Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kernel/fpsimd.c
49857 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* FP/SIMD context switching and fault handling
4
*
5
* Copyright (C) 2012 ARM Ltd.
6
* Author: Catalin Marinas <[email protected]>
7
*/
8
9
#include <linux/bitmap.h>
10
#include <linux/bitops.h>
11
#include <linux/bottom_half.h>
12
#include <linux/bug.h>
13
#include <linux/cache.h>
14
#include <linux/compat.h>
15
#include <linux/compiler.h>
16
#include <linux/cpu.h>
17
#include <linux/cpu_pm.h>
18
#include <linux/ctype.h>
19
#include <linux/kernel.h>
20
#include <linux/linkage.h>
21
#include <linux/irqflags.h>
22
#include <linux/init.h>
23
#include <linux/percpu.h>
24
#include <linux/prctl.h>
25
#include <linux/preempt.h>
26
#include <linux/ptrace.h>
27
#include <linux/sched/signal.h>
28
#include <linux/sched/task_stack.h>
29
#include <linux/signal.h>
30
#include <linux/slab.h>
31
#include <linux/stddef.h>
32
#include <linux/sysctl.h>
33
#include <linux/swab.h>
34
35
#include <asm/esr.h>
36
#include <asm/exception.h>
37
#include <asm/fpsimd.h>
38
#include <asm/cpufeature.h>
39
#include <asm/cputype.h>
40
#include <asm/neon.h>
41
#include <asm/processor.h>
42
#include <asm/simd.h>
43
#include <asm/sigcontext.h>
44
#include <asm/sysreg.h>
45
#include <asm/traps.h>
46
#include <asm/virt.h>
47
48
#define FPEXC_IOF (1 << 0)
49
#define FPEXC_DZF (1 << 1)
50
#define FPEXC_OFF (1 << 2)
51
#define FPEXC_UFF (1 << 3)
52
#define FPEXC_IXF (1 << 4)
53
#define FPEXC_IDF (1 << 7)
54
55
/*
56
* (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57
*
58
* In order to reduce the number of times the FPSIMD state is needlessly saved
59
* and restored, we need to keep track of two things:
60
* (a) for each task, we need to remember which CPU was the last one to have
61
* the task's FPSIMD state loaded into its FPSIMD registers;
62
* (b) for each CPU, we need to remember which task's userland FPSIMD state has
63
* been loaded into its FPSIMD registers most recently, or whether it has
64
* been used to perform kernel mode NEON in the meantime.
65
*
66
* For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67
* the id of the current CPU every time the state is loaded onto a CPU. For (b),
68
* we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69
* address of the userland FPSIMD state of the task that was loaded onto the CPU
70
* the most recently, or NULL if kernel mode NEON has been performed after that.
71
*
72
* With this in place, we no longer have to restore the next FPSIMD state right
73
* when switching between tasks. Instead, we can defer this check to userland
74
* resume, at which time we verify whether the CPU's fpsimd_last_state and the
75
* task's fpsimd_cpu are still mutually in sync. If this is the case, we
76
* can omit the FPSIMD restore.
77
*
78
* As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79
* indicate whether or not the userland FPSIMD state of the current task is
80
* present in the registers. The flag is set unless the FPSIMD registers of this
81
* CPU currently contain the most recent userland FPSIMD state of the current
82
* task. If the task is behaving as a VMM, then this is will be managed by
83
* KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84
* loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85
* softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86
* flag the register state as invalid.
87
*
88
* In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
89
* called from softirq context, which will save the task's FPSIMD context back
90
* to task_struct. To prevent this from racing with the manipulation of the
91
* task's FPSIMD state from task context and thereby corrupting the state, it
92
* is necessary to protect any manipulation of a task's fpsimd_state or
93
* TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
94
* softirq servicing entirely until put_cpu_fpsimd_context() is called.
95
*
96
* For a certain task, the sequence may look something like this:
97
* - the task gets scheduled in; if both the task's fpsimd_cpu field
98
* contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99
* variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100
* cleared, otherwise it is set;
101
*
102
* - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103
* userland FPSIMD state is copied from memory to the registers, the task's
104
* fpsimd_cpu field is set to the id of the current CPU, the current
105
* CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106
* TIF_FOREIGN_FPSTATE flag is cleared;
107
*
108
* - the task executes an ordinary syscall; upon return to userland, the
109
* TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110
* restored;
111
*
112
* - the task executes a syscall which executes some NEON instructions; this is
113
* preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114
* register contents to memory, clears the fpsimd_last_state per-cpu variable
115
* and sets the TIF_FOREIGN_FPSTATE flag;
116
*
117
* - the task gets preempted after kernel_neon_end() is called; as we have not
118
* returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119
* whatever is in the FPSIMD registers is not saved to memory, but discarded.
