Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kernel/cpufeature.c
51025 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Contains CPU feature definitions
4
*
5
* Copyright (C) 2015 ARM Ltd.
6
*
7
* A note for the weary kernel hacker: the code here is confusing and hard to
8
* follow! That's partly because it's solving a nasty problem, but also because
9
* there's a little bit of over-abstraction that tends to obscure what's going
10
* on behind a maze of helper functions and macros.
11
*
12
* The basic problem is that hardware folks have started gluing together CPUs
13
* with distinct architectural features; in some cases even creating SoCs where
14
* user-visible instructions are available only on a subset of the available
15
* cores. We try to address this by snapshotting the feature registers of the
16
* boot CPU and comparing these with the feature registers of each secondary
17
* CPU when bringing them up. If there is a mismatch, then we update the
18
* snapshot state to indicate the lowest-common denominator of the feature,
19
* known as the "safe" value. This snapshot state can be queried to view the
20
* "sanitised" value of a feature register.
21
*
22
* The sanitised register values are used to decide which capabilities we
23
* have in the system. These may be in the form of traditional "hwcaps"
24
* advertised to userspace or internal "cpucaps" which are used to configure
25
* things like alternative patching and static keys. While a feature mismatch
26
* may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27
* may prevent a CPU from being onlined at all.
28
*
29
* Some implementation details worth remembering:
30
*
31
* - Mismatched features are *always* sanitised to a "safe" value, which
32
* usually indicates that the feature is not supported.
33
*
34
* - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35
* warning when onlining an offending CPU and the kernel will be tainted
36
* with TAINT_CPU_OUT_OF_SPEC.
37
*
38
* - Features marked as FTR_VISIBLE have their sanitised value visible to
39
* userspace. FTR_VISIBLE features in registers that are only visible
40
* to EL0 by trapping *must* have a corresponding HWCAP so that late
41
* onlining of CPUs cannot lead to features disappearing at runtime.
42
*
43
* - A "feature" is typically a 4-bit register field. A "capability" is the
44
* high-level description derived from the sanitised field value.
45
*
46
* - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47
* scheme for fields in ID registers") to understand when feature fields
48
* may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49
*
50
* - KVM exposes its own view of the feature registers to guest operating
51
* systems regardless of FTR_VISIBLE. This is typically driven from the
52
* sanitised register values to allow virtual CPUs to be migrated between
53
* arbitrary physical CPUs, but some features not present on the host are
54
* also advertised and emulated. Look at sys_reg_descs[] for the gory
55
* details.
56
*
57
* - If the arm64_ftr_bits[] for a register has a missing field, then this
58
* field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59
* This is stronger than FTR_HIDDEN and can be used to hide features from
60
* KVM guests.
61
*/
62
63
#define pr_fmt(fmt) "CPU features: " fmt
64
65
#include <linux/bsearch.h>
66
#include <linux/cpumask.h>
67
#include <linux/crash_dump.h>
68
#include <linux/kstrtox.h>
69
#include <linux/sort.h>
70
#include <linux/stop_machine.h>
71
#include <linux/sysfs.h>
72
#include <linux/types.h>
73
#include <linux/minmax.h>
74
#include <linux/mm.h>
75
#include <linux/cpu.h>
76
#include <linux/kasan.h>
77
#include <linux/percpu.h>
78
#include <linux/sched/isolation.h>
79
80
#include <asm/cpu.h>
81
#include <asm/cpufeature.h>
82
#include <asm/cpu_ops.h>
83
#include <asm/fpsimd.h>
84
#include <asm/hwcap.h>
85
#include <asm/insn.h>
86
#include <asm/kvm_host.h>
87
#include <asm/mmu.h>
88
#include <asm/mmu_context.h>
89
#include <asm/mte.h>
90
#include <asm/hypervisor.h>
91
#include <asm/processor.h>
92
#include <asm/smp.h>
93
#include <asm/sysreg.h>
94
#include <asm/traps.h>
95
#include <asm/vectors.h>
96
#include <asm/virt.h>
97
98
#include <asm/spectre.h>
99
/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
100
static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
101
102
#ifdef CONFIG_COMPAT
103
#define COMPAT_ELF_HWCAP_DEFAULT \
104
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
105
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
106
COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
107
COMPAT_HWCAP_LPAE)
108
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
109
unsigned int compat_elf_hwcap2 __read_mostly;
110
unsigned int compat_elf_hwcap3 __read_mostly;
111
#endif
112
113
DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
114
EXPORT_SYMBOL(system_cpucaps);
115
static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
116
117
DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
118
119
/*
120
* arm64_use_ng_mappings must be placed in the .data section, otherwise it
121
* ends up in the .bss section where it is initialized in early_map_kernel()
122
* after the MMU (with the idmap) was enabled. create_init_idmap() - which
123
* runs before early_map_kernel() and reads the variable via PTE_MAYBE_NG -
124
* may end up generating an incorrect idmap page table attributes.
125
*/
126
bool arm64_use_ng_mappings __read_mostly = false;
127
EXPORT_SYMBOL(arm64_use_ng_mappings);
128
129
DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
130
131
/*
132
* Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
133
* support it?
134
*/
135
static bool __read_mostly allow_mismatched_32bit_el0;
136
137
/*
138
* Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
139
* seen at least one CPU capable of 32-bit EL0.
140
*/
141
DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
142
143
/*
144
* Mask of CPUs supporting 32-bit EL0.
145
* Only valid if arm64_mismatched_32bit_el0 is enabled.
146
*/
147
static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
148
149
void dump_cpu_features(void)
150
{
151
/* file-wide pr_fmt adds "CPU features: " prefix */
152
pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
153
}
154
155
#define __ARM64_MAX_POSITIVE(reg, field) \
156
((reg##_##field##_SIGNED ? \
157
BIT(reg##_##field##_WIDTH - 1) : \
158
BIT(reg##_##field##_WIDTH)) - 1)
159
160
#define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
161
162
#define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
163
.sys_reg = SYS_##reg, \
164
.field_pos = reg##_##field##_SHIFT, \
165
.field_width = reg##_##field##_WIDTH, \
166
.sign = reg##_##field##_SIGNED, \
167
.min_field_value = min_value, \
168
.max_field_value = max_value,
169
170
/*
171
* ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
172
* an implicit maximum that depends on the sign-ess of the field.
173
*
174
* An unsigned field will be capped at all ones, while a signed field
175
* will be limited to the positive half only.
176
*/
177
#define ARM64_CPUID_FIELDS(reg, field, min_value) \
178
__ARM64_CPUID_FIELDS(reg, field, \
179
SYS_FIELD_VALUE(reg, field, min_value), \
180
__ARM64_MAX_POSITIVE(reg, field))
181
182
/*
183
* ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
184
* implicit minimal value to max_value. This should be used when
185
* matching a non-implemented property.
186
*/
187
#define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
188
__ARM64_CPUID_FIELDS(reg, field, \
189
__ARM64_MIN_NEGATIVE(reg, field), \
190
SYS_FIELD_VALUE(reg, field, max_value))
191
192
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
193
{ \
194
.sign = SIGNED, \
195
.visible = VISIBLE, \
196
.strict = STRICT, \
197
.type = TYPE, \
198
.shift = SHIFT, \
199
.width = WIDTH, \
200
.safe_val = SAFE_VAL, \
201
}
202
203
/* Define a feature with unsigned values */
204
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
205
__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
206
207
/* Define a feature with a signed value */
208
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
209
__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
210
211
#define ARM64_FTR_END \
212
{ \
213
.width = 0, \
214
}
215
216
static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
217
218
static bool __system_matches_cap(unsigned int n);
219
220
/*
221
* NOTE: Any changes to the visibility of features should be kept in
222
* sync with the documentation of the CPU feature register ABI.
223
*/
224
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
225
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
226
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
227
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
228
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
229
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
230
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
231
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
232
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
233
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
234
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
235
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
236
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
237
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
238
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
239
ARM64_FTR_END,
240
};
241
242
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
243
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LS64_SHIFT, 4, 0),
244
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
245
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
246
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
247
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
248
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
249
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
250
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
251
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
252
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
253
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
254
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
255
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
256
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
257
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
258
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
259
FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
260
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
261
FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
262
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
263
ARM64_FTR_END,
264
};
265
266
static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
267
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
268
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
269
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
270
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
271
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
272
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
273
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
274
FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
275
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
276
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
277
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
278
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
279
ARM64_FTR_END,
280
};
281
282
static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
283
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FPRCVT_SHIFT, 4, 0),
284
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_LSFE_SHIFT, 4, 0),
285
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
286
ARM64_FTR_END,
287
};
288
289
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
290
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
291
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
292
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
293
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
294
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
295
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
296
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
297
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
298
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
299
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
300
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
301
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
302
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
303
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
304
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
305
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
306
ARM64_FTR_END,
307
};
308
309
static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
310
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_DF2_SHIFT, 4, 0),
311
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
312
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
313
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_frac_SHIFT, 4, 0),
314
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
315
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
316
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
317
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
318
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
319
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
320
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
321
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
322
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
323
ARM64_FTR_END,
324
};
325
326
static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
327
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
328
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTEFAR_SHIFT, 4, ID_AA64PFR2_EL1_MTEFAR_NI),
329
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTESTOREONLY_SHIFT, 4, ID_AA64PFR2_EL1_MTESTOREONLY_NI),
330
ARM64_FTR_END,
331
};
332
333
static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
334
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
335
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
336
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
337
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
338
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
339
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F16MM_SHIFT, 4, 0),
340
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
341
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
342
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
343
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
344
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
345
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
346
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
347
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
348
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
349
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
350
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
351
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
352
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
353
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_EltPerm_SHIFT, 4, 0),
354
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
355
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
356
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
357
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
358
ARM64_FTR_END,
359
};
360
361
static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
362
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
364
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
366
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
368
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
370
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
372
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
373
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
374
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
375
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
376
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
377
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
378
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
379
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
380
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
381
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
382
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
383
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
384
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
385
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
386
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
387
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
388
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
389
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
390
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
391
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
392
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
393
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
394
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
395
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
396
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
397
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
398
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
399
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SBitPerm_SHIFT, 1, 0),
400
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
401
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_AES_SHIFT, 1, 0),
402
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
403
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SFEXPA_SHIFT, 1, 0),
404
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
405
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_STMOP_SHIFT, 1, 0),
406
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
407
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMOP4_SHIFT, 1, 0),
408
ARM64_FTR_END,
409
};
410
411
static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
412
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
413
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
414
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
415
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
416
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM8_SHIFT, 1, 0),
417
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM4_SHIFT, 1, 0),
418
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
419
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
420
ARM64_FTR_END,
421
};
422
423
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
424
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
425
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
426
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
427
/*
428
* Page size not being supported at Stage-2 is not fatal. You
429
* just give up KVM if PAGE_SIZE isn't supported there. Go fix
430
* your favourite nesting hypervisor.
431
*
432
* There is a small corner case where the hypervisor explicitly
433
* advertises a given granule size at Stage-2 (value 2) on some
434
* vCPUs, and uses the fallback to Stage-1 (value 0) for other
435
* vCPUs. Although this is not forbidden by the architecture, it
436
* indicates that the hypervisor is being silly (or buggy).
437
*
438
* We make no effort to cope with this and pretend that if these
439
* fields are inconsistent across vCPUs, then it isn't worth
440
* trying to bring KVM up.
441
*/
442
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
443
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
444
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
445
/*
446
* We already refuse to boot CPUs that don't support our configured
447
* page size, so we can only detect mismatches for a page size other
448
* than the one we're currently using. Unfortunately, SoCs like this
449
* exist in the wild so, even though we don't like it, we'll have to go
450
* along with it and treat them as non-strict.
451
*/
452
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
453
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
454
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
455
456
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
457
/* Linux shouldn't care about secure memory */
458
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
459
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
460
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
461
/*
462
* Differing PARange is fine as long as all peripherals and memory are mapped
463
* within the minimum PARange of all CPUs
464
*/
465
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
466
ARM64_FTR_END,
467
};
468
469
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
470
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
471
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
472
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
473
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
474
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
475
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
476
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
477
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
478
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
479
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
480
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
481
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
482
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
483
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
484
ARM64_FTR_END,
485
};
486
487
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
488
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
489
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
490
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
491
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
492
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
493
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
494
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
495
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
496
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
497
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
498
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
499
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
500
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
501
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
502
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
503
ARM64_FTR_END,
504
};
505
506
static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
507
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
508
FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
509
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
510
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_SCTLRX_SHIFT, 4, 0),
511
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
512
ARM64_FTR_END,
513
};
514
515
static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
516
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
517
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_NV_frac_SHIFT, 4, 0),
518
ARM64_FTR_END,
519
};
520
521
static const struct arm64_ftr_bits ftr_ctr[] = {
522
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
523
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
524
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
525
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
526
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
527
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
528
/*
529
* Linux can handle differing I-cache policies. Userspace JITs will
530
* make use of *minLine.
531
* If we have differing I-cache policies, report it as the weakest - VIPT.
532
*/
533
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
534
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
535
ARM64_FTR_END,
536
};
537
538
static struct arm64_ftr_override __ro_after_init no_override = { };
539
540
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
541
.name = "SYS_CTR_EL0",
542
.ftr_bits = ftr_ctr,
543
.override = &no_override,
544
};
545
546
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
547
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
548
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
549
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
550
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
551
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
552
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
553
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
554
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
555
ARM64_FTR_END,
556
};
557
558
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
559
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
560
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
561
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
562
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
563
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
564
/*
565
* We can instantiate multiple PMU instances with different levels
566
* of support.
567
*/
568
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
569
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
570
ARM64_FTR_END,
571
};
572
573
static const struct arm64_ftr_bits ftr_mvfr0[] = {
574
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
575
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
576
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
577
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
578
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
579
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
580
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
581
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
582
ARM64_FTR_END,
583
};
584
585
static const struct arm64_ftr_bits ftr_mvfr1[] = {
586
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
587
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
588
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
589
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
590
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
591
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
592
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
593
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
594
ARM64_FTR_END,
595
};
596
597
static const struct arm64_ftr_bits ftr_mvfr2[] = {
598
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
599
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
600
ARM64_FTR_END,
601
};
602
603
static const struct arm64_ftr_bits ftr_dczid[] = {
604
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
605
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
606
ARM64_FTR_END,
607
};
608
609
static const struct arm64_ftr_bits ftr_gmid[] = {
610
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
611
ARM64_FTR_END,
612
};
613
614
static const struct arm64_ftr_bits ftr_id_isar0[] = {
615
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
616
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
617
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
618
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
619
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
620
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
621
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
622
ARM64_FTR_END,
623
};
624
625
static const struct arm64_ftr_bits ftr_id_isar5[] = {
626
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
627
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
628
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
629
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
630
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
631
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
632
ARM64_FTR_END,
633
};
634
635
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
636
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
637
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
638
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
639
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
640
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
641
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
642
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
643
644
/*
645
* SpecSEI = 1 indicates that the PE might generate an SError on an
646
* external abort on speculative read. It is safe to assume that an
647
* SError might be generated than it will not be. Hence it has been
648
* classified as FTR_HIGHER_SAFE.
