Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kernel/entry-common.c
26442 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Exception handling code
4
*
5
* Copyright (C) 2019 ARM Ltd.
6
*/
7
8
#include <linux/context_tracking.h>
9
#include <linux/kasan.h>
10
#include <linux/linkage.h>
11
#include <linux/livepatch.h>
12
#include <linux/lockdep.h>
13
#include <linux/ptrace.h>
14
#include <linux/resume_user_mode.h>
15
#include <linux/sched.h>
16
#include <linux/sched/debug.h>
17
#include <linux/thread_info.h>
18
19
#include <asm/cpufeature.h>
20
#include <asm/daifflags.h>
21
#include <asm/esr.h>
22
#include <asm/exception.h>
23
#include <asm/irq_regs.h>
24
#include <asm/kprobes.h>
25
#include <asm/mmu.h>
26
#include <asm/processor.h>
27
#include <asm/sdei.h>
28
#include <asm/stacktrace.h>
29
#include <asm/sysreg.h>
30
#include <asm/system_misc.h>
31
32
/*
33
* Handle IRQ/context state management when entering from kernel mode.
34
* Before this function is called it is not safe to call regular kernel code,
35
* instrumentable code, or any code which may trigger an exception.
36
*
37
* This is intended to match the logic in irqentry_enter(), handling the kernel
38
* mode transitions only.
39
*/
40
static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
41
{
42
regs->exit_rcu = false;
43
44
if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
45
lockdep_hardirqs_off(CALLER_ADDR0);
46
ct_irq_enter();
47
trace_hardirqs_off_finish();
48
49
regs->exit_rcu = true;
50
return;
51
}
52
53
lockdep_hardirqs_off(CALLER_ADDR0);
54
rcu_irq_enter_check_tick();
55
trace_hardirqs_off_finish();
56
}
57
58
static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
59
{
60
__enter_from_kernel_mode(regs);
61
mte_check_tfsr_entry();
62
mte_disable_tco_entry(current);
63
}
64
65
/*
66
* Handle IRQ/context state management when exiting to kernel mode.
67
* After this function returns it is not safe to call regular kernel code,
68
* instrumentable code, or any code which may trigger an exception.
69
*
70
* This is intended to match the logic in irqentry_exit(), handling the kernel
71
* mode transitions only, and with preemption handled elsewhere.
72
*/
73
static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
74
{
75
lockdep_assert_irqs_disabled();
76
77
if (interrupts_enabled(regs)) {
78
if (regs->exit_rcu) {
79
trace_hardirqs_on_prepare();
80
lockdep_hardirqs_on_prepare();
81
ct_irq_exit();
82
lockdep_hardirqs_on(CALLER_ADDR0);
83
return;
84
}
85
86
trace_hardirqs_on();
87
} else {
88
if (regs->exit_rcu)
89
ct_irq_exit();
90
}
91
}
92
93
static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
94
{
95
mte_check_tfsr_exit();
96
__exit_to_kernel_mode(regs);
97
}
98
99
/*
100
* Handle IRQ/context state management when entering from user mode.
101
* Before this function is called it is not safe to call regular kernel code,
102
* instrumentable code, or any code which may trigger an exception.
103
*/
104
static __always_inline void __enter_from_user_mode(void)
105
{
106
lockdep_hardirqs_off(CALLER_ADDR0);
107
CT_WARN_ON(ct_state() != CT_STATE_USER);
108
user_exit_irqoff();
109
trace_hardirqs_off_finish();
110
mte_disable_tco_entry(current);
111
}
112
113
static __always_inline void enter_from_user_mode(struct pt_regs *regs)
114
{
115
__enter_from_user_mode();
116
}
117
118
/*
119
* Handle IRQ/context state management when exiting to user mode.
120
* After this function returns it is not safe to call regular kernel code,
121
* instrumentable code, or any code which may trigger an exception.