120
*/
121
122
DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123
124
__ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125
#ifdef CONFIG_ARM64_SVE
126
[ARM64_VEC_SVE] = {
127
.type = ARM64_VEC_SVE,
128
.name = "SVE",
129
.min_vl = SVE_VL_MIN,
130
.max_vl = SVE_VL_MIN,
131
.max_virtualisable_vl = SVE_VL_MIN,
132
},
133
#endif
134
#ifdef CONFIG_ARM64_SME
135
[ARM64_VEC_SME] = {
136
.type = ARM64_VEC_SME,
137
.name = "SME",
138
},
139
#endif
140
};
141
142
static unsigned int vec_vl_inherit_flag(enum vec_type type)
143
{
144
switch (type) {
145
case ARM64_VEC_SVE:
146
return TIF_SVE_VL_INHERIT;
147
case ARM64_VEC_SME:
148
return TIF_SME_VL_INHERIT;
149
default:
150
WARN_ON_ONCE(1);
151
return 0;
152
}
153
}
154
155
struct vl_config {
156
int __default_vl; /* Default VL for tasks */
157
};
158
159
static struct vl_config vl_config[ARM64_VEC_MAX];
160
161
static inline int get_default_vl(enum vec_type type)
162
{
163
return READ_ONCE(vl_config[type].__default_vl);
164
}
165
166
#ifdef CONFIG_ARM64_SVE
167
168
static inline int get_sve_default_vl(void)
169
{
170
return get_default_vl(ARM64_VEC_SVE);
171
}
172
173
static inline void set_default_vl(enum vec_type type, int val)
174
{
175
WRITE_ONCE(vl_config[type].__default_vl, val);
176
}
177
178
static inline void set_sve_default_vl(int val)
179
{
180
set_default_vl(ARM64_VEC_SVE, val);
181
}
182
183
#endif /* ! CONFIG_ARM64_SVE */
184
185
#ifdef CONFIG_ARM64_SME
186
187
static int get_sme_default_vl(void)
188
{
189
return get_default_vl(ARM64_VEC_SME);
190
}
191
192
static void set_sme_default_vl(int val)
193
{
194
set_default_vl(ARM64_VEC_SME, val);
195
}
196
197
static void sme_free(struct task_struct *);
198
199
#else
200
201
static inline void sme_free(struct task_struct *t) { }
202
203
#endif
204
205
static void fpsimd_bind_task_to_cpu(void);
206
207
/*
208
* Claim ownership of the CPU FPSIMD context for use by the calling context.
209
*
210
* The caller may freely manipulate the FPSIMD context metadata until
211
* put_cpu_fpsimd_context() is called.
212
*
213
* On RT kernels local_bh_disable() is not sufficient because it only
214
* serializes soft interrupt related sections via a local lock, but stays
215
* preemptible. Disabling preemption is the right choice here as bottom
216
* half processing is always in thread context on RT kernels so it
217
* implicitly prevents bottom half processing as well.
218
*/
219
static void get_cpu_fpsimd_context(void)
220
{
221
if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
222
/*
223
* The softirq subsystem lacks a true unmask/mask API, and
224
* re-enabling softirq processing using local_bh_enable() will
225
* not only unmask softirqs, it will also result in immediate
226
* delivery of any pending softirqs.
227
* This is undesirable when running with IRQs disabled, but in
228
* that case, there is no need to mask softirqs in the first
229
* place, so only bother doing so when IRQs are enabled.
230
*/
231
if (!irqs_disabled())
232
local_bh_disable();
233
} else {
234
preempt_disable();
235
}
236
}
237
238
/*
239
* Release the CPU FPSIMD context.
240
*
241
* Must be called from a context in which get_cpu_fpsimd_context() was
242
* previously called, with no call to put_cpu_fpsimd_context() in the
243
* meantime.