649
*/
650
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
651
ARM64_FTR_END,
652
};
653
654
static const struct arm64_ftr_bits ftr_id_isar4[] = {
655
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
656
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
657
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
658
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
659
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
660
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
661
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
662
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
663
ARM64_FTR_END,
664
};
665
666
static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
667
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
668
ARM64_FTR_END,
669
};
670
671
static const struct arm64_ftr_bits ftr_id_isar6[] = {
672
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
673
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
674
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
675
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
676
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
677
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
678
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
679
ARM64_FTR_END,
680
};
681
682
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
683
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
684
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
685
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
686
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
687
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
688
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
689
ARM64_FTR_END,
690
};
691
692
static const struct arm64_ftr_bits ftr_id_pfr1[] = {
693
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
694
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
695
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
696
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
697
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
698
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
699
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
700
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
701
ARM64_FTR_END,
702
};
703
704
static const struct arm64_ftr_bits ftr_id_pfr2[] = {
705
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
706
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
707
ARM64_FTR_END,
708
};
709
710
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
711
/* [31:28] TraceFilt */
712
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
713
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
714
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
715
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
716
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
717
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
718
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
719
ARM64_FTR_END,
720
};
721
722
static const struct arm64_ftr_bits ftr_id_dfr1[] = {
723
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
724
ARM64_FTR_END,
725
};
726
727
static const struct arm64_ftr_bits ftr_mpamidr[] = {
728
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
729
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
730
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
731
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
732
ARM64_FTR_END,
733
};
734
735
/*
736
* Common ftr bits for a 32bit register with all hidden, strict
737
* attributes, with 4bit feature fields and a default safe value of
738
* 0. Covers the following 32bit registers:
739
* id_isar[1-3], id_mmfr[1-3]
740
*/
741
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
742
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
743
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
744
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
745
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
746
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
747
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
748
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
749
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
750
ARM64_FTR_END,
751
};
752
753
/* Table for a single 32bit feature value */
754
static const struct arm64_ftr_bits ftr_single32[] = {
755
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
756
ARM64_FTR_END,
757
};
758
759
static const struct arm64_ftr_bits ftr_raz[] = {
760
ARM64_FTR_END,
761
};
762
763
#define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
764
.sys_id = id, \
765
.reg = &(struct arm64_ftr_reg){ \
766
.name = id_str, \
767
.override = (ovr), \
768
.ftr_bits = &((table)[0]), \
769
}}
770
771
#define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
772
__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
773
774
#define ARM64_FTR_REG(id, table) \
775
__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
776
777
struct arm64_ftr_override __read_mostly id_aa64mmfr0_override;
778
struct arm64_ftr_override __read_mostly id_aa64mmfr1_override;
779
struct arm64_ftr_override __read_mostly id_aa64mmfr2_override;
780
struct arm64_ftr_override __read_mostly id_aa64pfr0_override;
781
struct arm64_ftr_override __read_mostly id_aa64pfr1_override;
782
struct arm64_ftr_override __read_mostly id_aa64zfr0_override;
783
struct arm64_ftr_override __read_mostly id_aa64smfr0_override;
784
struct arm64_ftr_override __read_mostly id_aa64isar1_override;
785
struct arm64_ftr_override __read_mostly id_aa64isar2_override;
786
787
struct arm64_ftr_override __read_mostly arm64_sw_feature_override;
788
789
static const struct __ftr_reg_entry {
790
u32 sys_id;
791
struct arm64_ftr_reg *reg;
792
} arm64_ftr_regs[] = {
793
794
/* Op1 = 0, CRn = 0, CRm = 1 */
795
ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
796
ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
797
ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
798
ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
799
ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
800
ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
801
ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
802
803
/* Op1 = 0, CRn = 0, CRm = 2 */
804
ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
805
ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
806
ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
807
ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
808
ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
809
ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
810
ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
811
ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
812
813
/* Op1 = 0, CRn = 0, CRm = 3 */
814
ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
815
ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
816
ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
817
ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
818
ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
819
ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
820
821
/* Op1 = 0, CRn = 0, CRm = 4 */
822
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
823
&id_aa64pfr0_override),
824
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
825
&id_aa64pfr1_override),
826
ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
827
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
828
&id_aa64zfr0_override),
829
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
830
&id_aa64smfr0_override),
831
ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
832
833
/* Op1 = 0, CRn = 0, CRm = 5 */
834
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
835
ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
836
837
/* Op1 = 0, CRn = 0, CRm = 6 */
838
ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
839
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
840
&id_aa64isar1_override),
841
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
842
&id_aa64isar2_override),
843
ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
844
845
/* Op1 = 0, CRn = 0, CRm = 7 */
846
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
847
&id_aa64mmfr0_override),
848
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
849
&id_aa64mmfr1_override),
850
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
851
&id_aa64mmfr2_override),
852
ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
853
ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
854
855
/* Op1 = 0, CRn = 10, CRm = 4 */
856
ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
857
858
/* Op1 = 1, CRn = 0, CRm = 0 */
859
ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
860
861
/* Op1 = 3, CRn = 0, CRm = 0 */
862
{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
863
ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
864
865
/* Op1 = 3, CRn = 14, CRm = 0 */
866
ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
867
};
868
869
static int search_cmp_ftr_reg(const void *id, const void *regp)
870
{
871
return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
872
}
873
874
/*
875
* get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
876
* its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
877
* ascending order of sys_id, we use binary search to find a matching
878
* entry.
879
*
880
* returns - Upon success, matching ftr_reg entry for id.
881
* - NULL on failure. It is upto the caller to decide
882
* the impact of a failure.
883
*/
884
static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
885
{
886
const struct __ftr_reg_entry *ret;
887
888
ret = bsearch((const void *)(unsigned long)sys_id,
889
arm64_ftr_regs,
890
ARRAY_SIZE(arm64_ftr_regs),
891
sizeof(arm64_ftr_regs[0]),
892
search_cmp_ftr_reg);
893
if (ret)
894
return ret->reg;
895
return NULL;
896
}
897
898
/*
899
* get_arm64_ftr_reg - Looks up a feature register entry using
900
* its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
901
*
902
* returns - Upon success, matching ftr_reg entry for id.
903
* - NULL on failure but with an WARN_ON().
904
*/
905
struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
906
{
907
struct arm64_ftr_reg *reg;
908
909
reg = get_arm64_ftr_reg_nowarn(sys_id);
910
911
/*
912
* Requesting a non-existent register search is an error. Warn
913
* and let the caller handle it.
914
*/
915
WARN_ON(!reg);
916
return reg;
917
}
918
919
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
920
s64 ftr_val)
921
{
922
u64 mask = arm64_ftr_mask(ftrp);
923
924
reg &= ~mask;
925
reg |= (ftr_val << ftrp->shift) & mask;
926
return reg;
927
}
928
929
s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
930
s64 cur)
931
{
932
s64 ret = 0;
933
934
switch (ftrp->type) {
935
case FTR_EXACT:
936
ret = ftrp->safe_val;
937
break;
938
case FTR_LOWER_SAFE:
939
ret = min(new, cur);
940
break;
941
case FTR_HIGHER_OR_ZERO_SAFE:
942
if (!cur || !new)
943
break;
944
fallthrough;
945
case FTR_HIGHER_SAFE:
946
ret = max(new, cur);
947
break;
948
default:
949
BUG();
950
}
951
952
return ret;
953
}
954
955
static void __init sort_ftr_regs(void)
956
{
957
unsigned int i;
958
959
for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
960
const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
961
const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
962
unsigned int j = 0;
963
964
/*
965
* Features here must be sorted in descending order with respect
966
* to their shift values and should not overlap with each other.
967
*/
968
for (; ftr_bits->width != 0; ftr_bits++, j++) {
969
unsigned int width = ftr_reg->ftr_bits[j].width;
970
unsigned int shift = ftr_reg->ftr_bits[j].shift;
971
unsigned int prev_shift;
972
973
WARN((shift + width) > 64,
974
"%s has invalid feature at shift %d\n",
975
ftr_reg->name, shift);
976
977
/*
978
* Skip the first feature. There is nothing to
979
* compare against for now.
980
*/
981
if (j == 0)
982
continue;
983
984
prev_shift = ftr_reg->ftr_bits[j - 1].shift;
985
WARN((shift + width) > prev_shift,
986
"%s has feature overlap at shift %d\n",
987
ftr_reg->name, shift);
988
}
989
990
/*
991
* Skip the first register. There is nothing to
992
* compare against for now.
993
*/
994
if (i == 0)
995
continue;
996
/*
997
* Registers here must be sorted in ascending order with respect
998
* to sys_id for subsequent binary search in get_arm64_ftr_reg()
999
* to work correctly.
1000
*/
1001
BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
1002
}
1003
}
1004
1005
/*
1006
* Initialise the CPU feature register from Boot CPU values.
1007
* Also initialises the strict_mask for the register.
1008
* Any bits that are not covered by an arm64_ftr_bits entry are considered
1009
* RES0 for the system-wide value, and must strictly match.
1010
*/
1011
static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
1012
{
1013
u64 val = 0;
1014
u64 strict_mask = ~0x0ULL;
1015
u64 user_mask = 0;
1016
u64 valid_mask = 0;
1017
1018
const struct arm64_ftr_bits *ftrp;
1019
struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
1020
1021
if (!reg)
1022
return;
1023
1024
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1025
u64 ftr_mask = arm64_ftr_mask(ftrp);
1026
s64 ftr_new = arm64_ftr_value(ftrp, new);
1027
s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
1028
1029
if ((ftr_mask & reg->override->mask) == ftr_mask) {
1030
s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
1031
char *str = NULL;
1032
1033
if (ftr_ovr != tmp) {
1034
/* Unsafe, remove the override */
1035
reg->override->mask &= ~ftr_mask;
1036
reg->override->val &= ~ftr_mask;
1037
tmp = ftr_ovr;
1038
str = "ignoring override";
1039
} else if (ftr_new != tmp) {
1040
/* Override was valid */
1041
ftr_new = tmp;
1042
str = "forced";
1043
} else {
1044
/* Override was the safe value */
1045
str = "already set";
1046
}
1047
1048
pr_warn("%s[%d:%d]: %s to %llx\n",
1049
reg->name,
1050
ftrp->shift + ftrp->width - 1,
1051
ftrp->shift, str,
1052
tmp & (BIT(ftrp->width) - 1));
1053
} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1054
reg->override->val &= ~ftr_mask;
1055
pr_warn("%s[%d:%d]: impossible override, ignored\n",
1056
reg->name,
1057
ftrp->shift + ftrp->width - 1,
1058
ftrp->shift);
1059
}
1060
1061
val = arm64_ftr_set_value(ftrp, val, ftr_new);
1062
1063
valid_mask |= ftr_mask;
1064
if (!ftrp->strict)
1065
strict_mask &= ~ftr_mask;
1066
if (ftrp->visible)
1067
user_mask |= ftr_mask;
1068
else
1069
reg->user_val = arm64_ftr_set_value(ftrp,
1070
reg->user_val,
1071
ftrp->safe_val);
1072
}
1073
1074
val &= valid_mask;
1075
1076
reg->sys_val = val;
1077
reg->strict_mask = strict_mask;
1078
reg->user_mask = user_mask;
1079
}
1080
1081
extern const struct arm64_cpu_capabilities arm64_errata[];
1082
static const struct arm64_cpu_capabilities arm64_features[];
1083
1084
static void __init
1085
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1086
{
1087
for (; caps->matches; caps++) {
1088
if (WARN(caps->capability >= ARM64_NCAPS,
1089
"Invalid capability %d\n", caps->capability))
1090
continue;
1091
if (WARN(cpucap_ptrs[caps->capability],
1092
"Duplicate entry for capability %d\n",
1093
caps->capability))
1094
continue;
1095
cpucap_ptrs[caps->capability] = caps;
1096
}
1097
}
1098
1099
static void __init init_cpucap_indirect_list(void)
1100
{
1101
init_cpucap_indirect_list_from_array(arm64_features);
1102
init_cpucap_indirect_list_from_array(arm64_errata);
1103
}
1104
1105
static void __init setup_boot_cpu_capabilities(void);
1106
1107
static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1108
{
1109
init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1110
init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1111
init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1112
init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1113
init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1114
init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1115
init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1116
init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1117
init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1118
init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1119
init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1120
init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1121
init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1122
init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1123
init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1124
init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1125
init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1126
init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1127
init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1128
init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1129
init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1130
}
1131
1132
#ifdef CONFIG_ARM64_PSEUDO_NMI
1133
static bool enable_pseudo_nmi;
1134
1135
static int __init early_enable_pseudo_nmi(char *p)
1136
{
1137
return kstrtobool(p, &enable_pseudo_nmi);
1138
}
1139
early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1140
1141
static __init void detect_system_supports_pseudo_nmi(void)
1142
{
1143
struct device_node *np;
1144
1145
if (!enable_pseudo_nmi)
1146
return;
1147
1148
/*
1149
* Detect broken MediaTek firmware that doesn't properly save and
1150
* restore GIC priorities.
