3363
HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3364
#ifdef CONFIG_ARM64_POE
3365
HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3366
#endif
3367
{},
3368
};
3369
3370
#ifdef CONFIG_COMPAT
3371
static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3372
{
3373
/*
3374
* Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3375
* in line with that of arm32 as in vfp_init(). We make sure that the
3376
* check is future proof, by making sure value is non-zero.
3377
*/
3378
u32 mvfr1;
3379
3380
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3381
if (scope == SCOPE_SYSTEM)
3382
mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3383
else
3384
mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3385
3386
return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3387
cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3388
cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3389
}
3390
#endif
3391
3392
static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3393
#ifdef CONFIG_COMPAT
3394
HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3395
HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3396
/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3397
HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3398
HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3399
HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3400
HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3401
HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3402
HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3403
HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3404
HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3405
HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3406
HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3407
HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3408
HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3409
HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3410
HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3411
HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3412
#endif
3413
{},
3414
};
3415
3416
static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3417
{
3418
switch (cap->hwcap_type) {
3419
case CAP_HWCAP:
3420
cpu_set_feature(cap->hwcap);
3421
break;
3422
#ifdef CONFIG_COMPAT
3423
case CAP_COMPAT_HWCAP:
3424
compat_elf_hwcap |= (u32)cap->hwcap;
3425
break;
3426
case CAP_COMPAT_HWCAP2:
3427
compat_elf_hwcap2 |= (u32)cap->hwcap;
3428
break;
3429
#endif
3430
default:
3431
WARN_ON(1);
3432
break;
3433
}
3434
}
3435
3436
/* Check if we have a particular HWCAP enabled */
3437
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3438
{
3439
bool rc;
3440
3441
switch (cap->hwcap_type) {
3442
case CAP_HWCAP:
3443
rc = cpu_have_feature(cap->hwcap);
3444
break;
3445
#ifdef CONFIG_COMPAT
3446
case CAP_COMPAT_HWCAP:
3447
rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3448
break;
3449
case CAP_COMPAT_HWCAP2:
3450
rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3451
break;
3452
#endif
3453
default:
3454
WARN_ON(1);
3455
rc = false;
3456
}
3457
3458
return rc;
3459
}
3460
3461
static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3462
{
3463
/* We support emulation of accesses to CPU ID feature registers */
3464
cpu_set_named_feature(CPUID);
3465
for (; hwcaps->matches; hwcaps++)
3466
if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3467
cap_set_elf_hwcap(hwcaps);
3468
}
3469
3470
static void update_cpu_capabilities(u16 scope_mask)
3471
{
3472
int i;
3473
const struct arm64_cpu_capabilities *caps;
3474
3475
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3476
for (i = 0; i < ARM64_NCAPS; i++) {
3477
bool match_all = false;
3478
bool caps_set = false;
3479
bool boot_cpu = false;
3480
3481
caps = cpucap_ptrs[i];
3482
if (!caps || !(caps->type & scope_mask))
3483
continue;
3484
3485
match_all = cpucap_match_all_early_cpus(caps);
3486
caps_set = cpus_have_cap(caps->capability);
3487
boot_cpu = scope_mask & SCOPE_BOOT_CPU;
3488
3489
/*
3490
* Unless it's a match-all CPUs feature, avoid probing if
3491
* already detected.
3492
*/
3493
if (!match_all && caps_set)
3494
continue;
3495
3496
/*
3497
* A match-all CPUs capability is only set when probing the
3498
* boot CPU. It may be cleared subsequently if not detected on
3499
* secondary ones.
3500
*/
3501
if (match_all && !caps_set && !boot_cpu)
3502
continue;
3503
3504
if (!caps->matches(caps, cpucap_default_scope(caps))) {
3505
if (match_all)
3506
__clear_bit(caps->capability, system_cpucaps);
3507
continue;
3508
}
3509
3510
/*
3511
* Match-all CPUs capabilities are logged later when the
3512
* system capabilities are finalised.