244
*/
245
static void put_cpu_fpsimd_context(void)
246
{
247
if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
248
if (!irqs_disabled())
249
local_bh_enable();
250
} else {
251
preempt_enable();
252
}
253
}
254
255
unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
256
{
257
return task->thread.vl[type];
258
}
259
260
void task_set_vl(struct task_struct *task, enum vec_type type,
261
unsigned long vl)
262
{
263
task->thread.vl[type] = vl;
264
}
265
266
unsigned int task_get_vl_onexec(const struct task_struct *task,
267
enum vec_type type)
268
{
269
return task->thread.vl_onexec[type];
270
}
271
272
void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
273
unsigned long vl)
274
{
275
task->thread.vl_onexec[type] = vl;
276
}
277
278
/*
279
* TIF_SME controls whether a task can use SME without trapping while
280
* in userspace, when TIF_SME is set then we must have storage
281
* allocated in sve_state and sme_state to store the contents of both ZA
282
* and the SVE registers for both streaming and non-streaming modes.
283
*
284
* If both SVCR.ZA and SVCR.SM are disabled then at any point we
285
* may disable TIF_SME and reenable traps.
286
*/
287
288
289
/*
290
* TIF_SVE controls whether a task can use SVE without trapping while
291
* in userspace, and also (together with TIF_SME) the way a task's
292
* FPSIMD/SVE state is stored in thread_struct.
293
*
294
* The kernel uses this flag to track whether a user task is actively
295
* using SVE, and therefore whether full SVE register state needs to
296
* be tracked. If not, the cheaper FPSIMD context handling code can
297
* be used instead of the more costly SVE equivalents.
298
*
299
* * TIF_SVE or SVCR.SM set:
300
*
301
* The task can execute SVE instructions while in userspace without
302
* trapping to the kernel.
303
*
304
* During any syscall, the kernel may optionally clear TIF_SVE and
305
* discard the vector state except for the FPSIMD subset.
306
*
307
* * TIF_SVE clear:
308
*
309
* An attempt by the user task to execute an SVE instruction causes
310
* do_sve_acc() to be called, which does some preparation and then
311
* sets TIF_SVE.
312
*
313
* During any syscall, the kernel may optionally clear TIF_SVE and
314
* discard the vector state except for the FPSIMD subset.
315
*
316
* The data will be stored in one of two formats:
317
*
318
* * FPSIMD only - FP_STATE_FPSIMD:
319
*
320
* When the FPSIMD only state stored task->thread.fp_type is set to
321
* FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
322
* task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
323
* logically zero but not stored anywhere; P0-P15 and FFR are not
324
* stored and have unspecified values from userspace's point of
325
* view. For hygiene purposes, the kernel zeroes them on next use,
326
* but userspace is discouraged from relying on this.
327
*
328
* task->thread.sve_state does not need to be non-NULL, valid or any
329
* particular size: it must not be dereferenced and any data stored
330
* there should be considered stale and not referenced.
331
*
332
* * SVE state - FP_STATE_SVE:
333
*
334
* When the full SVE state is stored task->thread.fp_type is set to
335
* FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
336
* corresponding Zn), P0-P15 and FFR are encoded in in
337
* task->thread.sve_state, formatted appropriately for vector
338
* length task->thread.sve_vl or, if SVCR.SM is set,
339
* task->thread.sme_vl. The storage for the vector registers in
340
* task->thread.uw.fpsimd_state should be ignored.
341
*
342
* task->thread.sve_state must point to a valid buffer at least
343
* sve_state_size(task) bytes in size. The data stored in
344
* task->thread.uw.fpsimd_state.vregs should be considered stale
345
* and not referenced.
346
*
347
* * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
348
* irrespective of whether TIF_SVE is clear or set, since these are
349
* not vector length dependent.
350
*/
351
352
/*
353
* Update current's FPSIMD/SVE registers from thread_struct.
354
*
355
* This function should be called only when the FPSIMD/SVE state in
356
* thread_struct is known to be up to date, when preparing to enter
357
* userspace.