1151
*/
1152
np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1153
if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1154
pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1155
enable_pseudo_nmi = false;
1156
}
1157
of_node_put(np);
1158
}
1159
#else /* CONFIG_ARM64_PSEUDO_NMI */
1160
static inline void detect_system_supports_pseudo_nmi(void) { }
1161
#endif
1162
1163
void __init init_cpu_features(struct cpuinfo_arm64 *info)
1164
{
1165
/* Before we start using the tables, make sure it is sorted */
1166
sort_ftr_regs();
1167
1168
init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1169
init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1170
init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1171
init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1172
init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1173
init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1174
init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1175
init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1176
init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1177
init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1178
init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1179
init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1180
init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1181
init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1182
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1183
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1184
init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1185
init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1186
init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1187
init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1188
1189
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1190
init_32bit_cpu_features(&info->aarch32);
1191
1192
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1193
id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1194
unsigned long cpacr = cpacr_save_enable_kernel_sve();
1195
1196
vec_init_vq_map(ARM64_VEC_SVE);
1197
1198
cpacr_restore(cpacr);
1199
}
1200
1201
if (IS_ENABLED(CONFIG_ARM64_SME) &&
1202
id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1203
unsigned long cpacr = cpacr_save_enable_kernel_sme();
1204
1205
vec_init_vq_map(ARM64_VEC_SME);
1206
1207
cpacr_restore(cpacr);
1208
}
1209
1210
if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1211
info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1212
init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1213
}
1214
1215
if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1216
init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1217
}
1218
1219
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1220
{
1221
const struct arm64_ftr_bits *ftrp;
1222
1223
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1224
s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1225
s64 ftr_new = arm64_ftr_value(ftrp, new);
1226
1227
if (ftr_cur == ftr_new)
1228
continue;
1229
/* Find a safe value */
1230
ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1231
reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1232
}
1233
1234
}
1235
1236
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1237
{
1238
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1239
1240
if (!regp)
1241
return 0;
1242
1243
update_cpu_ftr_reg(regp, val);
1244
if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1245
return 0;
1246
pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1247
regp->name, boot, cpu, val);
1248
return 1;
1249
}
1250
1251
static void relax_cpu_ftr_reg(u32 sys_id, int field)
1252
{
1253
const struct arm64_ftr_bits *ftrp;
1254
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1255
1256
if (!regp)
1257
return;
1258
1259
for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1260
if (ftrp->shift == field) {
1261
regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1262
break;
1263
}
1264
}
1265
1266
/* Bogus field? */
1267
WARN_ON(!ftrp->width);
1268
}
1269
1270
static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1271
struct cpuinfo_arm64 *boot)
1272
{
1273
static bool boot_cpu_32bit_regs_overridden = false;
1274
1275
if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1276
return;
1277
1278
if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1279
return;
1280
1281
boot->aarch32 = info->aarch32;
1282
init_32bit_cpu_features(&boot->aarch32);
1283
boot_cpu_32bit_regs_overridden = true;
1284
}
1285
1286
static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1287
struct cpuinfo_32bit *boot)
1288
{
1289
int taint = 0;
1290
u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1291
1292
/*
1293
* If we don't have AArch32 at EL1, then relax the strictness of
1294
* EL1-dependent register fields to avoid spurious sanity check fails.
1295
*/
1296
if (!id_aa64pfr0_32bit_el1(pfr0)) {
1297
relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1298
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1299
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1300
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1301
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1302
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1303
}
1304
1305
taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1306
info->reg_id_dfr0, boot->reg_id_dfr0);
1307
taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1308
info->reg_id_dfr1, boot->reg_id_dfr1);
1309
taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1310
info->reg_id_isar0, boot->reg_id_isar0);
1311
taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1312
info->reg_id_isar1, boot->reg_id_isar1);
1313
taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1314
info->reg_id_isar2, boot->reg_id_isar2);
1315
taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1316
info->reg_id_isar3, boot->reg_id_isar3);
1317
taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1318
info->reg_id_isar4, boot->reg_id_isar4);
1319
taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1320
info->reg_id_isar5, boot->reg_id_isar5);
1321
taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1322
info->reg_id_isar6, boot->reg_id_isar6);
1323
1324
/*
1325
* Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1326
* ACTLR formats could differ across CPUs and therefore would have to
1327
* be trapped for virtualization anyway.
1328
*/
1329
taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1330
info->reg_id_mmfr0, boot->reg_id_mmfr0);
1331
taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1332
info->reg_id_mmfr1, boot->reg_id_mmfr1);
1333
taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1334
info->reg_id_mmfr2, boot->reg_id_mmfr2);
1335
taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1336
info->reg_id_mmfr3, boot->reg_id_mmfr3);
1337
taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1338
info->reg_id_mmfr4, boot->reg_id_mmfr4);
1339
taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1340
info->reg_id_mmfr5, boot->reg_id_mmfr5);
1341
taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1342
info->reg_id_pfr0, boot->reg_id_pfr0);
1343
taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1344
info->reg_id_pfr1, boot->reg_id_pfr1);
1345
taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1346
info->reg_id_pfr2, boot->reg_id_pfr2);
1347
taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1348
info->reg_mvfr0, boot->reg_mvfr0);
1349
taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1350
info->reg_mvfr1, boot->reg_mvfr1);
1351
taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1352
info->reg_mvfr2, boot->reg_mvfr2);
1353
1354
return taint;
1355
}
1356
1357
/*
1358
* Update system wide CPU feature registers with the values from a
1359
* non-boot CPU. Also performs SANITY checks to make sure that there
1360
* aren't any insane variations from that of the boot CPU.
1361
*/
1362
void update_cpu_features(int cpu,
1363
struct cpuinfo_arm64 *info,
1364
struct cpuinfo_arm64 *boot)
1365
{
1366
int taint = 0;
1367
1368
/*
1369
* The kernel can handle differing I-cache policies, but otherwise
1370
* caches should look identical. Userspace JITs will make use of
1371
* *minLine.
1372
*/
1373
taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1374
info->reg_ctr, boot->reg_ctr);
1375
1376
/*
1377
* Userspace may perform DC ZVA instructions. Mismatched block sizes
1378
* could result in too much or too little memory being zeroed if a
1379
* process is preempted and migrated between CPUs.
1380
*/
1381
taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1382
info->reg_dczid, boot->reg_dczid);
1383
1384
/* If different, timekeeping will be broken (especially with KVM) */
1385
taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1386
info->reg_cntfrq, boot->reg_cntfrq);
1387
1388
/*
1389
* The kernel uses self-hosted debug features and expects CPUs to
1390
* support identical debug features. We presently need CTX_CMPs, WRPs,
1391
* and BRPs to be identical.
1392
* ID_AA64DFR1 is currently RES0.
1393
*/
1394
taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1395
info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1396
taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1397
info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1398
/*
1399
* Even in big.LITTLE, processors should be identical instruction-set
1400
* wise.
1401
*/
1402
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1403
info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1404
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1405
info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1406
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1407
info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1408
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1409
info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1410
1411
/*
1412
* Differing PARange support is fine as long as all peripherals and
1413
* memory are mapped within the minimum PARange of all CPUs.
1414
* Linux should not care about secure memory.
1415
*/
1416
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1417
info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1418
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1419
info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1420
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1421
info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1422
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1423
info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1424
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR4_EL1, cpu,
1425
info->reg_id_aa64mmfr4, boot->reg_id_aa64mmfr4);
1426
1427
taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1428
info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1429
taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1430
info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1431
taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1432
info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1433
1434
taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1435
info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1436
1437
taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1438
info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1439
1440
taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1441
info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1442
1443
/* Probe vector lengths */
1444
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1445
id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1446
if (!system_capabilities_finalized()) {
1447
unsigned long cpacr = cpacr_save_enable_kernel_sve();
1448
1449
vec_update_vq_map(ARM64_VEC_SVE);
1450
1451
cpacr_restore(cpacr);
1452
}
1453
}
1454
1455
if (IS_ENABLED(CONFIG_ARM64_SME) &&
1456
id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1457
unsigned long cpacr = cpacr_save_enable_kernel_sme();
1458
1459
/* Probe vector lengths */
1460
if (!system_capabilities_finalized())
1461
vec_update_vq_map(ARM64_VEC_SME);
1462
1463
cpacr_restore(cpacr);
1464
}
1465
1466
if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1467
info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1468
taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1469
info->reg_mpamidr, boot->reg_mpamidr);
1470
}
1471
1472
/*
1473
* The kernel uses the LDGM/STGM instructions and the number of tags
1474
* they read/write depends on the GMID_EL1.BS field. Check that the
1475
* value is the same on all CPUs.
1476
*/
1477
if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1478
id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1479
taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1480
info->reg_gmid, boot->reg_gmid);
1481
}
1482
1483
/*
1484
* If we don't have AArch32 at all then skip the checks entirely
1485
* as the register values may be UNKNOWN and we're not going to be
1486
* using them for anything.
1487
*
1488
* This relies on a sanitised view of the AArch64 ID registers
1489
* (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1490
*/
1491
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1492
lazy_init_32bit_cpu_features(info, boot);
1493
taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1494
&boot->aarch32);
1495
}
1496
1497
/*
1498
* Mismatched CPU features are a recipe for disaster. Don't even
1499
* pretend to support them.
1500
*/
1501
if (taint) {
1502
pr_warn_once("Unsupported CPU feature variation detected.\n");
1503
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1504
}
1505
}
1506
1507
u64 read_sanitised_ftr_reg(u32 id)
1508
{
1509
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1510
1511
if (!regp)
1512
return 0;
1513
return regp->sys_val;
1514
}
1515
EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1516
1517
#define read_sysreg_case(r) \
1518
case r: val = read_sysreg_s(r); break;
1519
1520
/*
1521
* __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1522
* Read the system register on the current CPU
1523
*/
1524
u64 __read_sysreg_by_encoding(u32 sys_id)
1525
{
1526
struct arm64_ftr_reg *regp;
1527
u64 val;
1528
1529
switch (sys_id) {
1530
read_sysreg_case(SYS_ID_PFR0_EL1);
1531
read_sysreg_case(SYS_ID_PFR1_EL1);
1532
read_sysreg_case(SYS_ID_PFR2_EL1);
1533
read_sysreg_case(SYS_ID_DFR0_EL1);
1534
read_sysreg_case(SYS_ID_DFR1_EL1);
1535
read_sysreg_case(SYS_ID_MMFR0_EL1);
1536
read_sysreg_case(SYS_ID_MMFR1_EL1);
1537
read_sysreg_case(SYS_ID_MMFR2_EL1);
1538
read_sysreg_case(SYS_ID_MMFR3_EL1);
1539
read_sysreg_case(SYS_ID_MMFR4_EL1);
1540
read_sysreg_case(SYS_ID_MMFR5_EL1);
1541
read_sysreg_case(SYS_ID_ISAR0_EL1);
1542
read_sysreg_case(SYS_ID_ISAR1_EL1);
1543
read_sysreg_case(SYS_ID_ISAR2_EL1);
1544
read_sysreg_case(SYS_ID_ISAR3_EL1);
1545
read_sysreg_case(SYS_ID_ISAR4_EL1);
1546
read_sysreg_case(SYS_ID_ISAR5_EL1);
1547
read_sysreg_case(SYS_ID_ISAR6_EL1);
1548
read_sysreg_case(SYS_MVFR0_EL1);
1549
read_sysreg_case(SYS_MVFR1_EL1);
1550
read_sysreg_case(SYS_MVFR2_EL1);
1551
1552
read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1553
read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1554
read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1555
read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1556
read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1557
read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1558
read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1559
read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1560
read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1561
read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1562
read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1563
read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1564
read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1565
read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1566
read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1567
read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1568
read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1569
1570
read_sysreg_case(SYS_CNTFRQ_EL0);
1571
read_sysreg_case(SYS_CTR_EL0);
1572
read_sysreg_case(SYS_DCZID_EL0);
1573
1574
default:
1575
BUG();
1576
return 0;
1577
}
1578
1579
regp = get_arm64_ftr_reg(sys_id);
1580
if (regp) {
1581
val &= ~regp->override->mask;
1582
val |= (regp->override->val & regp->override->mask);
1583
}
1584
1585
return val;
1586
}
1587
1588
#include <linux/irqchip/arm-gic-v3.h>
1589
1590
static bool
1591
has_always(const struct arm64_cpu_capabilities *entry, int scope)
1592
{
1593
return true;
1594
}
1595
1596
static bool
1597
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1598
{
1599
int val, min, max;
1600
u64 tmp;
1601
1602
val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1603
entry->field_width,
1604
entry->sign);
1605
1606
tmp = entry->min_field_value;
1607
tmp <<= entry->field_pos;
1608
1609
min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1610
entry->field_width,
1611
entry->sign);
1612
1613
tmp = entry->max_field_value;
1614
tmp <<= entry->field_pos;
1615
1616
max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1617
entry->field_width,
1618
entry->sign);
1619
1620
return val >= min && val <= max;
1621
}
1622
1623
static u64
1624
read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1625
{
1626
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1627
if (scope == SCOPE_SYSTEM)
1628
return read_sanitised_ftr_reg(entry->sys_reg);
1629
else
1630
return __read_sysreg_by_encoding(entry->sys_reg);
1631
}
1632
1633
static bool
1634
has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1635
{
1636
int mask;
1637
struct arm64_ftr_reg *regp;
1638
u64 val = read_scoped_sysreg(entry, scope);
1639
1640
regp = get_arm64_ftr_reg(entry->sys_reg);
1641
if (!regp)
1642
return false;
1643
1644
mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1645
entry->field_pos,
1646
entry->field_width);
1647
if (!mask)
1648
return false;
1649
1650
return feature_matches(val, entry);
1651
}
1652
1653
static bool
1654
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1655
{
1656
u64 val = read_scoped_sysreg(entry, scope);
1657
return feature_matches(val, entry);
1658
}
1659
1660
const struct cpumask *system_32bit_el0_cpumask(void)
1661
{
1662
if (!system_supports_32bit_el0())
1663
return cpu_none_mask;
1664
1665
if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1666
return cpu_32bit_el0_mask;
1667
1668
return cpu_possible_mask;
1669
}
1670
1671
const struct cpumask *task_cpu_fallback_mask(struct task_struct *p)
1672
{
1673
return __task_cpu_possible_mask(p, housekeeping_cpumask(HK_TYPE_DOMAIN));
1674
}
1675
1676
static int __init parse_32bit_el0_param(char *str)
1677
{
1678
allow_mismatched_32bit_el0 = true;
1679
return 0;
1680
}
1681
early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1682
1683
static ssize_t aarch32_el0_show(struct device *dev,
1684
struct device_attribute *attr, char *buf)
1685
{
1686
const struct cpumask *mask = system_32bit_el0_cpumask();
1687
1688
return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1689
}
1690
static const DEVICE_ATTR_RO(aarch32_el0);
1691
1692
static int __init aarch32_el0_sysfs_init(void)
1693
{
1694
struct device *dev_root;
1695
int ret = 0;
1696
1697
if (!allow_mismatched_32bit_el0)
1698
return 0;
1699
1700
dev_root = bus_get_dev_root(&cpu_subsys);
1701
if (dev_root) {
1702
ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1703
put_device(dev_root);
1704
}
1705
return ret;
1706
}
1707
device_initcall(aarch32_el0_sysfs_init);
1708
1709
static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1710
{
1711
if (!has_cpuid_feature(entry, scope))
1712
return allow_mismatched_32bit_el0;
1713
1714
if (scope == SCOPE_SYSTEM)
1715
pr_info("detected: 32-bit EL0 Support\n");
1716
1717
return true;
1718
}
1719
1720
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1721
{
1722
bool has_sre;
1723
1724
if (!has_cpuid_feature(entry, scope))
1725
return false;
1726
1727
has_sre = gic_enable_sre();
1728
if (!has_sre)
1729
pr_warn_once("%s present but disabled by higher exception level\n",
1730
entry->desc);
1731
1732
return has_sre;
1733
}
1734
1735
static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1736
int scope)
1737
{
1738
u64 ctr;
1739
1740
if (scope == SCOPE_SYSTEM)
1741
ctr = arm64_ftr_reg_ctrel0.sys_val;
1742
else
1743
ctr = read_cpuid_effective_cachetype();
1744
1745
return ctr & BIT(CTR_EL0_IDC_SHIFT);
1746
}
1747
1748
static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1749
{
1750
/*
1751
* If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1752
* CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1753
* to the CTR_EL0 on this CPU and emulate it with the real/safe
1754
* value.