3513
*/
3514
if (!match_all && caps->desc && !caps->cpus)
3515
pr_info("detected: %s\n", caps->desc);
3516
3517
__set_bit(caps->capability, system_cpucaps);
3518
3519
if (boot_cpu && (caps->type & SCOPE_BOOT_CPU))
3520
set_bit(caps->capability, boot_cpucaps);
3521
}
3522
}
3523
3524
/*
3525
* Enable all the available capabilities on this CPU. The capabilities
3526
* with BOOT_CPU scope are handled separately and hence skipped here.
3527
*/
3528
static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3529
{
3530
int i;
3531
u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3532
3533
for_each_available_cap(i) {
3534
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3535
3536
if (WARN_ON(!cap))
3537
continue;
3538
3539
if (!(cap->type & non_boot_scope))
3540
continue;
3541
3542
if (cap->cpu_enable)
3543
cap->cpu_enable(cap);
3544
}
3545
return 0;
3546
}
3547
3548
/*
3549
* Run through the enabled capabilities and enable() it on all active
3550
* CPUs
3551
*/
3552
static void __init enable_cpu_capabilities(u16 scope_mask)
3553
{
3554
int i;
3555
const struct arm64_cpu_capabilities *caps;
3556
bool boot_scope;
3557
3558
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3559
boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3560
3561
for (i = 0; i < ARM64_NCAPS; i++) {
3562
caps = cpucap_ptrs[i];
3563
if (!caps || !(caps->type & scope_mask) ||
3564
!cpus_have_cap(caps->capability))
3565
continue;
3566
3567
if (boot_scope && caps->cpu_enable)
3568
/*
3569
* Capabilities with SCOPE_BOOT_CPU scope are finalised
3570
* before any secondary CPU boots. Thus, each secondary
3571
* will enable the capability as appropriate via
3572
* check_local_cpu_capabilities(). The only exception is
3573
* the boot CPU, for which the capability must be
3574
* enabled here. This approach avoids costly
3575
* stop_machine() calls for this case.
3576
*/
3577
caps->cpu_enable(caps);
3578
}
3579
3580
/*
3581
* For all non-boot scope capabilities, use stop_machine()
3582
* as it schedules the work allowing us to modify PSTATE,
3583
* instead of on_each_cpu() which uses an IPI, giving us a
3584
* PSTATE that disappears when we return.
3585
*/
3586
if (!boot_scope)
3587
stop_machine(cpu_enable_non_boot_scope_capabilities,
3588
NULL, cpu_online_mask);
3589
}
3590
3591
/*
3592
* Run through the list of capabilities to check for conflicts.
3593
* If the system has already detected a capability, take necessary
3594
* action on this CPU.
3595
*/
3596
static void verify_local_cpu_caps(u16 scope_mask)
3597
{
3598
int i;
3599
bool cpu_has_cap, system_has_cap;
3600
const struct arm64_cpu_capabilities *caps;
3601
3602
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3603
3604
for (i = 0; i < ARM64_NCAPS; i++) {
3605
caps = cpucap_ptrs[i];
3606
if (!caps || !(caps->type & scope_mask))
3607
continue;
3608
3609
cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3610
system_has_cap = cpus_have_cap(caps->capability);
3611
3612
if (system_has_cap) {
3613
/*
3614
* Check if the new CPU misses an advertised feature,
3615
* which is not safe to miss.
3616
*/
3617
if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3618
break;
3619
/*
3620
* We have to issue cpu_enable() irrespective of
3621
* whether the CPU has it or not, as it is enabeld
3622
* system wide. It is upto the call back to take
3623
* appropriate action on this CPU.
3624
*/
3625
if (caps->cpu_enable)
3626
caps->cpu_enable(caps);
3627
} else {
3628
/*
3629
* Check if the CPU has this capability if it isn't
3630
* safe to have when the system doesn't.