358
*/
359
static void task_fpsimd_load(void)
360
{
361
bool restore_sve_regs = false;
362
bool restore_ffr;
363
364
WARN_ON(!system_supports_fpsimd());
365
WARN_ON(preemptible());
366
WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
367
368
if (system_supports_sve() || system_supports_sme()) {
369
switch (current->thread.fp_type) {
370
case FP_STATE_FPSIMD:
371
/* Stop tracking SVE for this task until next use. */
372
clear_thread_flag(TIF_SVE);
373
break;
374
case FP_STATE_SVE:
375
if (!thread_sm_enabled(&current->thread))
376
WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE));
377
378
if (test_thread_flag(TIF_SVE))
379
sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
380
381
restore_sve_regs = true;
382
restore_ffr = true;
383
break;
384
default:
385
/*
386
* This indicates either a bug in
387
* fpsimd_save_user_state() or memory corruption, we
388
* should always record an explicit format
389
* when we save. We always at least have the
390
* memory allocated for FPSIMD registers so
391
* try that and hope for the best.
392
*/
393
WARN_ON_ONCE(1);
394
clear_thread_flag(TIF_SVE);
395
break;
396
}
397
}
398
399
/* Restore SME, override SVE register configuration if needed */
400
if (system_supports_sme()) {
401
unsigned long sme_vl = task_get_sme_vl(current);
402
403
/* Ensure VL is set up for restoring data */
404
if (test_thread_flag(TIF_SME))
405
sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
406
407
write_sysreg_s(current->thread.svcr, SYS_SVCR);
408
409
if (thread_za_enabled(&current->thread))
410
sme_load_state(current->thread.sme_state,
411
system_supports_sme2());
412
413
if (thread_sm_enabled(&current->thread))
414
restore_ffr = system_supports_fa64();
415
}
416
417
if (system_supports_fpmr())
418
write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR);
419
420
if (restore_sve_regs) {
421
WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
422
sve_load_state(sve_pffr(&current->thread),
423
&current->thread.uw.fpsimd_state.fpsr,
424
restore_ffr);
425
} else {
426
WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
427
fpsimd_load_state(&current->thread.uw.fpsimd_state);
428
}
429
}
430
431
/*
432
* Ensure FPSIMD/SVE storage in memory for the loaded context is up to
433
* date with respect to the CPU registers. Note carefully that the
434
* current context is the context last bound to the CPU stored in
435
* last, if KVM is involved this may be the guest VM context rather
436
* than the host thread for the VM pointed to by current. This means
437
* that we must always reference the state storage via last rather
438
* than via current, if we are saving KVM state then it will have
439
* ensured that the type of registers to save is set in last->to_save.
440
*/
441
static void fpsimd_save_user_state(void)
442
{
443
struct cpu_fp_state const *last =
444
this_cpu_ptr(&fpsimd_last_state);
445
/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
446
bool save_sve_regs = false;
447
bool save_ffr;
448
unsigned int vl;
449
450
WARN_ON(!system_supports_fpsimd());
451
WARN_ON(preemptible());
452
453
if (test_thread_flag(TIF_FOREIGN_FPSTATE))
454
return;
455
456
if (system_supports_fpmr())
457
*(last->fpmr) = read_sysreg_s(SYS_FPMR);
458
459
/*
460
* Save SVE state if it is live.
461
*
462
* The syscall ABI discards live SVE state at syscall entry. When
463
* entering a syscall, fpsimd_syscall_enter() sets to_save to
464
* FP_STATE_FPSIMD to allow the SVE state to be lazily discarded until
465
* either new SVE state is loaded+bound or fpsimd_syscall_exit() is
466
* called prior to a return to userspace.
467
*/
468
if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE)) ||
469
last->to_save == FP_STATE_SVE) {
470
save_sve_regs = true;
471
save_ffr = true;
472
vl = last->sve_vl;
473
}
474
475
if (system_supports_sme()) {
476
u64 *svcr = last->svcr;
477
478
*svcr = read_sysreg_s(SYS_SVCR);
479
480
if (*svcr & SVCR_ZA_MASK)
481
sme_save_state(last->sme_state,
482
system_supports_sme2());
483
484
/* If we are in streaming mode override regular SVE. */
485
if (*svcr & SVCR_SM_MASK) {
486
save_sve_regs = true;
487
save_ffr = system_supports_fa64();
488
vl = last->sme_vl;
489
}
490
}
491
492
if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
493
/* Get the configured VL from RDVL, will account for SM */
494
if (WARN_ON(sve_get_vl() != vl)) {
495
/*
496
* Can't save the user regs, so current would
497
* re-enter user with corrupt state.
498
* There's no way to recover, so kill it:
499
*/
500
force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
501
return;
502
}
503
504
sve_save_state((char *)last->sve_state +
505
sve_ffr_offset(vl),
506
&last->st->fpsr, save_ffr);
507
*last->fp_type = FP_STATE_SVE;
508
} else {
509
fpsimd_save_state(last->st);
510
*last->fp_type = FP_STATE_FPSIMD;
511
}
512
}
513
514
/*
515
* All vector length selection from userspace comes through here.