1755
*/
1756
if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1757
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1758
}
1759
1760
static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1761
int scope)
1762
{
1763
u64 ctr;
1764
1765
if (scope == SCOPE_SYSTEM)
1766
ctr = arm64_ftr_reg_ctrel0.sys_val;
1767
else
1768
ctr = read_cpuid_cachetype();
1769
1770
return ctr & BIT(CTR_EL0_DIC_SHIFT);
1771
}
1772
1773
static bool __maybe_unused
1774
has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1775
{
1776
/*
1777
* Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1778
* may share TLB entries with a CPU stuck in the crashed
1779
* kernel.
1780
*/
1781
if (is_kdump_kernel())
1782
return false;
1783
1784
if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1785
return false;
1786
1787
return has_cpuid_feature(entry, scope);
1788
}
1789
1790
static bool __meltdown_safe = true;
1791
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1792
1793
static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1794
int scope)
1795
{
1796
/* List of CPUs that are not vulnerable and don't need KPTI */
1797
static const struct midr_range kpti_safe_list[] = {
1798
MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1799
MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1800
MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1801
MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1802
MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1803
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1804
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1805
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1806
MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1807
MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1808
MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1809
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1810
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1811
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1812
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1813
{ /* sentinel */ }
1814
};
1815
char const *str = "kpti command line option";
1816
bool meltdown_safe;
1817
1818
meltdown_safe = is_midr_in_range_list(kpti_safe_list);
1819
1820
/* Defer to CPU feature registers */
1821
if (has_cpuid_feature(entry, scope))
1822
meltdown_safe = true;
1823
1824
if (!meltdown_safe)
1825
__meltdown_safe = false;
1826
1827
/*
1828
* For reasons that aren't entirely clear, enabling KPTI on Cavium
1829
* ThunderX leads to apparent I-cache corruption of kernel text, which
1830
* ends as well as you might imagine. Don't even try. We cannot rely
1831
* on the cpus_have_*cap() helpers here to detect the CPU erratum
1832
* because cpucap detection order may change. However, since we know
1833
* affected CPUs are always in a homogeneous configuration, it is
1834
* safe to rely on this_cpu_has_cap() here.
1835
*/
1836
if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1837
str = "ARM64_WORKAROUND_CAVIUM_27456";
1838
__kpti_forced = -1;
1839
}
1840
1841
/* Useful for KASLR robustness */
1842
if (kaslr_enabled() && kaslr_requires_kpti()) {
1843
if (!__kpti_forced) {
1844
str = "KASLR";
1845
__kpti_forced = 1;
1846
}
1847
}
1848
1849
if (cpu_mitigations_off() && !__kpti_forced) {
1850
str = "mitigations=off";
1851
__kpti_forced = -1;
1852
}
1853
1854
if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1855
pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1856
return false;
1857
}
1858
1859
/* Forced? */
1860
if (__kpti_forced) {
1861
pr_info_once("kernel page table isolation forced %s by %s\n",
1862
__kpti_forced > 0 ? "ON" : "OFF", str);
1863
return __kpti_forced > 0;
1864
}
1865
1866
return !meltdown_safe;
1867
}
1868
1869
static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1870
{
1871
/*
1872
* Although the Apple M2 family appears to support NV1, the
1873
* PTW barfs on the nVHE EL2 S1 page table format. Pretend
1874
* that it doesn't support NV1 at all.
1875
*/
1876
static const struct midr_range nv1_ni_list[] = {
1877
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1878
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1879
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1880
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1881
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1882
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1883
{}
1884
};
1885
1886
return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1887
!(has_cpuid_feature(entry, scope) ||
1888
is_midr_in_range_list(nv1_ni_list)));
1889
}
1890
1891
#if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1892
static bool has_lpa2_at_stage1(u64 mmfr0)
1893
{
1894
unsigned int tgran;
1895
1896
tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1897
ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1898
return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1899
}
1900
1901
static bool has_lpa2_at_stage2(u64 mmfr0)
1902
{
1903
unsigned int tgran;
1904
1905
tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1906
ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1907
return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1908
}
1909
1910
static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1911
{
1912
u64 mmfr0;
1913
1914
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1915
return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1916
}
1917
#else
1918
static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1919
{
1920
return false;
1921
}
1922
#endif
1923
1924
#ifdef CONFIG_HW_PERF_EVENTS
1925
static bool has_pmuv3(const struct arm64_cpu_capabilities *entry, int scope)
1926
{
1927
u64 dfr0 = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1928
unsigned int pmuver;
1929
1930
/*
1931
* PMUVer follows the standard ID scheme for an unsigned field with the
1932
* exception of 0xF (IMP_DEF) which is treated specially and implies
1933
* FEAT_PMUv3 is not implemented.
1934
*
1935
* See DDI0487L.a D24.1.3.2 for more details.
1936
*/
1937
pmuver = cpuid_feature_extract_unsigned_field(dfr0,
1938
ID_AA64DFR0_EL1_PMUVer_SHIFT);
1939
if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1940
return false;
1941
1942
return pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP;
1943
}
1944
#endif
1945
1946
static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1947
{
1948
if (__this_cpu_read(this_cpu_vector) == vectors) {
1949
const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1950
1951
__this_cpu_write(this_cpu_vector, v);
1952
}
1953
1954
}
1955
1956
static int __init parse_kpti(char *str)
1957
{
1958
bool enabled;
1959
int ret = kstrtobool(str, &enabled);
1960
1961
if (ret)
1962
return ret;
1963
1964
__kpti_forced = enabled ? 1 : -1;
1965
return 0;
1966
}
1967
early_param("kpti", parse_kpti);
1968
1969
#ifdef CONFIG_ARM64_HW_AFDBM
1970
static struct cpumask dbm_cpus __read_mostly;
1971
1972
static inline void __cpu_enable_hw_dbm(void)
1973
{
1974
u64 tcr = read_sysreg(tcr_el1) | TCR_EL1_HD;
1975
1976
write_sysreg(tcr, tcr_el1);
1977
isb();
1978
local_flush_tlb_all();
1979
}
1980
1981
static bool cpu_has_broken_dbm(void)
1982
{
1983
/* List of CPUs which have broken DBM support. */
1984
static const struct midr_range cpus[] = {
1985
#ifdef CONFIG_ARM64_ERRATUM_1024718
1986
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1987
/* Kryo4xx Silver (rdpe => r1p0) */
1988
MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1989
#endif
1990
#ifdef CONFIG_ARM64_ERRATUM_2051678
1991
MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1992
#endif
1993
{},
1994
};
1995
1996
return is_midr_in_range_list(cpus);
1997
}
1998
1999
static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2000
{
2001
return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2002
!cpu_has_broken_dbm();
2003
}
2004
2005
static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2006
{
2007
if (cpu_can_use_dbm(cap)) {
2008
__cpu_enable_hw_dbm();
2009
cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2010
}
2011
}
2012
2013
static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2014
int __unused)
2015
{
2016
/*
2017
* DBM is a non-conflicting feature. i.e, the kernel can safely
2018
* run a mix of CPUs with and without the feature. So, we
2019
* unconditionally enable the capability to allow any late CPU
2020
* to use the feature. We only enable the control bits on the
2021
* CPU, if it is supported.
2022
*/
2023
2024
return true;
2025
}
2026
2027
#endif
2028
2029
#ifdef CONFIG_ARM64_AMU_EXTN
2030
2031
/*
2032
* The "amu_cpus" cpumask only signals that the CPU implementation for the
2033
* flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2034
* information regarding all the events that it supports. When a CPU bit is
2035
* set in the cpumask, the user of this feature can only rely on the presence
2036
* of the 4 fixed counters for that CPU. But this does not guarantee that the
2037
* counters are enabled or access to these counters is enabled by code
2038
* executed at higher exception levels (firmware).
2039
*/
2040
static struct cpumask amu_cpus __read_mostly;
2041
2042
bool cpu_has_amu_feat(int cpu)
2043
{
2044
return cpumask_test_cpu(cpu, &amu_cpus);
2045
}
2046
2047
int get_cpu_with_amu_feat(void)
2048
{
2049
return cpumask_any(&amu_cpus);
2050
}
2051
2052
static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2053
{
2054
if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2055
cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2056
2057
/* 0 reference values signal broken/disabled counters */
2058
if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2059
update_freq_counters_refs();
2060
}
2061
}
2062
2063
static bool has_amu(const struct arm64_cpu_capabilities *cap,
2064
int __unused)
2065
{
2066
/*
2067
* The AMU extension is a non-conflicting feature: the kernel can
2068
* safely run a mix of CPUs with and without support for the
2069
* activity monitors extension. Therefore, unconditionally enable
2070
* the capability to allow any late CPU to use the feature.
2071
*
2072
* With this feature unconditionally enabled, the cpu_enable
2073
* function will be called for all CPUs that match the criteria,
2074
* including secondary and hotplugged, marking this feature as
2075
* present on that respective CPU. The enable function will also
2076
* print a detection message.
2077
*/
2078
2079
return true;
2080
}
2081
#else
2082
int get_cpu_with_amu_feat(void)
2083
{
2084
return nr_cpu_ids;
2085
}
2086
#endif
2087
2088
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2089
{
2090
return is_kernel_in_hyp_mode();
2091
}
2092
2093
static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2094
{
2095
/*
2096
* Copy register values that aren't redirected by hardware.
2097
*
2098
* Before code patching, we only set tpidr_el1, all CPUs need to copy
2099
* this value to tpidr_el2 before we patch the code. Once we've done
2100
* that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2101
* do anything here.
2102
*/
2103
if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2104
write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2105
}
2106
2107
static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2108
int scope)
2109
{
2110
if (kvm_get_mode() != KVM_MODE_NV)
2111
return false;
2112
2113
if (!cpucap_multi_entry_cap_matches(cap, scope)) {
2114
pr_warn("unavailable: %s\n", cap->desc);
2115
return false;
2116
}
2117
2118
return true;
2119
}
2120
2121
static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2122
int __unused)
2123
{
2124
return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2125
}
2126
2127
bool cpu_supports_bbml2_noabort(void)
2128
{
2129
/*
2130
* We want to allow usage of BBML2 in as wide a range of kernel contexts
2131
* as possible. This list is therefore an allow-list of known-good
2132
* implementations that both support BBML2 and additionally, fulfill the
2133
* extra constraint of never generating TLB conflict aborts when using
2134
* the relaxed BBML2 semantics (such aborts make use of BBML2 in certain
2135
* kernel contexts difficult to prove safe against recursive aborts).
2136
*
2137
* Note that implementations can only be considered "known-good" if their
2138
* implementors attest to the fact that the implementation never raises
2139
* TLB conflict aborts for BBML2 mapping granularity changes.
2140
*/
2141
static const struct midr_range supports_bbml2_noabort_list[] = {
2142
MIDR_REV_RANGE(MIDR_CORTEX_X4, 0, 3, 0xf),
2143
MIDR_REV_RANGE(MIDR_NEOVERSE_V3, 0, 2, 0xf),
2144
MIDR_REV_RANGE(MIDR_NEOVERSE_V3AE, 0, 2, 0xf),
2145
MIDR_ALL_VERSIONS(MIDR_NVIDIA_OLYMPUS),
2146
MIDR_ALL_VERSIONS(MIDR_AMPERE1),
2147
MIDR_ALL_VERSIONS(MIDR_AMPERE1A),
2148
{}
2149
};
2150
2151
/* Does our cpu guarantee to never raise TLB conflict aborts? */
2152
if (!is_midr_in_range_list(supports_bbml2_noabort_list))
2153
return false;
2154
2155
/*
2156
* We currently ignore the ID_AA64MMFR2_EL1 register, and only care
2157
* about whether the MIDR check passes.
2158
*/
2159
2160
return true;
2161
}
2162
2163
static bool has_bbml2_noabort(const struct arm64_cpu_capabilities *caps, int scope)
2164
{
2165
return cpu_supports_bbml2_noabort();
2166
}
2167
2168
static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2169
{
2170
/*
2171
* We modify PSTATE. This won't work from irq context as the PSTATE
2172
* is discarded once we return from the exception.
2173
*/
2174
WARN_ON_ONCE(in_interrupt());
2175
2176
sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2177
set_pstate_pan(1);
2178
}
2179
2180
#ifdef CONFIG_ARM64_RAS_EXTN
2181
static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2182
{
2183
/* Firmware may have left a deferred SError in this register. */
2184
write_sysreg_s(0, SYS_DISR_EL1);
2185
}
2186
static bool has_rasv1p1(const struct arm64_cpu_capabilities *__unused, int scope)
2187
{
2188
const struct arm64_cpu_capabilities rasv1p1_caps[] = {
2189
{
2190
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, V1P1)
2191
},
2192
{
2193
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2194
},
2195
{
2196
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, RAS_frac, RASv1p1)
2197
},
2198
};
2199
2200
return (has_cpuid_feature(&rasv1p1_caps[0], scope) ||
2201
(has_cpuid_feature(&rasv1p1_caps[1], scope) &&
2202
has_cpuid_feature(&rasv1p1_caps[2], scope)));
2203
}
2204
#endif /* CONFIG_ARM64_RAS_EXTN */
2205
2206
#ifdef CONFIG_ARM64_PTR_AUTH
2207
static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2208
{
2209
int boot_val, sec_val;
2210
2211
/* We don't expect to be called with SCOPE_SYSTEM */
2212
WARN_ON(scope == SCOPE_SYSTEM);
2213
/*
2214
* The ptr-auth feature levels are not intercompatible with lower
2215
* levels. Hence we must match ptr-auth feature level of the secondary
2216
* CPUs with that of the boot CPU. The level of boot cpu is fetched
2217
* from the sanitised register whereas direct register read is done for
2218
* the secondary CPUs.