122
*/
123
static __always_inline void __exit_to_user_mode(void)
124
{
125
trace_hardirqs_on_prepare();
126
lockdep_hardirqs_on_prepare();
127
user_enter_irqoff();
128
lockdep_hardirqs_on(CALLER_ADDR0);
129
}
130
131
static void do_notify_resume(struct pt_regs *regs, unsigned long thread_flags)
132
{
133
do {
134
local_irq_enable();
135
136
if (thread_flags & (_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY))
137
schedule();
138
139
if (thread_flags & _TIF_UPROBE)
140
uprobe_notify_resume(regs);
141
142
if (thread_flags & _TIF_MTE_ASYNC_FAULT) {
143
clear_thread_flag(TIF_MTE_ASYNC_FAULT);
144
send_sig_fault(SIGSEGV, SEGV_MTEAERR,
145
(void __user *)NULL, current);
146
}
147
148
if (thread_flags & _TIF_PATCH_PENDING)
149
klp_update_patch_state(current);
150
151
if (thread_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL))
152
do_signal(regs);
153
154
if (thread_flags & _TIF_NOTIFY_RESUME)
155
resume_user_mode_work(regs);
156
157
if (thread_flags & _TIF_FOREIGN_FPSTATE)
158
fpsimd_restore_current_state();
159
160
local_irq_disable();
161
thread_flags = read_thread_flags();
162
} while (thread_flags & _TIF_WORK_MASK);
163
}
164
165
static __always_inline void exit_to_user_mode_prepare(struct pt_regs *regs)
166
{
167
unsigned long flags;
168
169
local_irq_disable();
170
171
flags = read_thread_flags();
172
if (unlikely(flags & _TIF_WORK_MASK))
173
do_notify_resume(regs, flags);
174
175
local_daif_mask();
176
177
lockdep_sys_exit();
178
}
179
180
static __always_inline void exit_to_user_mode(struct pt_regs *regs)
181
{
182
exit_to_user_mode_prepare(regs);
183
mte_check_tfsr_exit();
184
__exit_to_user_mode();
185
}
186
187
asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
188
{
189
exit_to_user_mode(regs);
190
}
191
192
/*
193
* Handle IRQ/context state management when entering an NMI from user/kernel
194
* mode. Before this function is called it is not safe to call regular kernel
195
* code, instrumentable code, or any code which may trigger an exception.
196
*/
197
static void noinstr arm64_enter_nmi(struct pt_regs *regs)
198
{
199
regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
200
201
__nmi_enter();
202
lockdep_hardirqs_off(CALLER_ADDR0);
203
lockdep_hardirq_enter();
204
ct_nmi_enter();
205
206
trace_hardirqs_off_finish();
207
ftrace_nmi_enter();
208
}
209
210
/*
211
* Handle IRQ/context state management when exiting an NMI from user/kernel
212
* mode. After this function returns it is not safe to call regular kernel
213
* code, instrumentable code, or any code which may trigger an exception.
214
*/
215
static void noinstr arm64_exit_nmi(struct pt_regs *regs)
216
{
217
bool restore = regs->lockdep_hardirqs;
218
219
ftrace_nmi_exit();
220
if (restore) {
221
trace_hardirqs_on_prepare();
222
lockdep_hardirqs_on_prepare();
223
}
224
225
ct_nmi_exit();
226
lockdep_hardirq_exit();
227
if (restore)
228
lockdep_hardirqs_on(CALLER_ADDR0);
229
__nmi_exit();
230
}
231
232
/*
233
* Handle IRQ/context state management when entering a debug exception from
234
* kernel mode. Before this function is called it is not safe to call regular
235
* kernel code, instrumentable code, or any code which may trigger an exception.
236
*/
237
static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
238
{
239
regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
240
241
lockdep_hardirqs_off(CALLER_ADDR0);
242
ct_nmi_enter();
243
244
trace_hardirqs_off_finish();
245
}
246
247
/*
248
* Handle IRQ/context state management when exiting a debug exception from
249
* kernel mode. After this function returns it is not safe to call regular
250
* kernel code, instrumentable code, or any code which may trigger an exception.
251
*/
252
static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
253
{
254
bool restore = regs->lockdep_hardirqs;
255
256
if (restore) {
257
trace_hardirqs_on_prepare();
258
lockdep_hardirqs_on_prepare();
259
}
260
261
ct_nmi_exit();
262
if (restore)
263
lockdep_hardirqs_on(CALLER_ADDR0);
264
}
265
266
#ifdef CONFIG_PREEMPT_DYNAMIC
267
DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched);
268
#define need_irq_preemption() \
269
(static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched))
270
#else
271
#define need_irq_preemption() (IS_ENABLED(CONFIG_PREEMPTION))
272
#endif
273
274
static void __sched arm64_preempt_schedule_irq(void)
275
{
276
if (!need_irq_preemption())
277
return;
278
279
/*
280
* Note: thread_info::preempt_count includes both thread_info::count
281
* and thread_info::need_resched, and is not equivalent to
282
* preempt_count().
283
*/
284
if (READ_ONCE(current_thread_info()->preempt_count) != 0)
285
return;
286
287
/*
288
* DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
289
* priority masking is used the GIC irqchip driver will clear DAIF.IF
290
* using gic_arch_enable_irqs() for normal IRQs. If anything is set in
291
* DAIF we must have handled an NMI, so skip preemption.
292
*/
293
if (system_uses_irq_prio_masking() && read_sysreg(daif))
294
return;
295
296
/*
297
* Preempting a task from an IRQ means we leave copies of PSTATE
298
* on the stack. cpufeature's enable calls may modify PSTATE, but
299
* resuming one of these preempted tasks would undo those changes.