516
* We're on a slow path, so some sanity-checks are included.
517
* If things go wrong there's a bug somewhere, but try to fall back to a
518
* safe choice.
519
*/
520
static unsigned int find_supported_vector_length(enum vec_type type,
521
unsigned int vl)
522
{
523
struct vl_info *info = &vl_info[type];
524
int bit;
525
int max_vl = info->max_vl;
526
527
if (WARN_ON(!sve_vl_valid(vl)))
528
vl = info->min_vl;
529
530
if (WARN_ON(!sve_vl_valid(max_vl)))
531
max_vl = info->min_vl;
532
533
if (vl > max_vl)
534
vl = max_vl;
535
if (vl < info->min_vl)
536
vl = info->min_vl;
537
538
bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
539
__vq_to_bit(sve_vq_from_vl(vl)));
540
return sve_vl_from_vq(__bit_to_vq(bit));
541
}
542
543
#if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
544
545
static int vec_proc_do_default_vl(const struct ctl_table *table, int write,
546
void *buffer, size_t *lenp, loff_t *ppos)
547
{
548
struct vl_info *info = table->extra1;
549
enum vec_type type = info->type;
550
int ret;
551
int vl = get_default_vl(type);
552
struct ctl_table tmp_table = {
553
.data = &vl,
554
.maxlen = sizeof(vl),
555
};
556
557
ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
558
if (ret || !write)
559
return ret;
560
561
/* Writing -1 has the special meaning "set to max": */
562
if (vl == -1)
563
vl = info->max_vl;
564
565
if (!sve_vl_valid(vl))
566
return -EINVAL;
567
568
set_default_vl(type, find_supported_vector_length(type, vl));
569
return 0;
570
}
571
572
static const struct ctl_table sve_default_vl_table[] = {
573
{
574
.procname = "sve_default_vector_length",
575
.mode = 0644,
576
.proc_handler = vec_proc_do_default_vl,
577
.extra1 = &vl_info[ARM64_VEC_SVE],
578
},
579
};
580
581
static int __init sve_sysctl_init(void)
582
{
583
if (system_supports_sve())
584
if (!register_sysctl("abi", sve_default_vl_table))
585
return -EINVAL;
586
587
return 0;
588
}
589
590
#else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
591
static int __init sve_sysctl_init(void) { return 0; }
592
#endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
593
594
#if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
595
static const struct ctl_table sme_default_vl_table[] = {
596
{
597
.procname = "sme_default_vector_length",
598
.mode = 0644,
599
.proc_handler = vec_proc_do_default_vl,
600
.extra1 = &vl_info[ARM64_VEC_SME],
601
},
602
};
603
604
static int __init sme_sysctl_init(void)
605
{
606
if (system_supports_sme())
607
if (!register_sysctl("abi", sme_default_vl_table))
608
return -EINVAL;
609
610
return 0;
611
}
612
613
#else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
614
static int __init sme_sysctl_init(void) { return 0; }
615
#endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
616
617
#define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
618
(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
619
620
#ifdef CONFIG_CPU_BIG_ENDIAN
621
static __uint128_t arm64_cpu_to_le128(__uint128_t x)
622
{
623
u64 a = swab64(x);
624
u64 b = swab64(x >> 64);
625
626
return ((__uint128_t)a << 64) | b;
627
}
628
#else
629
static __uint128_t arm64_cpu_to_le128(__uint128_t x)
630
{
631
return x;
632
}
633
#endif
634
635
#define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
636
637
static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
638
unsigned int vq)
639
{
640
unsigned int i;
641
__uint128_t *p;
642
643
for (i = 0; i < SVE_NUM_ZREGS; ++i) {
644
p = (__uint128_t *)ZREG(sst, vq, i);
645
*p = arm64_cpu_to_le128(fst->vregs[i]);
646
}
647
}
648
649
/*
650
* Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
651
* task->thread.sve_state.
652
*
653
* Task can be a non-runnable task, or current. In the latter case,
654
* the caller must have ownership of the cpu FPSIMD context before calling
655
* this function.
656
* task->thread.sve_state must point to at least sve_state_size(task)
657
* bytes of allocated kernel memory.