3631
*/
3632
if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3633
break;
3634
}
3635
}
3636
3637
if (i < ARM64_NCAPS) {
3638
pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3639
smp_processor_id(), caps->capability,
3640
caps->desc, system_has_cap, cpu_has_cap);
3641
3642
if (cpucap_panic_on_conflict(caps))
3643
cpu_panic_kernel();
3644
else
3645
cpu_die_early();
3646
}
3647
}
3648
3649
/*
3650
* Check for CPU features that are used in early boot
3651
* based on the Boot CPU value.
3652
*/
3653
static void check_early_cpu_features(void)
3654
{
3655
verify_cpu_asid_bits();
3656
3657
verify_local_cpu_caps(SCOPE_BOOT_CPU);
3658
}
3659
3660
static void
3661
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3662
{
3663
3664
for (; caps->matches; caps++)
3665
if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3666
pr_crit("CPU%d: missing HWCAP: %s\n",
3667
smp_processor_id(), caps->desc);
3668
cpu_die_early();
3669
}
3670
}
3671
3672
static void verify_local_elf_hwcaps(void)
3673
{
3674
__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3675
3676
if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3677
__verify_local_elf_hwcaps(compat_elf_hwcaps);
3678
}
3679
3680
static void verify_sve_features(void)
3681
{
3682
unsigned long cpacr = cpacr_save_enable_kernel_sve();
3683
3684
if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3685
pr_crit("CPU%d: SVE: vector length support mismatch\n",
3686
smp_processor_id());
3687
cpu_die_early();
3688
}
3689
3690
cpacr_restore(cpacr);
3691
}
3692
3693
static void verify_sme_features(void)
3694
{
3695
unsigned long cpacr = cpacr_save_enable_kernel_sme();
3696
3697
if (vec_verify_vq_map(ARM64_VEC_SME)) {
3698
pr_crit("CPU%d: SME: vector length support mismatch\n",
3699
smp_processor_id());
3700
cpu_die_early();
3701
}
3702
3703
cpacr_restore(cpacr);
3704
}
3705
3706
static void verify_hyp_capabilities(void)
3707
{
3708
u64 safe_mmfr1, mmfr0, mmfr1;
3709
int parange, ipa_max;
3710
unsigned int safe_vmid_bits, vmid_bits;
3711
3712
if (!IS_ENABLED(CONFIG_KVM))
3713
return;
3714
3715
safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3716
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
3717
mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3718
3719
/* Verify VMID bits */
3720
safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3721
vmid_bits = get_vmid_bits(mmfr1);
3722
if (vmid_bits < safe_vmid_bits) {
3723
pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3724
cpu_die_early();
3725
}
3726
3727
/* Verify IPA range */
3728
parange = cpuid_feature_extract_unsigned_field(mmfr0,
3729
ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3730
ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3731
if (ipa_max < get_kvm_ipa_limit()) {
3732
pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3733
cpu_die_early();
3734
}
3735
}
3736
3737
static void verify_mpam_capabilities(void)
3738
{
3739
u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3740
u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3741
u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3742
3743
if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3744
FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3745
pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3746
cpu_die_early();
3747
}
3748
3749
cpu_idr = read_cpuid(MPAMIDR_EL1);
3750
sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3751
if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3752
FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3753
pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3754
cpu_die_early();
3755
}
3756
3757
cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3758
cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3759
sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3760
sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3761
if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3762
pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3763
cpu_die_early();
3764
}
3765
}
3766
3767
/*
3768
* Run through the enabled system capabilities and enable() it on this CPU.
3769
* The capabilities were decided based on the available CPUs at the boot time.
3770
* Any new CPU should match the system wide status of the capability. If the
3771
* new CPU doesn't have a capability which the system now has enabled, we
3772
* cannot do anything to fix it up and could cause unexpected failures. So
3773
* we park the CPU.