300
*
301
* Only allow a task to be preempted once cpufeatures have been
302
* enabled.
303
*/
304
if (system_capabilities_finalized())
305
preempt_schedule_irq();
306
}
307
308
static void do_interrupt_handler(struct pt_regs *regs,
309
void (*handler)(struct pt_regs *))
310
{
311
struct pt_regs *old_regs = set_irq_regs(regs);
312
313
if (on_thread_stack())
314
call_on_irq_stack(regs, handler);
315
else
316
handler(regs);
317
318
set_irq_regs(old_regs);
319
}
320
321
extern void (*handle_arch_irq)(struct pt_regs *);
322
extern void (*handle_arch_fiq)(struct pt_regs *);
323
324
static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
325
unsigned long esr)
326
{
327
arm64_enter_nmi(regs);
328
329
console_verbose();
330
331
pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n",
332
vector, smp_processor_id(), esr,
333
esr_get_class_string(esr));
334
335
__show_regs(regs);
336
panic("Unhandled exception");
337
}
338
339
#define UNHANDLED(el, regsize, vector) \
340
asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \
341
{ \
342
const char *desc = #regsize "-bit " #el " " #vector; \
343
__panic_unhandled(regs, desc, read_sysreg(esr_el1)); \
344
}
345
346
#ifdef CONFIG_ARM64_ERRATUM_1463225
347
static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
348
349
static void cortex_a76_erratum_1463225_svc_handler(void)
350
{
351
u64 reg, val;
352
353
if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
354
return;
355
356
if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
357
return;
358
359
__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
360
reg = read_sysreg(mdscr_el1);
361
val = reg | MDSCR_EL1_SS | MDSCR_EL1_KDE;
362
write_sysreg(val, mdscr_el1);
363
asm volatile("msr daifclr, #8");
364
isb();
365
366
/* We will have taken a single-step exception by this point */
367
368
write_sysreg(reg, mdscr_el1);
369
__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
370
}
371
372
static __always_inline bool
373
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
374
{
375
if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
376
return false;
377
378
/*
379
* We've taken a dummy step exception from the kernel to ensure
380
* that interrupts are re-enabled on the syscall path. Return back
381
* to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
382
* masked so that we can safely restore the mdscr and get on with
383
* handling the syscall.
384
*/
385
regs->pstate |= PSR_D_BIT;
386
return true;
387
}
388
#else /* CONFIG_ARM64_ERRATUM_1463225 */
389
static void cortex_a76_erratum_1463225_svc_handler(void) { }
390
static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
391
{
392
return false;
393
}
394
#endif /* CONFIG_ARM64_ERRATUM_1463225 */
395
396
/*
397
* As per the ABI exit SME streaming mode and clear the SVE state not
398
* shared with FPSIMD on syscall entry.
399
*/
400
static inline void fpsimd_syscall_enter(void)
401
{
402
/* Ensure PSTATE.SM is clear, but leave PSTATE.ZA as-is. */
403
if (system_supports_sme())
404
sme_smstop_sm();
405
406
/*
407
* The CPU is not in streaming mode. If non-streaming SVE is not
408
* supported, there is no SVE state that needs to be discarded.
409
*/
410
if (!system_supports_sve())
411
return;
412
413
if (test_thread_flag(TIF_SVE)) {
414
unsigned int sve_vq_minus_one;
415
416
sve_vq_minus_one = sve_vq_from_vl(task_get_sve_vl(current)) - 1;
417
sve_flush_live(true, sve_vq_minus_one);
418
}
419
420
/*
421
* Any live non-FPSIMD SVE state has been zeroed. Allow
422
* fpsimd_save_user_state() to lazily discard SVE state until either
423
* the live state is unbound or fpsimd_syscall_exit() is called.
424
*/
425
__this_cpu_write(fpsimd_last_state.to_save, FP_STATE_FPSIMD);
426
}
427
428
static __always_inline void fpsimd_syscall_exit(void)
429
{
430
if (!system_supports_sve())
431
return;
432
433
/*
434
* The current task's user FPSIMD/SVE/SME state is now bound to this
435
* CPU. The fpsimd_last_state.to_save value is either:
436
*
437
* - FP_STATE_FPSIMD, if the state has not been reloaded on this CPU
438
* since fpsimd_syscall_enter().
439
*
440
* - FP_STATE_CURRENT, if the state has been reloaded on this CPU at
441
* any point.
442
*
443
* Reset this to FP_STATE_CURRENT to stop lazy discarding.