658
* task->thread.uw.fpsimd_state must be up to date before calling this
659
* function.
660
*/
661
static inline void fpsimd_to_sve(struct task_struct *task)
662
{
663
unsigned int vq;
664
void *sst = task->thread.sve_state;
665
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
666
667
if (!system_supports_sve() && !system_supports_sme())
668
return;
669
670
vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
671
__fpsimd_to_sve(sst, fst, vq);
672
}
673
674
/*
675
* Transfer the SVE state in task->thread.sve_state to
676
* task->thread.uw.fpsimd_state.
677
*
678
* Task can be a non-runnable task, or current. In the latter case,
679
* the caller must have ownership of the cpu FPSIMD context before calling
680
* this function.
681
* task->thread.sve_state must point to at least sve_state_size(task)
682
* bytes of allocated kernel memory.
683
* task->thread.sve_state must be up to date before calling this function.
684
*/
685
static inline void sve_to_fpsimd(struct task_struct *task)
686
{
687
unsigned int vq, vl;
688
void const *sst = task->thread.sve_state;
689
struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
690
unsigned int i;
691
__uint128_t const *p;
692
693
if (!system_supports_sve() && !system_supports_sme())
694
return;
695
696
vl = thread_get_cur_vl(&task->thread);
697
vq = sve_vq_from_vl(vl);
698
for (i = 0; i < SVE_NUM_ZREGS; ++i) {
699
p = (__uint128_t const *)ZREG(sst, vq, i);
700
fst->vregs[i] = arm64_le128_to_cpu(*p);
701
}
702
}
703
704
static inline void __fpsimd_zero_vregs(struct user_fpsimd_state *fpsimd)
705
{
706
memset(&fpsimd->vregs, 0, sizeof(fpsimd->vregs));
707
}
708
709
/*
710
* Simulate the effects of an SMSTOP SM instruction.
711
*/
712
void task_smstop_sm(struct task_struct *task)
713
{
714
if (!thread_sm_enabled(&task->thread))
715
return;
716
717
__fpsimd_zero_vregs(&task->thread.uw.fpsimd_state);
718
task->thread.uw.fpsimd_state.fpsr = 0x0800009f;
719
if (system_supports_fpmr())
720
task->thread.uw.fpmr = 0;
721
722
task->thread.svcr &= ~SVCR_SM_MASK;
723
task->thread.fp_type = FP_STATE_FPSIMD;
724
}
725
726
void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p)
727
{
728
write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK,
729
SYS_SCTLR_EL1);
730
}
731
732
#ifdef CONFIG_ARM64_SVE
733
static void sve_free(struct task_struct *task)
734
{
735
kfree(task->thread.sve_state);
736
task->thread.sve_state = NULL;
737
}
738
739
/*
740
* Ensure that task->thread.sve_state is allocated and sufficiently large.
741
*
742
* This function should be used only in preparation for replacing
743
* task->thread.sve_state with new data. The memory is always zeroed
744
* here to prevent stale data from showing through: this is done in
745
* the interest of testability and predictability: except in the
746
* do_sve_acc() case, there is no ABI requirement to hide stale data
747
* written previously be task.
748
*/
749
void sve_alloc(struct task_struct *task, bool flush)
750
{
751
if (task->thread.sve_state) {
752
if (flush)
753
memset(task->thread.sve_state, 0,
754
sve_state_size(task));
755
return;
756
}
757
758
/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
759
task->thread.sve_state =
760
kzalloc(sve_state_size(task), GFP_KERNEL);
761
}
762
763
/*
764
* Ensure that task->thread.uw.fpsimd_state is up to date with respect to the
765
* task's currently effective FPSIMD/SVE state.
766
*
767
* The task's FPSIMD/SVE/SME state must not be subject to concurrent
768
* manipulation.
769
*/
770
void fpsimd_sync_from_effective_state(struct task_struct *task)
771
{
772
if (task->thread.fp_type == FP_STATE_SVE)
773
sve_to_fpsimd(task);
774
}
775
776
/*
777
* Ensure that the task's currently effective FPSIMD/SVE state is up to date
778
* with respect to task->thread.uw.fpsimd_state, zeroing any effective
779
* non-FPSIMD (S)SVE state.
780
*
781
* The task's FPSIMD/SVE/SME state must not be subject to concurrent
782
* manipulation.