2219
* The sanitised feature state is guaranteed to match that of the
2220
* boot CPU as a mismatched secondary CPU is parked before it gets
2221
* a chance to update the state, with the capability.
2222
*/
2223
boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2224
entry->field_pos, entry->sign);
2225
if (scope & SCOPE_BOOT_CPU)
2226
return boot_val >= entry->min_field_value;
2227
/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2228
sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2229
entry->field_pos, entry->sign);
2230
return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2231
}
2232
2233
static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2234
int scope)
2235
{
2236
bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2237
bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2238
bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2239
2240
return apa || apa3 || api;
2241
}
2242
2243
static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2244
int __unused)
2245
{
2246
bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2247
bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2248
bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2249
2250
return gpa || gpa3 || gpi;
2251
}
2252
#endif /* CONFIG_ARM64_PTR_AUTH */
2253
2254
#ifdef CONFIG_ARM64_E0PD
2255
static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2256
{
2257
if (this_cpu_has_cap(ARM64_HAS_E0PD))
2258
sysreg_clear_set(tcr_el1, 0, TCR_EL1_E0PD1);
2259
}
2260
#endif /* CONFIG_ARM64_E0PD */
2261
2262
static void cpu_enable_ls64(struct arm64_cpu_capabilities const *cap)
2263
{
2264
sysreg_clear_set(sctlr_el1, SCTLR_EL1_EnALS, SCTLR_EL1_EnALS);
2265
}
2266
2267
static void cpu_enable_ls64_v(struct arm64_cpu_capabilities const *cap)
2268
{
2269
sysreg_clear_set(sctlr_el1, SCTLR_EL1_EnASR, 0);
2270
}
2271
2272
#ifdef CONFIG_ARM64_PSEUDO_NMI
2273
static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2274
int scope)
2275
{
2276
/*
2277
* ARM64_HAS_GICV3_CPUIF has a lower index, and is a boot CPU
2278
* feature, so will be detected earlier.
2279
*/
2280
BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GICV3_CPUIF);
2281
if (!cpus_have_cap(ARM64_HAS_GICV3_CPUIF))
2282
return false;
2283
2284
return enable_pseudo_nmi;
2285
}
2286
2287
static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2288
int scope)
2289
{
2290
/*
2291
* If we're not using priority masking then we won't be poking PMR_EL1,
2292
* and there's no need to relax synchronization of writes to it, and
2293
* ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2294
* that.
2295
*
2296
* ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2297
* feature, so will be detected earlier.
2298
*/
2299
BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2300
if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2301
return false;
2302
2303
/*
2304
* When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2305
* hint for interrupt distribution, a DSB is not necessary when
2306
* unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2307
*
2308
* Linux itself doesn't use 1:N distribution, so has no need to
2309
* set PMHE. The only reason to have it set is if EL3 requires it
2310
* (and we can't change it).
2311
*/
2312
return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2313
}
2314
#endif
2315
2316
static bool can_trap_icv_dir_el1(const struct arm64_cpu_capabilities *entry,
2317
int scope)
2318
{
2319
static const struct midr_range has_vgic_v3[] = {
2320
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM),
2321
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM),
2322
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO),
2323
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO),
2324
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX),
2325
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX),
2326
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
2327
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
2328
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
2329
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
2330
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
2331
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
2332
{},
2333
};
2334
struct arm_smccc_res res = {};
2335
2336
BUILD_BUG_ON(ARM64_HAS_ICH_HCR_EL2_TDIR <= ARM64_HAS_GICV3_CPUIF);
2337
BUILD_BUG_ON(ARM64_HAS_ICH_HCR_EL2_TDIR <= ARM64_HAS_GICV5_LEGACY);
2338
if (!this_cpu_has_cap(ARM64_HAS_GICV3_CPUIF) &&
2339
!is_midr_in_range_list(has_vgic_v3))
2340
return false;
2341
2342
if (!is_hyp_mode_available())
2343
return false;
2344
2345
if (this_cpu_has_cap(ARM64_HAS_GICV5_LEGACY))
2346
return true;
2347
2348
if (is_kernel_in_hyp_mode())
2349
res.a1 = read_sysreg_s(SYS_ICH_VTR_EL2);
2350
else
2351
arm_smccc_1_1_hvc(HVC_GET_ICH_VTR_EL2, &res);
2352
2353
if (res.a0 == HVC_STUB_ERR)
2354
return false;
2355
2356
return res.a1 & ICH_VTR_EL2_TDS;
2357
}
2358
2359
#ifdef CONFIG_ARM64_BTI
2360
static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2361
{
2362
/*
2363
* Use of X16/X17 for tail-calls and trampolines that jump to
2364
* function entry points using BR is a requirement for
2365
* marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2366
* So, be strict and forbid other BRs using other registers to
2367
* jump onto a PACIxSP instruction:
2368
*/
2369
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2370
isb();
2371
}
2372
#endif /* CONFIG_ARM64_BTI */
2373
2374
#ifdef CONFIG_ARM64_MTE
2375
static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2376
{
2377
static bool cleared_zero_page = false;
2378
2379
sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2380
2381
mte_cpu_setup();
2382
2383
/*
2384
* Clear the tags in the zero page. This needs to be done via the
2385
* linear map which has the Tagged attribute. Since this page is
2386
* always mapped as pte_special(), set_pte_at() will not attempt to
2387
* clear the tags or set PG_mte_tagged.
2388
*/
2389
if (!cleared_zero_page) {
2390
cleared_zero_page = true;
2391
mte_clear_page_tags(lm_alias(empty_zero_page));
2392
}
2393
2394
kasan_init_hw_tags_cpu();
2395
}
2396
#endif /* CONFIG_ARM64_MTE */
2397
2398
static void user_feature_fixup(void)
2399
{
2400
if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2401
struct arm64_ftr_reg *regp;
2402
2403
regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2404
if (regp)
2405
regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2406
}
2407
2408
if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2409
struct arm64_ftr_reg *regp;
2410
2411
regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2412
if (regp)
2413
regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2414
}
2415
}
2416
2417
static void elf_hwcap_fixup(void)
2418
{
2419
#ifdef CONFIG_COMPAT
2420
if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2421
compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2422
#endif /* CONFIG_COMPAT */
2423
}
2424
2425
#ifdef CONFIG_KVM
2426
static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2427
{
2428
return kvm_get_mode() == KVM_MODE_PROTECTED;
2429
}
2430
#endif /* CONFIG_KVM */
2431
2432
static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2433
{
2434
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2435
}
2436
2437
static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2438
{
2439
set_pstate_dit(1);
2440
}
2441
2442
static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2443
{
2444
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2445
}
2446
2447
#ifdef CONFIG_ARM64_POE
2448
static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2449
{
2450
sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2451
sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2452
}
2453
#endif
2454
2455
#ifdef CONFIG_ARM64_GCS
2456
static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2457
{
2458
/* GCSPR_EL0 is always readable */
2459
write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2460
}
2461
#endif
2462
2463
/* Internal helper functions to match cpu capability type */
2464
static bool
2465
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2466
{
2467
return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2468
}
2469
2470
static bool
2471
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2472
{
2473
return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2474
}
2475
2476
static bool
2477
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2478
{
2479
return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2480
}
2481
2482
static bool
2483
test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2484
{
2485
if (!has_cpuid_feature(entry, scope))
2486
return false;
2487
2488
/* Check firmware actually enabled MPAM on this cpu. */
2489
return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2490
}
2491
2492
static void
2493
cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2494
{
2495
/*
2496
* Access by the kernel (at EL1) should use the reserved PARTID
2497
* which is configured unrestricted. This avoids priority-inversion
2498
* where latency sensitive tasks have to wait for a task that has
2499
* been throttled to release the lock.
2500
*/
2501
write_sysreg_s(0, SYS_MPAM1_EL1);
2502
}
2503
2504
static bool
2505
test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2506
{
2507
u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2508
2509
return idr & MPAMIDR_EL1_HAS_HCR;
2510
}
2511
2512
static bool
2513
test_has_gicv5_legacy(const struct arm64_cpu_capabilities *entry, int scope)
2514
{
2515
if (!this_cpu_has_cap(ARM64_HAS_GICV5_CPUIF))
2516
return false;
2517
2518
return !!(read_sysreg_s(SYS_ICC_IDR0_EL1) & ICC_IDR0_EL1_GCIE_LEGACY);
2519
}
2520
2521
static const struct arm64_cpu_capabilities arm64_features[] = {
2522
{
2523
.capability = ARM64_ALWAYS_BOOT,
2524
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2525
.matches = has_always,
2526
},
2527
{
2528
.capability = ARM64_ALWAYS_SYSTEM,
2529
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2530
.matches = has_always,
2531
},
2532
{
2533
.desc = "GICv3 CPU interface",
2534
.capability = ARM64_HAS_GICV3_CPUIF,
2535
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2536
.matches = has_useable_gicv3_cpuif,
2537
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2538
},
2539
{
2540
.desc = "Enhanced Counter Virtualization",
2541
.capability = ARM64_HAS_ECV,
2542
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2543
.matches = has_cpuid_feature,
2544
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2545
},
2546
{
2547
.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2548
.capability = ARM64_HAS_ECV_CNTPOFF,
2549
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2550
.matches = has_cpuid_feature,
2551
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2552
},
2553
{
2554
.desc = "Privileged Access Never",
2555
.capability = ARM64_HAS_PAN,
2556
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2557
.matches = has_cpuid_feature,
2558
.cpu_enable = cpu_enable_pan,
2559
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2560
},
2561
#ifdef CONFIG_ARM64_EPAN
2562
{
2563
.desc = "Enhanced Privileged Access Never",
2564
.capability = ARM64_HAS_EPAN,
2565
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2566
.matches = has_cpuid_feature,
2567
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2568
},
2569
#endif /* CONFIG_ARM64_EPAN */
2570
{
2571
.desc = "LSE atomic instructions",
2572
.capability = ARM64_HAS_LSE_ATOMICS,
2573
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2574
.matches = has_cpuid_feature,
2575
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2576
},
2577
{
2578
.desc = "Virtualization Host Extensions",
2579
.capability = ARM64_HAS_VIRT_HOST_EXTN,
2580
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2581
.matches = runs_at_el2,
2582
.cpu_enable = cpu_copy_el2regs,
2583
},
2584
{
2585
.desc = "Nested Virtualization Support",
2586
.capability = ARM64_HAS_NESTED_VIRT,
2587
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2588
.matches = has_nested_virt_support,
2589
.match_list = (const struct arm64_cpu_capabilities []){
2590
{
2591
.matches = has_cpuid_feature,
2592
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2593
},
2594
{
2595
.matches = has_cpuid_feature,
2596
ARM64_CPUID_FIELDS(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)
2597
},
2598
{ /* Sentinel */ }
2599
},
2600
},
2601
{
2602
.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2603
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2604
.matches = has_32bit_el0,
2605
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2606
},
2607
#ifdef CONFIG_KVM
2608
{
2609
.desc = "32-bit EL1 Support",
2610
.capability = ARM64_HAS_32BIT_EL1,
2611
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2612
.matches = has_cpuid_feature,
2613
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2614
},
2615
{
2616
.desc = "Protected KVM",
2617
.capability = ARM64_KVM_PROTECTED_MODE,
2618
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2619
.matches = is_kvm_protected_mode,
2620
},
2621
{
2622
.desc = "HCRX_EL2 register",
2623
.capability = ARM64_HAS_HCX,
2624
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2625
.matches = has_cpuid_feature,
2626
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2627
},
2628
#endif
2629
{
2630
.desc = "Kernel page table isolation (KPTI)",
2631
.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2632
.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2633
.cpu_enable = cpu_enable_kpti,
2634
.matches = unmap_kernel_at_el0,
2635
/*
2636
* The ID feature fields below are used to indicate that
2637
* the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2638
* more details.
2639
*/
2640
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2641
},
2642
{
2643
.capability = ARM64_HAS_FPSIMD,
2644
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2645
.matches = has_cpuid_feature,
2646
.cpu_enable = cpu_enable_fpsimd,
2647
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2648
},
2649
#ifdef CONFIG_ARM64_PMEM
2650
{
2651
.desc = "Data cache clean to Point of Persistence",
2652
.capability = ARM64_HAS_DCPOP,
2653
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2654
.matches = has_cpuid_feature,
2655
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2656
},
2657
{
2658
.desc = "Data cache clean to Point of Deep Persistence",
2659
.capability = ARM64_HAS_DCPODP,
2660
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2661
.matches = has_cpuid_feature,
2662
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2663
},
2664
#endif
2665
#ifdef CONFIG_ARM64_SVE
2666
{
2667
.desc = "Scalable Vector Extension",
2668
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2669
.capability = ARM64_SVE,
2670
.cpu_enable = cpu_enable_sve,
2671
.matches = has_cpuid_feature,
2672
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2673
},
2674
#endif /* CONFIG_ARM64_SVE */
2675
#ifdef CONFIG_ARM64_RAS_EXTN
2676
{
2677
.desc = "RAS Extension Support",
2678
.capability = ARM64_HAS_RAS_EXTN,
2679
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2680
.matches = has_cpuid_feature,
2681
.cpu_enable = cpu_clear_disr,
2682
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2683
},
2684
{
2685
.desc = "RASv1p1 Extension Support",
2686
.capability = ARM64_HAS_RASV1P1_EXTN,
2687
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2688
.matches = has_rasv1p1,
2689
},
2690
#endif /* CONFIG_ARM64_RAS_EXTN */
2691
#ifdef CONFIG_ARM64_AMU_EXTN
2692
{
2693
.desc = "Activity Monitors Unit (AMU)",
2694
.capability = ARM64_HAS_AMU_EXTN,
2695
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2696
.matches = has_amu,
2697
.cpu_enable = cpu_amu_enable,
2698
.cpus = &amu_cpus,
2699
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2700
},
2701
#endif /* CONFIG_ARM64_AMU_EXTN */
2702
{
2703
.desc = "Data cache clean to the PoU not required for I/D coherence",
2704
.capability = ARM64_HAS_CACHE_IDC,
2705
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2706
.matches = has_cache_idc,
2707
.cpu_enable = cpu_emulate_effective_ctr,
2708
},
2709
{
2710
.desc = "Instruction cache invalidation not required for I/D coherence",
2711
.capability = ARM64_HAS_CACHE_DIC,
2712
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2713
.matches = has_cache_dic,
2714
},
2715
{
2716
.desc = "Stage-2 Force Write-Back",
2717
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2718
.capability = ARM64_HAS_STAGE2_FWB,
2719
.matches = has_cpuid_feature,
2720
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2721
},
2722
{
2723
.desc = "ARMv8.4 Translation Table Level",
2724
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2725
.capability = ARM64_HAS_ARMv8_4_TTL,
2726
.matches = has_cpuid_feature,
2727
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2728
},
2729
{
2730
.desc = "TLB range maintenance instructions",
2731
.capability = ARM64_HAS_TLB_RANGE,
2732
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2733
.matches = has_cpuid_feature,
2734
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2735
},
2736
#ifdef CONFIG_ARM64_HW_AFDBM
2737
{
2738
.desc = "Hardware dirty bit management",
2739
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2740
.capability = ARM64_HW_DBM,
2741
.matches = has_hw_dbm,
2742
.cpu_enable = cpu_enable_hw_dbm,
2743
.cpus = &dbm_cpus,
2744
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2745
},
2746
#endif
2747
#ifdef CONFIG_ARM64_HAFT
2748
{
2749
.desc = "Hardware managed Access Flag for Table Descriptors",
2750
/*
2751
* Contrary to the page/block access flag, the table access flag
2752
* cannot be emulated in software (no access fault will occur).