444
*/
445
__this_cpu_write(fpsimd_last_state.to_save, FP_STATE_CURRENT);
446
}
447
448
/*
449
* In debug exception context, we explicitly disable preemption despite
450
* having interrupts disabled.
451
* This serves two purposes: it makes it much less likely that we would
452
* accidentally schedule in exception context and it will force a warning
453
* if we somehow manage to schedule by accident.
454
*/
455
static void debug_exception_enter(struct pt_regs *regs)
456
{
457
preempt_disable();
458
459
/* This code is a bit fragile. Test it. */
460
RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
461
}
462
NOKPROBE_SYMBOL(debug_exception_enter);
463
464
static void debug_exception_exit(struct pt_regs *regs)
465
{
466
preempt_enable_no_resched();
467
}
468
NOKPROBE_SYMBOL(debug_exception_exit);
469
470
UNHANDLED(el1t, 64, sync)
471
UNHANDLED(el1t, 64, irq)
472
UNHANDLED(el1t, 64, fiq)
473
UNHANDLED(el1t, 64, error)
474
475
static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
476
{
477
unsigned long far = read_sysreg(far_el1);
478
479
enter_from_kernel_mode(regs);
480
local_daif_inherit(regs);
481
do_mem_abort(far, esr, regs);
482
local_daif_mask();
483
exit_to_kernel_mode(regs);
484
}
485
486
static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
487
{
488
unsigned long far = read_sysreg(far_el1);
489
490
enter_from_kernel_mode(regs);
491
local_daif_inherit(regs);
492
do_sp_pc_abort(far, esr, regs);
493
local_daif_mask();
494
exit_to_kernel_mode(regs);
495
}
496
497
static void noinstr el1_undef(struct pt_regs *regs, unsigned long esr)
498
{
499
enter_from_kernel_mode(regs);
500
local_daif_inherit(regs);
501
do_el1_undef(regs, esr);
502
local_daif_mask();
503
exit_to_kernel_mode(regs);
504
}
505
506
static void noinstr el1_bti(struct pt_regs *regs, unsigned long esr)
507
{
508
enter_from_kernel_mode(regs);
509
local_daif_inherit(regs);
510
do_el1_bti(regs, esr);
511
local_daif_mask();
512
exit_to_kernel_mode(regs);
513
}
514
515
static void noinstr el1_gcs(struct pt_regs *regs, unsigned long esr)
516
{
517
enter_from_kernel_mode(regs);
518
local_daif_inherit(regs);
519
do_el1_gcs(regs, esr);
520
local_daif_mask();
521
exit_to_kernel_mode(regs);
522
}
523
524
static void noinstr el1_mops(struct pt_regs *regs, unsigned long esr)
525
{
526
enter_from_kernel_mode(regs);
527
local_daif_inherit(regs);
528
do_el1_mops(regs, esr);
529
local_daif_mask();
530
exit_to_kernel_mode(regs);
531
}
532
533
static void noinstr el1_breakpt(struct pt_regs *regs, unsigned long esr)
534
{
535
arm64_enter_el1_dbg(regs);
536
debug_exception_enter(regs);
537
do_breakpoint(esr, regs);
538
debug_exception_exit(regs);
539
arm64_exit_el1_dbg(regs);
540
}
541
542
static void noinstr el1_softstp(struct pt_regs *regs, unsigned long esr)
543
{
544
arm64_enter_el1_dbg(regs);
545
if (!cortex_a76_erratum_1463225_debug_handler(regs)) {
546
debug_exception_enter(regs);
547
/*
548
* After handling a breakpoint, we suspend the breakpoint
549
* and use single-step to move to the next instruction.
550
* If we are stepping a suspended breakpoint there's nothing more to do:
551
* the single-step is complete.
552
*/
553
if (!try_step_suspended_breakpoints(regs))
554
do_el1_softstep(esr, regs);
555
debug_exception_exit(regs);
556
}
557
arm64_exit_el1_dbg(regs);
558
}
559
560
static void noinstr el1_watchpt(struct pt_regs *regs, unsigned long esr)
561
{
562
/* Watchpoints are the only debug exception to write FAR_EL1 */
563
unsigned long far = read_sysreg(far_el1);
564
565
arm64_enter_el1_dbg(regs);
566
debug_exception_enter(regs);
567
do_watchpoint(far, esr, regs);
568
debug_exception_exit(regs);
569
arm64_exit_el1_dbg(regs);
570
}
571
572
static void noinstr el1_brk64(struct pt_regs *regs, unsigned long esr)
573
{
574
arm64_enter_el1_dbg(regs);
575
debug_exception_enter(regs);
576
do_el1_brk64(esr, regs);
577
debug_exception_exit(regs);
578
arm64_exit_el1_dbg(regs);
579
}
580
581
static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
582
{
583
enter_from_kernel_mode(regs);
584
local_daif_inherit(regs);
585
do_el1_fpac(regs, esr);
586
local_daif_mask();
587
exit_to_kernel_mode(regs);
588
}
589
590
asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
591
{
592
unsigned long esr = read_sysreg(esr_el1);
593
594
switch (ESR_ELx_EC(esr)) {
595
case ESR_ELx_EC_DABT_CUR:
596
case ESR_ELx_EC_IABT_CUR:
597
el1_abort(regs, esr);
598
break;
599
/*
600
* We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
601
* recursive exception when trying to push the initial pt_regs.