783
*/
784
void fpsimd_sync_to_effective_state_zeropad(struct task_struct *task)
785
{
786
unsigned int vq;
787
void *sst = task->thread.sve_state;
788
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
789
790
if (task->thread.fp_type != FP_STATE_SVE)
791
return;
792
793
vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
794
795
memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
796
__fpsimd_to_sve(sst, fst, vq);
797
}
798
799
static int change_live_vector_length(struct task_struct *task,
800
enum vec_type type,
801
unsigned long vl)
802
{
803
unsigned int sve_vl = task_get_sve_vl(task);
804
unsigned int sme_vl = task_get_sme_vl(task);
805
void *sve_state = NULL, *sme_state = NULL;
806
807
if (type == ARM64_VEC_SME)
808
sme_vl = vl;
809
else
810
sve_vl = vl;
811
812
/*
813
* Allocate the new sve_state and sme_state before freeing the old
814
* copies so that allocation failure can be handled without needing to
815
* mutate the task's state in any way.
816
*
817
* Changes to the SVE vector length must not discard live ZA state or
818
* clear PSTATE.ZA, as userspace code which is unaware of the AAPCS64
819
* ZA lazy saving scheme may attempt to change the SVE vector length
820
* while unsaved/dormant ZA state exists.
821
*/
822
sve_state = kzalloc(__sve_state_size(sve_vl, sme_vl), GFP_KERNEL);
823
if (!sve_state)
824
goto out_mem;
825
826
if (type == ARM64_VEC_SME) {
827
sme_state = kzalloc(__sme_state_size(sme_vl), GFP_KERNEL);
828
if (!sme_state)
829
goto out_mem;
830
}
831
832
if (task == current)
833
fpsimd_save_and_flush_current_state();
834
else
835
fpsimd_flush_task_state(task);
836
837
/*
838
* Always preserve PSTATE.SM and the effective FPSIMD state, zeroing
839
* other SVE state.
840
*/
841
fpsimd_sync_from_effective_state(task);
842
task_set_vl(task, type, vl);
843
kfree(task->thread.sve_state);
844
task->thread.sve_state = sve_state;
845
fpsimd_sync_to_effective_state_zeropad(task);
846
847
if (type == ARM64_VEC_SME) {
848
task->thread.svcr &= ~SVCR_ZA_MASK;
849
kfree(task->thread.sme_state);
850
task->thread.sme_state = sme_state;
851
}
852
853
return 0;
854
855
out_mem:
856
kfree(sve_state);
857
kfree(sme_state);
858
return -ENOMEM;
859
}
860
861
int vec_set_vector_length(struct task_struct *task, enum vec_type type,
862
unsigned long vl, unsigned long flags)
863
{
864
bool onexec = flags & PR_SVE_SET_VL_ONEXEC;
865
bool inherit = flags & PR_SVE_VL_INHERIT;
866
867
if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
868
PR_SVE_SET_VL_ONEXEC))
869
return -EINVAL;
870
871
if (!sve_vl_valid(vl))
872
return -EINVAL;
873
874
/*
875
* Clamp to the maximum vector length that VL-agnostic code
876
* can work with. A flag may be assigned in the future to
877
* allow setting of larger vector lengths without confusing
878
* older software.
879
*/
880
if (vl > VL_ARCH_MAX)
881
vl = VL_ARCH_MAX;
882
883
vl = find_supported_vector_length(type, vl);
884
885
if (!onexec && vl != task_get_vl(task, type)) {
886
if (change_live_vector_length(task, type, vl))
887
return -ENOMEM;
888
}
889
890
if (onexec || inherit)
891
task_set_vl_onexec(task, type, vl);
892
else
893
/* Reset VL to system default on next exec: */
894
task_set_vl_onexec(task, type, 0);
895
896
update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
897
flags & PR_SVE_VL_INHERIT);
898
899
return 0;
900
}
901
902
/*
903
* Encode the current vector length and flags for return.
904
* This is only required for prctl(): ptrace has separate fields.
905
* SVE and SME use the same bits for _ONEXEC and _INHERIT.
906
*
907
* flags are as for vec_set_vector_length().