2753
* Therefore this should be used only if it's supported system
2754
* wide.
2755
*/
2756
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2757
.capability = ARM64_HAFT,
2758
.matches = has_cpuid_feature,
2759
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2760
},
2761
#endif
2762
{
2763
.desc = "CRC32 instructions",
2764
.capability = ARM64_HAS_CRC32,
2765
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2766
.matches = has_cpuid_feature,
2767
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2768
},
2769
{
2770
.desc = "Speculative Store Bypassing Safe (SSBS)",
2771
.capability = ARM64_SSBS,
2772
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2773
.matches = has_cpuid_feature,
2774
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2775
},
2776
#ifdef CONFIG_ARM64_CNP
2777
{
2778
.desc = "Common not Private translations",
2779
.capability = ARM64_HAS_CNP,
2780
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2781
.matches = has_useable_cnp,
2782
.cpu_enable = cpu_enable_cnp,
2783
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2784
},
2785
#endif
2786
{
2787
.desc = "Speculation barrier (SB)",
2788
.capability = ARM64_HAS_SB,
2789
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2790
.matches = has_cpuid_feature,
2791
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2792
},
2793
#ifdef CONFIG_ARM64_PTR_AUTH
2794
{
2795
.desc = "Address authentication (architected QARMA5 algorithm)",
2796
.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2797
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2798
.matches = has_address_auth_cpucap,
2799
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2800
},
2801
{
2802
.desc = "Address authentication (architected QARMA3 algorithm)",
2803
.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2804
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2805
.matches = has_address_auth_cpucap,
2806
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2807
},
2808
{
2809
.desc = "Address authentication (IMP DEF algorithm)",
2810
.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2811
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2812
.matches = has_address_auth_cpucap,
2813
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2814
},
2815
{
2816
.capability = ARM64_HAS_ADDRESS_AUTH,
2817
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2818
.matches = has_address_auth_metacap,
2819
},
2820
{
2821
.desc = "Generic authentication (architected QARMA5 algorithm)",
2822
.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2823
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2824
.matches = has_cpuid_feature,
2825
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2826
},
2827
{
2828
.desc = "Generic authentication (architected QARMA3 algorithm)",
2829
.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2830
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2831
.matches = has_cpuid_feature,
2832
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2833
},
2834
{
2835
.desc = "Generic authentication (IMP DEF algorithm)",
2836
.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2837
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2838
.matches = has_cpuid_feature,
2839
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2840
},
2841
{
2842
.capability = ARM64_HAS_GENERIC_AUTH,
2843
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2844
.matches = has_generic_auth,
2845
},
2846
#endif /* CONFIG_ARM64_PTR_AUTH */
2847
#ifdef CONFIG_ARM64_PSEUDO_NMI
2848
{
2849
/*
2850
* Depends on having GICv3
2851
*/
2852
.desc = "IRQ priority masking",
2853
.capability = ARM64_HAS_GIC_PRIO_MASKING,
2854
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2855
.matches = can_use_gic_priorities,
2856
},
2857
{
2858
/*
2859
* Depends on ARM64_HAS_GIC_PRIO_MASKING
2860
*/
2861
.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2862
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2863
.matches = has_gic_prio_relaxed_sync,
2864
},
2865
#endif
2866
{
2867
/*
2868
* Depends on having GICv3
2869
*/
2870
.desc = "ICV_DIR_EL1 trapping",
2871
.capability = ARM64_HAS_ICH_HCR_EL2_TDIR,
2872
.type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
2873
.matches = can_trap_icv_dir_el1,
2874
},
2875
#ifdef CONFIG_ARM64_E0PD
2876
{
2877
.desc = "E0PD",
2878
.capability = ARM64_HAS_E0PD,
2879
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2880
.cpu_enable = cpu_enable_e0pd,
2881
.matches = has_cpuid_feature,
2882
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2883
},
2884
#endif
2885
{
2886
.desc = "Random Number Generator",
2887
.capability = ARM64_HAS_RNG,
2888
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2889
.matches = has_cpuid_feature,
2890
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2891
},
2892
#ifdef CONFIG_ARM64_BTI
2893
{
2894
.desc = "Branch Target Identification",
2895
.capability = ARM64_BTI,
2896
#ifdef CONFIG_ARM64_BTI_KERNEL
2897
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2898
#else
2899
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2900
#endif
2901
.matches = has_cpuid_feature,
2902
.cpu_enable = bti_enable,
2903
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2904
},
2905
#endif
2906
#ifdef CONFIG_ARM64_MTE
2907
{
2908
.desc = "Memory Tagging Extension",
2909
.capability = ARM64_MTE,
2910
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2911
.matches = has_cpuid_feature,
2912
.cpu_enable = cpu_enable_mte,
2913
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2914
},
2915
{
2916
.desc = "Asymmetric MTE Tag Check Fault",
2917
.capability = ARM64_MTE_ASYMM,
2918
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2919
.matches = has_cpuid_feature,
2920
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2921
},
2922
{
2923
.desc = "FAR on MTE Tag Check Fault",
2924
.capability = ARM64_MTE_FAR,
2925
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2926
.matches = has_cpuid_feature,
2927
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTEFAR, IMP)
2928
},
2929
{
2930
.desc = "Store Only MTE Tag Check",
2931
.capability = ARM64_MTE_STORE_ONLY,
2932
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2933
.matches = has_cpuid_feature,
2934
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTESTOREONLY, IMP)
2935
},
2936
#endif /* CONFIG_ARM64_MTE */
2937
{
2938
.desc = "RCpc load-acquire (LDAPR)",
2939
.capability = ARM64_HAS_LDAPR,
2940
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2941
.matches = has_cpuid_feature,
2942
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2943
},
2944
{
2945
.desc = "Fine Grained Traps",
2946
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2947
.capability = ARM64_HAS_FGT,
2948
.matches = has_cpuid_feature,
2949
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2950
},
2951
{
2952
.desc = "Fine Grained Traps 2",
2953
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2954
.capability = ARM64_HAS_FGT2,
2955
.matches = has_cpuid_feature,
2956
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, FGT2)
2957
},
2958
#ifdef CONFIG_ARM64_SME
2959
{
2960
.desc = "Scalable Matrix Extension",
2961
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2962
.capability = ARM64_SME,
2963
.matches = has_cpuid_feature,
2964
.cpu_enable = cpu_enable_sme,
2965
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2966
},
2967
/* FA64 should be sorted after the base SME capability */
2968
{
2969
.desc = "FA64",
2970
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2971
.capability = ARM64_SME_FA64,
2972
.matches = has_cpuid_feature,
2973
.cpu_enable = cpu_enable_fa64,
2974
ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2975
},
2976
{
2977
.desc = "SME2",
2978
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2979
.capability = ARM64_SME2,
2980
.matches = has_cpuid_feature,
2981
.cpu_enable = cpu_enable_sme2,
2982
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2983
},
2984
#endif /* CONFIG_ARM64_SME */
2985
{
2986
.desc = "WFx with timeout",
2987
.capability = ARM64_HAS_WFXT,
2988
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2989
.matches = has_cpuid_feature,
2990
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2991
},
2992
{
2993
.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2994
.capability = ARM64_HAS_TIDCP1,
2995
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2996
.matches = has_cpuid_feature,
2997
.cpu_enable = cpu_trap_el0_impdef,
2998
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2999
},
3000
{
3001
.desc = "Data independent timing control (DIT)",
3002
.capability = ARM64_HAS_DIT,
3003
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3004
.matches = has_cpuid_feature,
3005
.cpu_enable = cpu_enable_dit,
3006
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
3007
},
3008
{
3009
.desc = "Memory Copy and Memory Set instructions",
3010
.capability = ARM64_HAS_MOPS,
3011
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3012
.matches = has_cpuid_feature,
3013
.cpu_enable = cpu_enable_mops,
3014
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
3015
},
3016
{
3017
.capability = ARM64_HAS_TCR2,
3018
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3019
.matches = has_cpuid_feature,
3020
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
3021
},
3022
{
3023
.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
3024
.capability = ARM64_HAS_S1PIE,
3025
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3026
.matches = has_cpuid_feature,
3027
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
3028
},
3029
{
3030
.desc = "VHE for hypervisor only",
3031
.capability = ARM64_KVM_HVHE,
3032
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3033
.matches = hvhe_possible,
3034
},
3035
{
3036
.desc = "Enhanced Virtualization Traps",
3037
.capability = ARM64_HAS_EVT,
3038
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3039
.matches = has_cpuid_feature,
3040
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
3041
},
3042
{
3043
.desc = "BBM Level 2 without TLB conflict abort",
3044
.capability = ARM64_HAS_BBML2_NOABORT,
3045
.type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
3046
.matches = has_bbml2_noabort,
3047
},
3048
{
3049
.desc = "52-bit Virtual Addressing for KVM (LPA2)",
3050
.capability = ARM64_HAS_LPA2,
3051
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3052
.matches = has_lpa2,
3053
},
3054
{
3055
.desc = "FPMR",
3056
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3057
.capability = ARM64_HAS_FPMR,
3058
.matches = has_cpuid_feature,
3059
.cpu_enable = cpu_enable_fpmr,
3060
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
3061
},
3062
#ifdef CONFIG_ARM64_VA_BITS_52
3063
{
3064
.capability = ARM64_HAS_VA52,
3065
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3066
.matches = has_cpuid_feature,
3067
#ifdef CONFIG_ARM64_64K_PAGES
3068
.desc = "52-bit Virtual Addressing (LVA)",
3069
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
3070
#else
3071
.desc = "52-bit Virtual Addressing (LPA2)",
3072
#ifdef CONFIG_ARM64_4K_PAGES
3073
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
3074
#else
3075
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
3076
#endif
3077
#endif
3078
},
3079
#endif
3080
{
3081
.desc = "Memory Partitioning And Monitoring",
3082
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3083
.capability = ARM64_MPAM,
3084
.matches = test_has_mpam,
3085
.cpu_enable = cpu_enable_mpam,
3086
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
3087
},
3088
{
3089
.desc = "Memory Partitioning And Monitoring Virtualisation",
3090
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3091
.capability = ARM64_MPAM_HCR,
3092
.matches = test_has_mpam_hcr,
3093
},
3094
{
3095
.desc = "NV1",
3096
.capability = ARM64_HAS_HCR_NV1,
3097
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3098
.matches = has_nv1,
3099
ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
3100
},
3101
#ifdef CONFIG_ARM64_POE
3102
{
3103
.desc = "Stage-1 Permission Overlay Extension (S1POE)",
3104
.capability = ARM64_HAS_S1POE,
3105
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3106
.matches = has_cpuid_feature,
3107
.cpu_enable = cpu_enable_poe,
3108
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
3109
},
3110
#endif
3111
#ifdef CONFIG_ARM64_GCS
3112
{
3113
.desc = "Guarded Control Stack (GCS)",
3114
.capability = ARM64_HAS_GCS,
3115
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3116
.cpu_enable = cpu_enable_gcs,
3117
.matches = has_cpuid_feature,
3118
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
3119
},
3120
#endif
3121
#ifdef CONFIG_HW_PERF_EVENTS
3122
{
3123
.desc = "PMUv3",
3124
.capability = ARM64_HAS_PMUV3,
3125
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3126
.matches = has_pmuv3,
3127
},
3128
#endif
3129
{
3130
.desc = "SCTLR2",
3131
.capability = ARM64_HAS_SCTLR2,
3132
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3133
.matches = has_cpuid_feature,
3134
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, SCTLRX, IMP)
3135
},
3136
{
3137
.desc = "GICv5 CPU interface",
3138
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
3139
.capability = ARM64_HAS_GICV5_CPUIF,
3140
.matches = has_cpuid_feature,
3141
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, GCIE, IMP)
3142
},
3143
{
3144
.desc = "GICv5 Legacy vCPU interface",
3145
.type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
3146
.capability = ARM64_HAS_GICV5_LEGACY,
3147
.matches = test_has_gicv5_legacy,
3148
},
3149
{
3150
.desc = "XNX",
3151
.capability = ARM64_HAS_XNX,
3152
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3153
.matches = has_cpuid_feature,
3154
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, XNX, IMP)
3155
},
3156
{
3157
.desc = "LS64",
3158
.capability = ARM64_HAS_LS64,
3159
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3160
.matches = has_cpuid_feature,
3161
.cpu_enable = cpu_enable_ls64,
3162
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LS64, LS64)
3163
},
3164
{
3165
.desc = "LS64_V",
3166
.capability = ARM64_HAS_LS64_V,
3167
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3168
.matches = has_cpuid_feature,
3169
.cpu_enable = cpu_enable_ls64_v,
3170
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LS64, LS64_V)
3171
},
3172
{},
3173
};
3174
3175
#define HWCAP_CPUID_MATCH(reg, field, min_value) \
3176
.matches = has_user_cpuid_feature, \
3177
ARM64_CPUID_FIELDS(reg, field, min_value)
3178
3179
#define __HWCAP_CAP(name, cap_type, cap) \
3180
.desc = name, \
3181
.type = ARM64_CPUCAP_SYSTEM_FEATURE, \
3182
.hwcap_type = cap_type, \
3183
.hwcap = cap, \
3184
3185
#define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
3186
{ \
3187
__HWCAP_CAP(#cap, cap_type, cap) \
3188
HWCAP_CPUID_MATCH(reg, field, min_value) \
3189
}
3190
3191
#define HWCAP_MULTI_CAP(list, cap_type, cap) \
3192
{ \
3193
__HWCAP_CAP(#cap, cap_type, cap) \
3194
.matches = cpucap_multi_entry_cap_matches, \
3195
.match_list = list, \
3196
}
3197
3198
#define HWCAP_CAP_MATCH(match, cap_type, cap) \
3199
{ \
3200
__HWCAP_CAP(#cap, cap_type, cap) \
3201
.matches = match, \
3202
}
3203
3204
#define HWCAP_CAP_MATCH_ID(match, reg, field, min_value, cap_type, cap) \
3205
{ \
3206
__HWCAP_CAP(#cap, cap_type, cap) \
3207
HWCAP_CPUID_MATCH(reg, field, min_value) \
3208
.matches = match, \
3209
}
3210
3211
#ifdef CONFIG_ARM64_PTR_AUTH
3212
static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3213
{
3214
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3215
},
3216
{
3217
HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3218
},
3219
{
3220
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3221
},
3222
{},
3223
};
3224
3225
static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3226
{
3227
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3228
},
3229
{
3230
HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3231
},
3232
{
3233
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3234
},
3235
{},
3236
};
3237
#endif
3238
3239
#ifdef CONFIG_ARM64_SVE
3240
static bool has_sve_feature(const struct arm64_cpu_capabilities *cap, int scope)
3241
{
3242
return system_supports_sve() && has_user_cpuid_feature(cap, scope);
3243
}
3244
#endif
3245
3246
#ifdef CONFIG_ARM64_SME
3247
static bool has_sme_feature(const struct arm64_cpu_capabilities *cap, int scope)
3248
{
3249
return system_supports_sme() && has_user_cpuid_feature(cap, scope);
3250
}
3251
#endif
3252
3253