602
*/
603
case ESR_ELx_EC_PC_ALIGN:
604
el1_pc(regs, esr);
605
break;
606
case ESR_ELx_EC_SYS64:
607
case ESR_ELx_EC_UNKNOWN:
608
el1_undef(regs, esr);
609
break;
610
case ESR_ELx_EC_BTI:
611
el1_bti(regs, esr);
612
break;
613
case ESR_ELx_EC_GCS:
614
el1_gcs(regs, esr);
615
break;
616
case ESR_ELx_EC_MOPS:
617
el1_mops(regs, esr);
618
break;
619
case ESR_ELx_EC_BREAKPT_CUR:
620
el1_breakpt(regs, esr);
621
break;
622
case ESR_ELx_EC_SOFTSTP_CUR:
623
el1_softstp(regs, esr);
624
break;
625
case ESR_ELx_EC_WATCHPT_CUR:
626
el1_watchpt(regs, esr);
627
break;
628
case ESR_ELx_EC_BRK64:
629
el1_brk64(regs, esr);
630
break;
631
case ESR_ELx_EC_FPAC:
632
el1_fpac(regs, esr);
633
break;
634
default:
635
__panic_unhandled(regs, "64-bit el1h sync", esr);
636
}
637
}
638
639
static __always_inline void __el1_pnmi(struct pt_regs *regs,
640
void (*handler)(struct pt_regs *))
641
{
642
arm64_enter_nmi(regs);
643
do_interrupt_handler(regs, handler);
644
arm64_exit_nmi(regs);
645
}
646
647
static __always_inline void __el1_irq(struct pt_regs *regs,
648
void (*handler)(struct pt_regs *))
649
{
650
enter_from_kernel_mode(regs);
651
652
irq_enter_rcu();
653
do_interrupt_handler(regs, handler);
654
irq_exit_rcu();
655
656
arm64_preempt_schedule_irq();
657
658
exit_to_kernel_mode(regs);
659
}
660
static void noinstr el1_interrupt(struct pt_regs *regs,
661
void (*handler)(struct pt_regs *))
662
{
663
write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
664
665
if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
666
__el1_pnmi(regs, handler);
667
else
668
__el1_irq(regs, handler);
669
}
670
671
asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
672
{
673
el1_interrupt(regs, handle_arch_irq);
674
}
675
676
asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
677
{
678
el1_interrupt(regs, handle_arch_fiq);
679
}
680
681
asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
682
{
683
unsigned long esr = read_sysreg(esr_el1);
684
685
local_daif_restore(DAIF_ERRCTX);
686
arm64_enter_nmi(regs);
687
do_serror(regs, esr);
688
arm64_exit_nmi(regs);
689
}
690
691
static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
692
{
693
unsigned long far = read_sysreg(far_el1);
694
695
enter_from_user_mode(regs);
696
local_daif_restore(DAIF_PROCCTX);
697
do_mem_abort(far, esr, regs);
698
exit_to_user_mode(regs);
699
}
700
701
static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
702
{
703
unsigned long far = read_sysreg(far_el1);
704
705
/*
706
* We've taken an instruction abort from userspace and not yet
707
* re-enabled IRQs. If the address is a kernel address, apply
708
* BP hardening prior to enabling IRQs and pre-emption.