3774
*/
3775
static void verify_local_cpu_capabilities(void)
3776
{
3777
/*
3778
* The capabilities with SCOPE_BOOT_CPU are checked from
3779
* check_early_cpu_features(), as they need to be verified
3780
* on all secondary CPUs.
3781
*/
3782
verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3783
verify_local_elf_hwcaps();
3784
3785
if (system_supports_sve())
3786
verify_sve_features();
3787
3788
if (system_supports_sme())
3789
verify_sme_features();
3790
3791
if (is_hyp_mode_available())
3792
verify_hyp_capabilities();
3793
3794
if (system_supports_mpam())
3795
verify_mpam_capabilities();
3796
}
3797
3798
void check_local_cpu_capabilities(void)
3799
{
3800
/*
3801
* All secondary CPUs should conform to the early CPU features
3802
* in use by the kernel based on boot CPU.
3803
*/
3804
check_early_cpu_features();
3805
3806
/*
3807
* If we haven't finalised the system capabilities, this CPU gets
3808
* a chance to update the errata work arounds and local features.
3809
* Otherwise, this CPU should verify that it has all the system
3810
* advertised capabilities.
3811
*/
3812
if (!system_capabilities_finalized())
3813
update_cpu_capabilities(SCOPE_LOCAL_CPU);
3814
else
3815
verify_local_cpu_capabilities();
3816
}
3817
3818
bool this_cpu_has_cap(unsigned int n)
3819
{
3820
if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3821
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3822
3823
if (cap)
3824
return cap->matches(cap, SCOPE_LOCAL_CPU);
3825
}
3826
3827
return false;
3828
}
3829
EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3830
3831
/*
3832
* This helper function is used in a narrow window when,
3833
* - The system wide safe registers are set with all the SMP CPUs and,
3834
* - The SYSTEM_FEATURE system_cpucaps may not have been set.
3835
*/
3836
static bool __maybe_unused __system_matches_cap(unsigned int n)
3837
{
3838
if (n < ARM64_NCAPS) {
3839
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3840
3841
if (cap)
3842
return cap->matches(cap, SCOPE_SYSTEM);
3843
}
3844
return false;
3845
}
3846
3847
void cpu_set_feature(unsigned int num)
3848
{
3849
set_bit(num, elf_hwcap);
3850
}
3851
3852
bool cpu_have_feature(unsigned int num)
3853
{
3854
return test_bit(num, elf_hwcap);
3855
}
3856
EXPORT_SYMBOL_GPL(cpu_have_feature);
3857
3858
unsigned long cpu_get_elf_hwcap(void)
3859
{
3860
/*
3861
* We currently only populate the first 32 bits of AT_HWCAP. Please
3862
* note that for userspace compatibility we guarantee that bits 62
3863
* and 63 will always be returned as 0.
3864
*/
3865
return elf_hwcap[0];
3866
}
3867
3868
unsigned long cpu_get_elf_hwcap2(void)
3869
{
3870
return elf_hwcap[1];
3871
}
3872
3873
unsigned long cpu_get_elf_hwcap3(void)
3874
{
3875
return elf_hwcap[2];
3876
}
3877
3878
static void __init setup_boot_cpu_capabilities(void)
3879
{
3880
kvm_arm_target_impl_cpu_init();
3881
/*
3882
* The boot CPU's feature register values have been recorded. Detect
3883
* boot cpucaps and local cpucaps for the boot CPU, then enable and
3884
* patch alternatives for the available boot cpucaps.
3885
*/
3886
update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3887
enable_cpu_capabilities(SCOPE_BOOT_CPU);
3888
apply_boot_alternatives();
3889
}
3890
3891
void __init setup_boot_cpu_features(void)
3892
{
3893
/*
3894
* Initialize the indirect array of CPU capabilities pointers before we
3895
* handle the boot CPU.
3896
*/
3897
init_cpucap_indirect_list();
3898
3899
/*
3900
* Detect broken pseudo-NMI. Must be called _before_ the call to
3901
* setup_boot_cpu_capabilities() since it interacts with
3902
* can_use_gic_priorities().