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3254
HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3255
HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3256
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3257
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3258
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3259
HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3260
HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3261
HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3262
HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3263
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3264
HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3265
HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3266
HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3267
HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3268
HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3269
HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3270
HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3271
HWCAP_CAP(ID_AA64ISAR3_EL1, FPRCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_FPRCVT),
3272
HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3273
HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3274
HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3275
HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3276
HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3277
HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3278
HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3279
HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3280
HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3281
HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3282
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3283
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3284
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3285
HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3286
HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3287
HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3288
HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3289
HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3290
HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3291
HWCAP_CAP(ID_AA64ISAR1_EL1, LS64, LS64, CAP_HWCAP, KERNEL_HWCAP_LS64),
3292
HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3293
HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3294
HWCAP_CAP(ID_AA64ISAR3_EL1, LSFE, IMP, CAP_HWCAP, KERNEL_HWCAP_LSFE),
3295
HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3296
#ifdef CONFIG_ARM64_SVE
3297
HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3298
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p2, CAP_HWCAP, KERNEL_HWCAP_SVE2P2),
3299
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3300
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3301
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3302
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3303
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, AES2, CAP_HWCAP, KERNEL_HWCAP_SVE_AES2),
3304
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3305
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3306
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, BFSCALE, CAP_HWCAP, KERNEL_HWCAP_SVE_BFSCALE),
3307
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3308
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3309
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3310
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3311
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3312
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3313
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3314
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F16MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_F16MM),
3315
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, EltPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_ELTPERM),
3316
#endif
3317
#ifdef CONFIG_ARM64_GCS
3318
HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3319
#endif
3320
HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3321
#ifdef CONFIG_ARM64_BTI
3322
HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3323
#endif
3324
#ifdef CONFIG_ARM64_PTR_AUTH
3325
HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3326
HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3327
#endif
3328
#ifdef CONFIG_ARM64_MTE
3329
HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3330
HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3331
HWCAP_CAP(ID_AA64PFR2_EL1, MTEFAR, IMP, CAP_HWCAP, KERNEL_HWCAP_MTE_FAR),
3332
HWCAP_CAP(ID_AA64PFR2_EL1, MTESTOREONLY, IMP, CAP_HWCAP , KERNEL_HWCAP_MTE_STORE_ONLY),
3333
#endif /* CONFIG_ARM64_MTE */
3334
HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3335
HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3336
HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3337
HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, CMPBR, CAP_HWCAP, KERNEL_HWCAP_CMPBR),
3338
HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3339
HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3340
HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3341
HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3342
HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3343
#ifdef CONFIG_ARM64_SME
3344
HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3345
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3346
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3347
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p2, CAP_HWCAP, KERNEL_HWCAP_SME2P2),
3348
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3349
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3350
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3351
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3352
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3353
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3354
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3355
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3356
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3357
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3358
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3359
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3360
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3361
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3362
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3363
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3364
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3365
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SBitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SBITPERM),
3366
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_AES),
3367
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SFEXPA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SFEXPA),
3368
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, STMOP, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_STMOP),
3369
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMOP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SMOP4),
3370
#endif /* CONFIG_ARM64_SME */
3371
HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3372
HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3373
HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3374
HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3375
HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM8, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM8),
3376
HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM4),
3377
HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3378
HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3379
#ifdef CONFIG_ARM64_POE
3380
HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3381
#endif
3382
{},
3383
};
3384
3385
#ifdef CONFIG_COMPAT
3386
static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3387
{
3388
/*
3389
* Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3390
* in line with that of arm32 as in vfp_init(). We make sure that the
3391
* check is future proof, by making sure value is non-zero.
3392
*/
3393
u32 mvfr1;
3394
3395
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3396
if (scope == SCOPE_SYSTEM)
3397
mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3398
else
3399
mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3400
3401
return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3402
cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3403
cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3404
}
3405
#endif
3406
3407
static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3408
#ifdef CONFIG_COMPAT
3409
HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3410
HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3411
/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3412
HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3413
HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3414
HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3415
HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3416
HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3417
HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3418
HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3419
HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3420
HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3421
HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3422
HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3423
HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3424
HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3425
HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3426
HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3427
#endif
3428
{},
3429
};
3430
3431
static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3432
{
3433
switch (cap->hwcap_type) {
3434
case CAP_HWCAP:
3435
cpu_set_feature(cap->hwcap);
3436
break;
3437
#ifdef CONFIG_COMPAT
3438
case CAP_COMPAT_HWCAP:
3439
compat_elf_hwcap |= (u32)cap->hwcap;
3440
break;
3441
case CAP_COMPAT_HWCAP2:
3442
compat_elf_hwcap2 |= (u32)cap->hwcap;
3443
break;
3444
#endif
3445
default:
3446
WARN_ON(1);
3447
break;
3448
}
3449
}
3450
3451
/* Check if we have a particular HWCAP enabled */
3452
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3453
{
3454
bool rc;
3455
3456
switch (cap->hwcap_type) {
3457
case CAP_HWCAP:
3458
rc = cpu_have_feature(cap->hwcap);
3459
break;
3460
#ifdef CONFIG_COMPAT
3461
case CAP_COMPAT_HWCAP:
3462
rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3463
break;
3464
case CAP_COMPAT_HWCAP2:
3465
rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3466
break;
3467
#endif
3468
default:
3469
WARN_ON(1);
3470
rc = false;
3471
}
3472
3473
return rc;
3474
}
3475
3476
static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3477
{
3478
/* We support emulation of accesses to CPU ID feature registers */
3479
cpu_set_named_feature(CPUID);
3480
for (; hwcaps->matches; hwcaps++)
3481
if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3482
cap_set_elf_hwcap(hwcaps);
3483
}
3484
3485
static void update_cpu_capabilities(u16 scope_mask)
3486
{
3487
int i;
3488
const struct arm64_cpu_capabilities *caps;
3489
3490
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3491
for (i = 0; i < ARM64_NCAPS; i++) {
3492
bool match_all = false;
3493
bool caps_set = false;
3494
bool boot_cpu = false;
3495
3496
caps = cpucap_ptrs[i];
3497
if (!caps || !(caps->type & scope_mask))
3498
continue;
3499
3500
match_all = cpucap_match_all_early_cpus(caps);
3501
caps_set = cpus_have_cap(caps->capability);
3502
boot_cpu = scope_mask & SCOPE_BOOT_CPU;
3503
3504
/*
3505
* Unless it's a match-all CPUs feature, avoid probing if
3506
* already detected.
3507
*/
3508
if (!match_all && caps_set)
3509
continue;
3510
3511
/*
3512
* A match-all CPUs capability is only set when probing the
3513
* boot CPU. It may be cleared subsequently if not detected on
3514
* secondary ones.
3515
*/
3516
if (match_all && !caps_set && !boot_cpu)
3517
continue;
3518
3519
if (!caps->matches(caps, cpucap_default_scope(caps))) {
3520
if (match_all)
3521
__clear_bit(caps->capability, system_cpucaps);
3522
continue;
3523
}
3524
3525
/*
3526
* Match-all CPUs capabilities are logged later when the
3527
* system capabilities are finalised.
3528
*/
3529
if (!match_all && caps->desc && !caps->cpus)
3530
pr_info("detected: %s\n", caps->desc);
3531
3532
__set_bit(caps->capability, system_cpucaps);
3533
3534
if (boot_cpu && (caps->type & SCOPE_BOOT_CPU))
3535
set_bit(caps->capability, boot_cpucaps);
3536
}
3537
}
3538
3539
/*
3540
* Enable all the available capabilities on this CPU. The capabilities
3541
* with BOOT_CPU scope are handled separately and hence skipped here.
3542
*/
3543
static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3544
{
3545
int i;
3546
u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3547
3548
for_each_available_cap(i) {
3549
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3550
3551
if (WARN_ON(!cap))
3552
continue;
3553
3554
if (!(cap->type & non_boot_scope))
3555
continue;
3556
3557
if (cap->cpu_enable)
3558
cap->cpu_enable(cap);
3559
}
3560
return 0;
3561
}
3562
3563
/*
3564
* Run through the enabled capabilities and enable() it on all active
3565
* CPUs
3566
*/
3567
static void __init enable_cpu_capabilities(u16 scope_mask)
3568
{
3569
int i;
3570
const struct arm64_cpu_capabilities *caps;
3571
bool boot_scope;
3572
3573
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3574
boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3575
3576
for (i = 0; i < ARM64_NCAPS; i++) {
3577
caps = cpucap_ptrs[i];
3578
if (!caps || !(caps->type & scope_mask) ||
3579
!cpus_have_cap(caps->capability))
3580
continue;
3581
3582
if (boot_scope && caps->cpu_enable)
3583
/*
3584
* Capabilities with SCOPE_BOOT_CPU scope are finalised
3585
* before any secondary CPU boots. Thus, each secondary
3586
* will enable the capability as appropriate via
3587
* check_local_cpu_capabilities(). The only exception is
3588
* the boot CPU, for which the capability must be
3589
* enabled here. This approach avoids costly
3590
* stop_machine() calls for this case.
3591
*/
3592
caps->cpu_enable(caps);
3593
}
3594
3595
/*
3596
* For all non-boot scope capabilities, use stop_machine()
3597
* as it schedules the work allowing us to modify PSTATE,
3598
* instead of on_each_cpu() which uses an IPI, giving us a
3599
* PSTATE that disappears when we return.
3600
*/
3601
if (!boot_scope)
3602
stop_machine(cpu_enable_non_boot_scope_capabilities,
3603
NULL, cpu_online_mask);
3604
}
3605
3606
/*
3607
* Run through the list of capabilities to check for conflicts.
3608
* If the system has already detected a capability, take necessary
3609
* action on this CPU.
3610
*/
3611
static void verify_local_cpu_caps(u16 scope_mask)
3612
{
3613
int i;
3614
bool cpu_has_cap, system_has_cap;
3615
const struct arm64_cpu_capabilities *caps;
3616
3617
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3618
3619
for (i = 0; i < ARM64_NCAPS; i++) {
3620
caps = cpucap_ptrs[i];
3621
if (!caps || !(caps->type & scope_mask))
3622
continue;
3623
3624
cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3625
system_has_cap = cpus_have_cap(caps->capability);
3626
3627
if (system_has_cap) {
3628
/*
3629
* Check if the new CPU misses an advertised feature,
3630
* which is not safe to miss.
3631
*/
3632
if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3633
break;
3634
/*
3635
* We have to issue cpu_enable() irrespective of
3636
* whether the CPU has it or not, as it is enabeld
3637
* system wide. It is upto the call back to take
3638
* appropriate action on this CPU.
3639
*/
3640
if (caps->cpu_enable)
3641
caps->cpu_enable(caps);
3642
} else {
3643
/*
3644
* Check if the CPU has this capability if it isn't
3645
* safe to have when the system doesn't.
3646
*/
3647
if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3648
break;
3649
}
3650
}
3651
3652
if (i < ARM64_NCAPS) {
3653
pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3654
smp_processor_id(), caps->capability,
3655
caps->desc, system_has_cap, cpu_has_cap);
3656
3657
if (cpucap_panic_on_conflict(caps))
3658
cpu_panic_kernel();
3659
else
3660
cpu_die_early();
3661
}
3662
}
3663
3664
/*
3665
* Check for CPU features that are used in early boot
3666
* based on the Boot CPU value.