709
*/
710
if (!is_ttbr0_addr(far))
711
arm64_apply_bp_hardening();
712
713
enter_from_user_mode(regs);
714
local_daif_restore(DAIF_PROCCTX);
715
do_mem_abort(far, esr, regs);
716
exit_to_user_mode(regs);
717
}
718
719
static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
720
{
721
enter_from_user_mode(regs);
722
local_daif_restore(DAIF_PROCCTX);
723
do_fpsimd_acc(esr, regs);
724
exit_to_user_mode(regs);
725
}
726
727
static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
728
{
729
enter_from_user_mode(regs);
730
local_daif_restore(DAIF_PROCCTX);
731
do_sve_acc(esr, regs);
732
exit_to_user_mode(regs);
733
}
734
735
static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr)
736
{
737
enter_from_user_mode(regs);
738
local_daif_restore(DAIF_PROCCTX);
739
do_sme_acc(esr, regs);
740
exit_to_user_mode(regs);
741
}
742
743
static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
744
{
745
enter_from_user_mode(regs);
746
local_daif_restore(DAIF_PROCCTX);
747
do_fpsimd_exc(esr, regs);
748
exit_to_user_mode(regs);
749
}
750
751
static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
752
{
753
enter_from_user_mode(regs);
754
local_daif_restore(DAIF_PROCCTX);
755
do_el0_sys(esr, regs);
756
exit_to_user_mode(regs);
757
}
758
759
static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
760
{
761
unsigned long far = read_sysreg(far_el1);
762
763
if (!is_ttbr0_addr(instruction_pointer(regs)))
764
arm64_apply_bp_hardening();
765
766
enter_from_user_mode(regs);
767
local_daif_restore(DAIF_PROCCTX);
768
do_sp_pc_abort(far, esr, regs);
769
exit_to_user_mode(regs);
770
}
771
772
static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
773
{
774
enter_from_user_mode(regs);
775
local_daif_restore(DAIF_PROCCTX);
776
do_sp_pc_abort(regs->sp, esr, regs);
777
exit_to_user_mode(regs);
778
}
779
780
static void noinstr el0_undef(struct pt_regs *regs, unsigned long esr)
781
{
782
enter_from_user_mode(regs);
783
local_daif_restore(DAIF_PROCCTX);
784
do_el0_undef(regs, esr);
785
exit_to_user_mode(regs);
786
}
787
788
static void noinstr el0_bti(struct pt_regs *regs)
789
{
790
enter_from_user_mode(regs);
791
local_daif_restore(DAIF_PROCCTX);
792
do_el0_bti(regs);
793
exit_to_user_mode(regs);
794
}
795
796
static void noinstr el0_mops(struct pt_regs *regs, unsigned long esr)
797
{
798
enter_from_user_mode(regs);
799
local_daif_restore(DAIF_PROCCTX);
800
do_el0_mops(regs, esr);
801
exit_to_user_mode(regs);
802
}
803
804
static void noinstr el0_gcs(struct pt_regs *regs, unsigned long esr)
805
{
806
enter_from_user_mode(regs);
807
local_daif_restore(DAIF_PROCCTX);
808
do_el0_gcs(regs, esr);
809
exit_to_user_mode(regs);
810
}
811
812
static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
813
{
814
enter_from_user_mode(regs);
815
local_daif_restore(DAIF_PROCCTX);
816
bad_el0_sync(regs, 0, esr);
817
exit_to_user_mode(regs);
818
}
819
820
static void noinstr el0_breakpt(struct pt_regs *regs, unsigned long esr)
821
{
822
if (!is_ttbr0_addr(regs->pc))
823
arm64_apply_bp_hardening();
824
825
enter_from_user_mode(regs);
826
debug_exception_enter(regs);
827
do_breakpoint(esr, regs);
828
debug_exception_exit(regs);
829
local_daif_restore(DAIF_PROCCTX);
830
exit_to_user_mode(regs);
831
}
832
833
static void noinstr el0_softstp(struct pt_regs *regs, unsigned long esr)
834
{
835
if (!is_ttbr0_addr(regs->pc))
836
arm64_apply_bp_hardening();
837
838
enter_from_user_mode(regs);
839
/*
840
* After handling a breakpoint, we suspend the breakpoint
841
* and use single-step to move to the next instruction.
842
* If we are stepping a suspended breakpoint there's nothing more to do:
843
* the single-step is complete.