3903
*/
3904
detect_system_supports_pseudo_nmi();
3905
3906
setup_boot_cpu_capabilities();
3907
}
3908
3909
static void __init setup_system_capabilities(void)
3910
{
3911
/*
3912
* The system-wide safe feature register values have been finalized.
3913
* Detect, enable, and patch alternatives for the available system
3914
* cpucaps.
3915
*/
3916
update_cpu_capabilities(SCOPE_SYSTEM);
3917
enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3918
apply_alternatives_all();
3919
3920
for (int i = 0; i < ARM64_NCAPS; i++) {
3921
const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3922
3923
if (!caps || !caps->desc)
3924
continue;
3925
3926
/*
3927
* Log any cpucaps with a cpumask as these aren't logged by
3928
* update_cpu_capabilities().
3929
*/
3930
if (caps->cpus && cpumask_any(caps->cpus) < nr_cpu_ids)
3931
pr_info("detected: %s on CPU%*pbl\n",
3932
caps->desc, cpumask_pr_args(caps->cpus));
3933
3934
/* Log match-all CPUs capabilities */
3935
if (cpucap_match_all_early_cpus(caps) &&
3936
cpus_have_cap(caps->capability))
3937
pr_info("detected: %s\n", caps->desc);
3938
}
3939
3940
/*
3941
* TTBR0 PAN doesn't have its own cpucap, so log it manually.
3942
*/
3943
if (system_uses_ttbr0_pan())
3944
pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3945
}
3946
3947
void __init setup_system_features(void)
3948
{
3949
setup_system_capabilities();
3950
3951
kpti_install_ng_mappings();
3952
3953
sve_setup();
3954
sme_setup();
3955
3956
/*
3957
* Check for sane CTR_EL0.CWG value.
3958
*/
3959
if (!cache_type_cwg())
3960
pr_warn("No Cache Writeback Granule information, assuming %d\n",
3961
ARCH_DMA_MINALIGN);
3962
}
3963
3964
void __init setup_user_features(void)
3965
{
3966
user_feature_fixup();
3967
3968
setup_elf_hwcaps(arm64_elf_hwcaps);
3969
3970
if (system_supports_32bit_el0()) {
3971
setup_elf_hwcaps(compat_elf_hwcaps);
3972
elf_hwcap_fixup();
3973
}
3974
3975
minsigstksz_setup();
3976
}
3977
3978
static int enable_mismatched_32bit_el0(unsigned int cpu)
3979
{
3980
/*
3981
* The first 32-bit-capable CPU we detected and so can no longer
3982
* be offlined by userspace. -1 indicates we haven't yet onlined
3983
* a 32-bit-capable CPU.
3984
*/
3985
static int lucky_winner = -1;
3986
3987
struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3988
bool cpu_32bit = false;
3989
3990
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
3991
if (!housekeeping_cpu(cpu, HK_TYPE_TICK))
3992
pr_info("Treating adaptive-ticks CPU %u as 64-bit only\n", cpu);
3993
else
3994
cpu_32bit = true;
3995
}
3996
3997
if (cpu_32bit) {
3998
cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3999
static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
4000
}
4001
4002
if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
4003
return 0;
4004
4005
if (lucky_winner >= 0)
4006
return 0;
4007
4008
/*
4009
* We've detected a mismatch. We need to keep one of our CPUs with
4010
* 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
4011
* every CPU in the system for a 32-bit task.
4012
*/
4013
lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
4014
cpu_active_mask);
4015
get_cpu_device(lucky_winner)->offline_disabled = true;
4016
setup_elf_hwcaps(compat_elf_hwcaps);
4017
elf_hwcap_fixup();
4018
pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
4019
cpu, lucky_winner);
4020
return 0;
4021
}
4022
4023
static int __init init_32bit_el0_mask(void)
4024
{
4025
if (!allow_mismatched_32bit_el0)
4026
return 0;
4027
4028
if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
4029
return -ENOMEM;
4030
4031
return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
4032
"arm64/mismatched_32bit_el0:online",
4033
enable_mismatched_32bit_el0, NULL);
4034
}
4035
subsys_initcall_sync(init_32bit_el0_mask);
4036
4037
static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
4038
{
4039
cpu_enable_swapper_cnp();
4040
}
4041
4042
/*
4043
* We emulate only the following system register space.