3667
*/
3668
static void check_early_cpu_features(void)
3669
{
3670
verify_cpu_asid_bits();
3671
3672
verify_local_cpu_caps(SCOPE_BOOT_CPU);
3673
}
3674
3675
static void
3676
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3677
{
3678
3679
for (; caps->matches; caps++)
3680
if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3681
pr_crit("CPU%d: missing HWCAP: %s\n",
3682
smp_processor_id(), caps->desc);
3683
cpu_die_early();
3684
}
3685
}
3686
3687
static void verify_local_elf_hwcaps(void)
3688
{
3689
__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3690
3691
if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3692
__verify_local_elf_hwcaps(compat_elf_hwcaps);
3693
}
3694
3695
static void verify_sve_features(void)
3696
{
3697
unsigned long cpacr = cpacr_save_enable_kernel_sve();
3698
3699
if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3700
pr_crit("CPU%d: SVE: vector length support mismatch\n",
3701
smp_processor_id());
3702
cpu_die_early();
3703
}
3704
3705
cpacr_restore(cpacr);
3706
}
3707
3708
static void verify_sme_features(void)
3709
{
3710
unsigned long cpacr = cpacr_save_enable_kernel_sme();
3711
3712
if (vec_verify_vq_map(ARM64_VEC_SME)) {
3713
pr_crit("CPU%d: SME: vector length support mismatch\n",
3714
smp_processor_id());
3715
cpu_die_early();
3716
}
3717
3718
cpacr_restore(cpacr);
3719
}
3720
3721
static void verify_hyp_capabilities(void)
3722
{
3723
u64 safe_mmfr1, mmfr0, mmfr1;
3724
int parange, ipa_max;
3725
unsigned int safe_vmid_bits, vmid_bits;
3726
3727
if (!IS_ENABLED(CONFIG_KVM))
3728
return;
3729
3730
safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3731
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
3732
mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3733
3734
/* Verify VMID bits */
3735
safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3736
vmid_bits = get_vmid_bits(mmfr1);
3737
if (vmid_bits < safe_vmid_bits) {
3738
pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3739
cpu_die_early();
3740
}
3741
3742
/* Verify IPA range */
3743
parange = cpuid_feature_extract_unsigned_field(mmfr0,
3744
ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3745
ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3746
if (ipa_max < get_kvm_ipa_limit()) {
3747
pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3748
cpu_die_early();
3749
}
3750
}
3751
3752
static void verify_mpam_capabilities(void)
3753
{
3754
u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3755
u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3756
u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3757
3758
if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3759
FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3760
pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3761
cpu_die_early();
3762
}
3763
3764
cpu_idr = read_cpuid(MPAMIDR_EL1);
3765
sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3766
if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3767
FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3768
pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3769
cpu_die_early();
3770
}
3771
3772
cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3773
cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3774
sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3775
sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3776
if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3777
pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3778
cpu_die_early();
3779
}
3780
}
3781
3782
/*
3783
* Run through the enabled system capabilities and enable() it on this CPU.
3784
* The capabilities were decided based on the available CPUs at the boot time.
3785
* Any new CPU should match the system wide status of the capability. If the
3786
* new CPU doesn't have a capability which the system now has enabled, we
3787
* cannot do anything to fix it up and could cause unexpected failures. So
3788
* we park the CPU.
3789
*/
3790
static void verify_local_cpu_capabilities(void)
3791
{
3792
/*
3793
* The capabilities with SCOPE_BOOT_CPU are checked from
3794
* check_early_cpu_features(), as they need to be verified
3795
* on all secondary CPUs.
3796
*/
3797
verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3798
verify_local_elf_hwcaps();
3799
3800
if (system_supports_sve())
3801
verify_sve_features();
3802
3803
if (system_supports_sme())
3804
verify_sme_features();
3805
3806
if (is_hyp_mode_available())
3807
verify_hyp_capabilities();
3808
3809
if (system_supports_mpam())
3810
verify_mpam_capabilities();
3811
}
3812
3813
void check_local_cpu_capabilities(void)
3814
{
3815
/*
3816
* All secondary CPUs should conform to the early CPU features
3817
* in use by the kernel based on boot CPU.
3818
*/
3819
check_early_cpu_features();
3820
3821
/*
3822
* If we haven't finalised the system capabilities, this CPU gets
3823
* a chance to update the errata work arounds and local features.
3824
* Otherwise, this CPU should verify that it has all the system
3825
* advertised capabilities.
3826
*/
3827
if (!system_capabilities_finalized())
3828
update_cpu_capabilities(SCOPE_LOCAL_CPU);
3829
else
3830
verify_local_cpu_capabilities();
3831
}
3832
3833
bool this_cpu_has_cap(unsigned int n)
3834
{
3835
if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3836
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3837
3838
if (cap)
3839
return cap->matches(cap, SCOPE_LOCAL_CPU);
3840
}
3841
3842
return false;
3843
}
3844
EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3845
3846
/*
3847
* This helper function is used in a narrow window when,
3848
* - The system wide safe registers are set with all the SMP CPUs and,
3849
* - The SYSTEM_FEATURE system_cpucaps may not have been set.
3850
*/
3851
static bool __maybe_unused __system_matches_cap(unsigned int n)
3852
{
3853
if (n < ARM64_NCAPS) {
3854
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3855
3856
if (cap)
3857
return cap->matches(cap, SCOPE_SYSTEM);
3858
}
3859
return false;
3860
}
3861
3862
void cpu_set_feature(unsigned int num)
3863
{
3864
set_bit(num, elf_hwcap);
3865
}
3866
3867
bool cpu_have_feature(unsigned int num)
3868
{
3869
return test_bit(num, elf_hwcap);
3870
}
3871
EXPORT_SYMBOL_GPL(cpu_have_feature);
3872
3873
unsigned long cpu_get_elf_hwcap(void)
3874
{
3875
/*
3876
* We currently only populate the first 32 bits of AT_HWCAP. Please
3877
* note that for userspace compatibility we guarantee that bits 62
3878
* and 63 will always be returned as 0.
3879
*/
3880
return elf_hwcap[0];
3881
}
3882
3883
unsigned long cpu_get_elf_hwcap2(void)
3884
{
3885
return elf_hwcap[1];
3886
}
3887
3888
unsigned long cpu_get_elf_hwcap3(void)
3889
{
3890
return elf_hwcap[2];
3891
}
3892
3893
static void __init setup_boot_cpu_capabilities(void)
3894
{
3895
kvm_arm_target_impl_cpu_init();
3896
/*
3897
* The boot CPU's feature register values have been recorded. Detect
3898
* boot cpucaps and local cpucaps for the boot CPU, then enable and
3899
* patch alternatives for the available boot cpucaps.
3900
*/
3901
update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3902
enable_cpu_capabilities(SCOPE_BOOT_CPU);
3903
apply_boot_alternatives();
3904
}
3905
3906
void __init setup_boot_cpu_features(void)
3907
{
3908
/*
3909
* Initialize the indirect array of CPU capabilities pointers before we
3910
* handle the boot CPU.
3911
*/
3912
init_cpucap_indirect_list();
3913
3914
/*
3915
* Detect broken pseudo-NMI. Must be called _before_ the call to
3916
* setup_boot_cpu_capabilities() since it interacts with
3917
* can_use_gic_priorities().
3918
*/
3919
detect_system_supports_pseudo_nmi();
3920
3921
setup_boot_cpu_capabilities();
3922
}
3923
3924
static void __init setup_system_capabilities(void)
3925
{
3926
/*
3927
* The system-wide safe feature register values have been finalized.
3928
* Detect, enable, and patch alternatives for the available system
3929
* cpucaps.
3930
*/
3931
update_cpu_capabilities(SCOPE_SYSTEM);
3932
enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3933
apply_alternatives_all();
3934
3935
for (int i = 0; i < ARM64_NCAPS; i++) {
3936
const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3937
3938
if (!caps || !caps->desc)
3939
continue;
3940
3941
/*
3942
* Log any cpucaps with a cpumask as these aren't logged by
3943
* update_cpu_capabilities().
3944
*/
3945
if (caps->cpus && cpumask_any(caps->cpus) < nr_cpu_ids)
3946
pr_info("detected: %s on CPU%*pbl\n",
3947
caps->desc, cpumask_pr_args(caps->cpus));
3948
3949
/* Log match-all CPUs capabilities */
3950
if (cpucap_match_all_early_cpus(caps) &&
3951
cpus_have_cap(caps->capability))
3952
pr_info("detected: %s\n", caps->desc);
3953
}
3954
3955
/*
3956
* TTBR0 PAN doesn't have its own cpucap, so log it manually.
3957
*/
3958
if (system_uses_ttbr0_pan())
3959
pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3960
3961
/*
3962
* Report Spectre mitigations status.
3963
*/
3964
spectre_print_disabled_mitigations();
3965
}
3966
3967
void __init setup_system_features(void)
3968
{
3969
setup_system_capabilities();
3970
3971
linear_map_maybe_split_to_ptes();
3972
kpti_install_ng_mappings();
3973
3974
sve_setup();
3975
sme_setup();
3976
3977
/*
3978
* Check for sane CTR_EL0.CWG value.
3979
*/
3980
if (!cache_type_cwg())
3981
pr_warn("No Cache Writeback Granule information, assuming %d\n",
3982
ARCH_DMA_MINALIGN);
3983
}
3984
3985
void __init setup_user_features(void)
3986
{
3987
user_feature_fixup();
3988
3989
setup_elf_hwcaps(arm64_elf_hwcaps);
3990
3991
if (system_supports_32bit_el0()) {
3992
setup_elf_hwcaps(compat_elf_hwcaps);
3993
elf_hwcap_fixup();
3994
}
3995
3996
minsigstksz_setup();
3997
}
3998
3999
static int enable_mismatched_32bit_el0(unsigned int cpu)
4000
{
4001
/*
4002
* The first 32-bit-capable CPU we detected and so can no longer
4003
* be offlined by userspace. -1 indicates we haven't yet onlined
4004
* a 32-bit-capable CPU.
4005
*/
4006
static int lucky_winner = -1;
4007
4008
struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
4009
bool cpu_32bit = false;
4010
4011
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
4012
if (!housekeeping_cpu(cpu, HK_TYPE_DOMAIN))
4013
pr_info("Treating domain isolated CPU %u as 64-bit only\n", cpu);
4014
else
4015
cpu_32bit = true;
4016
}
4017
4018
if (cpu_32bit) {
4019
cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
4020
static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
4021
}
4022
4023
if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
4024
return 0;
4025
4026
if (lucky_winner >= 0)
4027
return 0;
4028
4029
/*
4030
* We've detected a mismatch. We need to keep one of our CPUs with
4031
* 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
4032
* every CPU in the system for a 32-bit task.
4033
*/
4034
lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
4035
cpu_active_mask);
4036
get_cpu_device(lucky_winner)->offline_disabled = true;
4037
setup_elf_hwcaps(compat_elf_hwcaps);
4038
elf_hwcap_fixup();
4039
pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
4040
cpu, lucky_winner);
4041
return 0;
4042
}
4043
4044
static int __init init_32bit_el0_mask(void)
4045
{
4046
if (!allow_mismatched_32bit_el0)
4047
return 0;
4048
4049
if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
4050
return -ENOMEM;
4051
4052
return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
4053
"arm64/mismatched_32bit_el0:online",
4054
enable_mismatched_32bit_el0, NULL);
4055
}
4056
subsys_initcall_sync(init_32bit_el0_mask);
4057
4058
static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
4059
{
4060
cpu_enable_swapper_cnp();
4061
}
4062
4063
/*
4064
* We emulate only the following system register space.
4065
* Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
4066
* See Table C5-6 System instruction encodings for System register accesses,
4067
* ARMv8 ARM(ARM DDI 0487A.f) for more details.
4068
*/
4069
static inline bool __attribute_const__ is_emulated(u32 id)
4070
{
4071
return (sys_reg_Op0(id) == 0x3 &&
4072
sys_reg_CRn(id) == 0x0 &&
4073
sys_reg_Op1(id) == 0x0 &&
4074
(sys_reg_CRm(id) == 0 ||
4075
((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
4076
}
4077
4078
/*
4079
* With CRm == 0, reg should be one of :
4080
* MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
4081
*/
4082
static inline int emulate_id_reg(u32 id, u64 *valp)
4083
{
4084
switch (id) {
4085
case SYS_MIDR_EL1:
4086
*valp = read_cpuid_id();
4087
break;
4088
case SYS_MPIDR_EL1:
4089
*valp = SYS_MPIDR_SAFE_VAL;
4090
break;
4091
case SYS_REVIDR_EL1:
4092
/* IMPLEMENTATION DEFINED values are emulated with 0 */
4093
*valp = 0;
4094
break;
4095
default:
4096
return -EINVAL;
4097
}
4098
4099
return 0;
4100
}
4101
4102
static int emulate_sys_reg(u32 id, u64 *valp)
4103
{
4104
struct arm64_ftr_reg *regp;
4105
4106
if (!is_emulated(id))
4107
return -EINVAL;
4108
4109
if (sys_reg_CRm(id) == 0)
4110
return emulate_id_reg(id, valp);
4111
4112
regp = get_arm64_ftr_reg_nowarn(id);
4113
if (regp)
4114
*valp = arm64_ftr_reg_user_value(regp);
4115
else
4116
/*
4117
* The untracked registers are either IMPLEMENTATION DEFINED
4118
* (e.g, ID_AFR0_EL1) or reserved RAZ.
4119
*/
4120
*valp = 0;
4121
return 0;
4122
}
4123
4124
int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
4125
{
4126
int rc;
4127
u64 val;
4128
4129
rc = emulate_sys_reg(sys_reg, &val);
4130
if (!rc) {
4131
pt_regs_write_reg(regs, rt, val);
4132
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
4133
}
4134
return rc;
4135
}
4136
4137
bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
4138
{
4139
u32 sys_reg, rt;
4140
4141
if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
4142
return false;
4143
4144
/*
4145
* sys_reg values are defined as used in mrs/msr instruction.
4146
* shift the imm value to get the encoding.
4147
*/
4148
sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
4149
rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
4150
return do_emulate_mrs(regs, sys_reg, rt) == 0;
4151
}
4152
4153
enum mitigation_state arm64_get_meltdown_state(void)
4154
{
4155
if (__meltdown_safe)
4156
return SPECTRE_UNAFFECTED;
4157
4158
if (arm64_kernel_unmapped_at_el0())
4159
return SPECTRE_MITIGATED;
4160
4161
return SPECTRE_VULNERABLE;
4162
}
4163
4164
ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
4165
char *buf)
4166
{
4167
switch (arm64_get_meltdown_state()) {
4168
case SPECTRE_UNAFFECTED:
4169
return sprintf(buf, "Not affected\n");
4170
4171
case SPECTRE_MITIGATED:
4172
return sprintf(buf, "Mitigation: PTI\n");
4173
4174
default:
4175
return sprintf(buf, "Vulnerable\n");
4176
}
4177
}
4178
4179