844
*/
845
if (!try_step_suspended_breakpoints(regs)) {
846
local_daif_restore(DAIF_PROCCTX);
847
do_el0_softstep(esr, regs);
848
}
849
exit_to_user_mode(regs);
850
}
851
852
static void noinstr el0_watchpt(struct pt_regs *regs, unsigned long esr)
853
{
854
/* Watchpoints are the only debug exception to write FAR_EL1 */
855
unsigned long far = read_sysreg(far_el1);
856
857
enter_from_user_mode(regs);
858
debug_exception_enter(regs);
859
do_watchpoint(far, esr, regs);
860
debug_exception_exit(regs);
861
local_daif_restore(DAIF_PROCCTX);
862
exit_to_user_mode(regs);
863
}
864
865
static void noinstr el0_brk64(struct pt_regs *regs, unsigned long esr)
866
{
867
enter_from_user_mode(regs);
868
local_daif_restore(DAIF_PROCCTX);
869
do_el0_brk64(esr, regs);
870
exit_to_user_mode(regs);
871
}
872
873
static void noinstr el0_svc(struct pt_regs *regs)
874
{
875
enter_from_user_mode(regs);
876
cortex_a76_erratum_1463225_svc_handler();
877
fpsimd_syscall_enter();
878
local_daif_restore(DAIF_PROCCTX);
879
do_el0_svc(regs);
880
exit_to_user_mode(regs);
881
fpsimd_syscall_exit();
882
}
883
884
static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
885
{
886
enter_from_user_mode(regs);
887
local_daif_restore(DAIF_PROCCTX);
888
do_el0_fpac(regs, esr);
889
exit_to_user_mode(regs);
890
}
891
892
asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
893
{
894
unsigned long esr = read_sysreg(esr_el1);
895
896
switch (ESR_ELx_EC(esr)) {
897
case ESR_ELx_EC_SVC64:
898
el0_svc(regs);
899
break;
900
case ESR_ELx_EC_DABT_LOW:
901
el0_da(regs, esr);
902
break;
903
case ESR_ELx_EC_IABT_LOW:
904
el0_ia(regs, esr);
905
break;
906
case ESR_ELx_EC_FP_ASIMD:
907
el0_fpsimd_acc(regs, esr);
908
break;
909
case ESR_ELx_EC_SVE:
910
el0_sve_acc(regs, esr);
911
break;
912
case ESR_ELx_EC_SME:
913
el0_sme_acc(regs, esr);
914
break;
915
case ESR_ELx_EC_FP_EXC64:
916
el0_fpsimd_exc(regs, esr);
917
break;
918
case ESR_ELx_EC_SYS64:
919
case ESR_ELx_EC_WFx:
920
el0_sys(regs, esr);
921
break;
922
case ESR_ELx_EC_SP_ALIGN:
923
el0_sp(regs, esr);
924
break;
925
case ESR_ELx_EC_PC_ALIGN:
926
el0_pc(regs, esr);
927
break;
928
case ESR_ELx_EC_UNKNOWN:
929
el0_undef(regs, esr);
930
break;
931
case ESR_ELx_EC_BTI:
932
el0_bti(regs);
933
break;
934
case ESR_ELx_EC_MOPS:
935
el0_mops(regs, esr);
936
break;
937
case ESR_ELx_EC_GCS:
938
el0_gcs(regs, esr);
939
break;
940
case ESR_ELx_EC_BREAKPT_LOW:
941
el0_breakpt(regs, esr);
942
break;
943
case ESR_ELx_EC_SOFTSTP_LOW:
944
el0_softstp(regs, esr);
945
break;
946
case ESR_ELx_EC_WATCHPT_LOW:
947
el0_watchpt(regs, esr);
948
break;
949
case ESR_ELx_EC_BRK64:
950
el0_brk64(regs, esr);
951
break;
952
case ESR_ELx_EC_FPAC:
953
el0_fpac(regs, esr);
954
break;
955
default:
956
el0_inv(regs, esr);
957
}
958
}
959
960
static void noinstr el0_interrupt(struct pt_regs *regs,
961
void (*handler)(struct pt_regs *))
962
{
963
enter_from_user_mode(regs);
964
965
write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
966
967
if (regs->pc & BIT(55))
968
arm64_apply_bp_hardening();
969
970
irq_enter_rcu();
971
do_interrupt_handler(regs, handler);
972
irq_exit_rcu();
973
974
exit_to_user_mode(regs);
975
}
976
977
static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
978
{
979
el0_interrupt(regs, handle_arch_irq);
980
}
981
982
asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
983
{
984
__el0_irq_handler_common(regs);
985
}
986
987
static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
988
{
989
el0_interrupt(regs, handle_arch_fiq);
990
}
991
992
asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
993
{
994
__el0_fiq_handler_common(regs);
995
}
996
997
static void noinstr __el0_error_handler_common(struct pt_regs *regs)
998
{
999
unsigned long esr = read_sysreg(esr_el1);
1000
1001
enter_from_user_mode(regs);
1002
local_daif_restore(DAIF_ERRCTX);
1003
arm64_enter_nmi(regs);
1004
do_serror(regs, esr);
1005
arm64_exit_nmi(regs);
1006
local_daif_restore(DAIF_PROCCTX);
1007
exit_to_user_mode(regs);
1008
}
1009
1010
asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