4044
* Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
4045
* See Table C5-6 System instruction encodings for System register accesses,
4046
* ARMv8 ARM(ARM DDI 0487A.f) for more details.
4047
*/
4048
static inline bool __attribute_const__ is_emulated(u32 id)
4049
{
4050
return (sys_reg_Op0(id) == 0x3 &&
4051
sys_reg_CRn(id) == 0x0 &&
4052
sys_reg_Op1(id) == 0x0 &&
4053
(sys_reg_CRm(id) == 0 ||
4054
((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
4055
}
4056
4057
/*
4058
* With CRm == 0, reg should be one of :
4059
* MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
4060
*/
4061
static inline int emulate_id_reg(u32 id, u64 *valp)
4062
{
4063
switch (id) {
4064
case SYS_MIDR_EL1:
4065
*valp = read_cpuid_id();
4066
break;
4067
case SYS_MPIDR_EL1:
4068
*valp = SYS_MPIDR_SAFE_VAL;
4069
break;
4070
case SYS_REVIDR_EL1:
4071
/* IMPLEMENTATION DEFINED values are emulated with 0 */
4072
*valp = 0;
4073
break;
4074
default:
4075
return -EINVAL;
4076
}
4077
4078
return 0;
4079
}
4080
4081
static int emulate_sys_reg(u32 id, u64 *valp)
4082
{
4083
struct arm64_ftr_reg *regp;
4084
4085
if (!is_emulated(id))
4086
return -EINVAL;
4087
4088
if (sys_reg_CRm(id) == 0)
4089
return emulate_id_reg(id, valp);
4090
4091
regp = get_arm64_ftr_reg_nowarn(id);
4092
if (regp)
4093
*valp = arm64_ftr_reg_user_value(regp);
4094
else
4095
/*
4096
* The untracked registers are either IMPLEMENTATION DEFINED
4097
* (e.g, ID_AFR0_EL1) or reserved RAZ.
4098
*/
4099
*valp = 0;
4100
return 0;
4101
}
4102
4103
int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
4104
{
4105
int rc;
4106
u64 val;
4107
4108
rc = emulate_sys_reg(sys_reg, &val);
4109
if (!rc) {
4110
pt_regs_write_reg(regs, rt, val);
4111
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
4112
}
4113
return rc;
4114
}
4115
4116
bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
4117
{
4118
u32 sys_reg, rt;
4119
4120
if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
4121
return false;
4122
4123
/*
4124
* sys_reg values are defined as used in mrs/msr instruction.
4125
* shift the imm value to get the encoding.
4126
*/
4127
sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
4128
rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
4129
return do_emulate_mrs(regs, sys_reg, rt) == 0;
4130
}
4131
4132
enum mitigation_state arm64_get_meltdown_state(void)
4133
{
4134
if (__meltdown_safe)
4135
return SPECTRE_UNAFFECTED;
4136
4137
if (arm64_kernel_unmapped_at_el0())
4138
return SPECTRE_MITIGATED;
4139
4140
return SPECTRE_VULNERABLE;
4141
}
4142
4143
ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
4144
char *buf)
4145
{
4146
switch (arm64_get_meltdown_state()) {
4147
case SPECTRE_UNAFFECTED:
4148
return sprintf(buf, "Not affected\n");
4149
4150
case SPECTRE_MITIGATED:
4151
return sprintf(buf, "Mitigation: PTI\n");
4152
4153
default:
4154
return sprintf(buf, "Vulnerable\n");
4155
}
4156
}
4157
4158