1011
{
1012
__el0_error_handler_common(regs);
1013
}
1014
1015
#ifdef CONFIG_COMPAT
1016
static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
1017
{
1018
enter_from_user_mode(regs);
1019
local_daif_restore(DAIF_PROCCTX);
1020
do_el0_cp15(esr, regs);
1021
exit_to_user_mode(regs);
1022
}
1023
1024
static void noinstr el0_svc_compat(struct pt_regs *regs)
1025
{
1026
enter_from_user_mode(regs);
1027
cortex_a76_erratum_1463225_svc_handler();
1028
local_daif_restore(DAIF_PROCCTX);
1029
do_el0_svc_compat(regs);
1030
exit_to_user_mode(regs);
1031
}
1032
1033
static void noinstr el0_bkpt32(struct pt_regs *regs, unsigned long esr)
1034
{
1035
enter_from_user_mode(regs);
1036
local_daif_restore(DAIF_PROCCTX);
1037
do_bkpt32(esr, regs);
1038
exit_to_user_mode(regs);
1039
}
1040
1041
asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
1042
{
1043
unsigned long esr = read_sysreg(esr_el1);
1044
1045
switch (ESR_ELx_EC(esr)) {
1046
case ESR_ELx_EC_SVC32:
1047
el0_svc_compat(regs);
1048
break;
1049
case ESR_ELx_EC_DABT_LOW:
1050
el0_da(regs, esr);
1051
break;
1052
case ESR_ELx_EC_IABT_LOW:
1053
el0_ia(regs, esr);
1054
break;
1055
case ESR_ELx_EC_FP_ASIMD:
1056
el0_fpsimd_acc(regs, esr);
1057
break;
1058
case ESR_ELx_EC_FP_EXC32:
1059
el0_fpsimd_exc(regs, esr);
1060
break;
1061
case ESR_ELx_EC_PC_ALIGN:
1062
el0_pc(regs, esr);
1063
break;
1064
case ESR_ELx_EC_UNKNOWN:
1065
case ESR_ELx_EC_CP14_MR:
1066
case ESR_ELx_EC_CP14_LS:
1067
case ESR_ELx_EC_CP14_64:
1068
el0_undef(regs, esr);
1069
break;
1070
case ESR_ELx_EC_CP15_32:
1071
case ESR_ELx_EC_CP15_64:
1072
el0_cp15(regs, esr);
1073
break;
1074
case ESR_ELx_EC_BREAKPT_LOW:
1075
el0_breakpt(regs, esr);
1076
break;
1077
case ESR_ELx_EC_SOFTSTP_LOW:
1078
el0_softstp(regs, esr);
1079
break;
1080
case ESR_ELx_EC_WATCHPT_LOW:
1081
el0_watchpt(regs, esr);
1082
break;
1083
case ESR_ELx_EC_BKPT32:
1084
el0_bkpt32(regs, esr);
1085
break;
1086
default:
1087
el0_inv(regs, esr);
1088
}
1089
}
1090
1091
asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
1092
{
1093
__el0_irq_handler_common(regs);
1094
}
1095
1096
asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
1097
{
1098
__el0_fiq_handler_common(regs);
1099
}
1100
1101
asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
1102
{
1103
__el0_error_handler_common(regs);
1104
}
1105
#else /* CONFIG_COMPAT */
1106
UNHANDLED(el0t, 32, sync)
1107
UNHANDLED(el0t, 32, irq)
1108
UNHANDLED(el0t, 32, fiq)
1109
UNHANDLED(el0t, 32, error)
1110
#endif /* CONFIG_COMPAT */
1111
1112
asmlinkage void noinstr __noreturn handle_bad_stack(struct pt_regs *regs)
1113
{
1114
unsigned long esr = read_sysreg(esr_el1);
1115
unsigned long far = read_sysreg(far_el1);
1116
1117
arm64_enter_nmi(regs);
1118
panic_bad_stack(regs, esr, far);
1119
}
1120
1121
#ifdef CONFIG_ARM_SDE_INTERFACE
1122
asmlinkage noinstr unsigned long
1123
__sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
1124
{
1125
unsigned long ret;
1126
1127
/*
1128
* We didn't take an exception to get here, so the HW hasn't
1129
* set/cleared bits in PSTATE that we may rely on.
1130
*
1131
* The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
1132
* whether PSTATE bits are inherited unchanged or generated from
1133
* scratch, and the TF-A implementation always clears PAN and always
1134
* clears UAO. There are no other known implementations.
1135
*
1136
* Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
1137
* PSTATE is modified upon architectural exceptions, and so PAN is
1138
* either inherited or set per SCTLR_ELx.SPAN, and UAO is always
1139
* cleared.
1140
*
1141
* We must explicitly reset PAN to the expected state, including
1142
* clearing it when the host isn't using it, in case a VM had it set.
1143
*/
1144
if (system_uses_hw_pan())
1145
set_pstate_pan(1);
1146
else if (cpu_has_pan())
1147
set_pstate_pan(0);
1148
1149
arm64_enter_nmi(regs);
1150
ret = do_sdei_event(regs, arg);
1151
arm64_exit_nmi(regs);
1152
1153
return ret;
1154
}
1155
#endif /* CONFIG_ARM_SDE_INTERFACE */
1156
1157