908
*/
909
static int vec_prctl_status(enum vec_type type, unsigned long flags)
910
{
911
int ret;
912
913
if (flags & PR_SVE_SET_VL_ONEXEC)
914
ret = task_get_vl_onexec(current, type);
915
else
916
ret = task_get_vl(current, type);
917
918
if (test_thread_flag(vec_vl_inherit_flag(type)))
919
ret |= PR_SVE_VL_INHERIT;
920
921
return ret;
922
}
923
924
/* PR_SVE_SET_VL */
925
int sve_set_current_vl(unsigned long arg)
926
{
927
unsigned long vl, flags;
928
int ret;
929
930
vl = arg & PR_SVE_VL_LEN_MASK;
931
flags = arg & ~vl;
932
933
if (!system_supports_sve() || is_compat_task())
934
return -EINVAL;
935
936
ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
937
if (ret)
938
return ret;
939
940
return vec_prctl_status(ARM64_VEC_SVE, flags);
941
}
942
943
/* PR_SVE_GET_VL */
944
int sve_get_current_vl(void)
945
{
946
if (!system_supports_sve() || is_compat_task())
947
return -EINVAL;
948
949
return vec_prctl_status(ARM64_VEC_SVE, 0);
950
}
951
952
#ifdef CONFIG_ARM64_SME
953
/* PR_SME_SET_VL */
954
int sme_set_current_vl(unsigned long arg)
955
{
956
unsigned long vl, flags;
957
int ret;
958
959
vl = arg & PR_SME_VL_LEN_MASK;
960
flags = arg & ~vl;
961
962
if (!system_supports_sme() || is_compat_task())
963
return -EINVAL;
964
965
ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
966
if (ret)
967
return ret;
968
969
return vec_prctl_status(ARM64_VEC_SME, flags);
970
}
971
972
/* PR_SME_GET_VL */
973
int sme_get_current_vl(void)
974
{
975
if (!system_supports_sme() || is_compat_task())
976
return -EINVAL;
977
978
return vec_prctl_status(ARM64_VEC_SME, 0);
979
}
980
#endif /* CONFIG_ARM64_SME */
981
982
static void vec_probe_vqs(struct vl_info *info,
983
DECLARE_BITMAP(map, SVE_VQ_MAX))
984
{
985
unsigned int vq, vl;
986
987
bitmap_zero(map, SVE_VQ_MAX);
988
989
for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
990
write_vl(info->type, vq - 1); /* self-syncing */
991
992
switch (info->type) {
993
case ARM64_VEC_SVE:
994
vl = sve_get_vl();
995
break;
996
case ARM64_VEC_SME:
997
vl = sme_get_vl();
998
break;
999
default:
1000
vl = 0;
1001
break;
1002
}
1003
1004
/* Minimum VL identified? */
1005
if (sve_vq_from_vl(vl) > vq)
1006
break;
1007
1008
vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1009
set_bit(__vq_to_bit(vq), map);
1010
}
1011
}
1012
1013
/*
1014
* Initialise the set of known supported VQs for the boot CPU.
1015
* This is called during kernel boot, before secondary CPUs are brought up.
1016
*/
1017
void __init vec_init_vq_map(enum vec_type type)
1018
{
1019
struct vl_info *info = &vl_info[type];
1020
vec_probe_vqs(info, info->vq_map);
1021
bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1022
}
1023
1024
/*
1025
* If we haven't committed to the set of supported VQs yet, filter out
1026
* those not supported by the current CPU.
1027
* This function is called during the bring-up of early secondary CPUs only.
1028
*/
1029
void vec_update_vq_map(enum vec_type type)
1030
{
1031
struct vl_info *info = &vl_info[type];
1032
DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1033
1034
vec_probe_vqs(info, tmp_map);
1035
bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1036
bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1037
SVE_VQ_MAX);
1038
}
1039
1040
/*
1041
* Check whether the current CPU supports all VQs in the committed set.
1042
* This function is called during the bring-up of late secondary CPUs only.
1043
*/
1044
int vec_verify_vq_map(enum vec_type type)
1045
{
1046
struct vl_info *info = &vl_info[type];
1047
DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1048
unsigned long b;
1049
1050
vec_probe_vqs(info, tmp_map);
1051
1052
bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1053
if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1054
pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1055
info->name, smp_processor_id());
1056
return -EINVAL;
1057
}
1058
1059
if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1060
return 0;
1061
1062
/*
1063
* For KVM, it is necessary to ensure that this CPU doesn't
1064
* support any vector length that guests may have probed as
1065
* unsupported.
1066
*/
1067
1068
/* Recover the set of supported VQs: */
1069
bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1070
/* Find VQs supported that are not globally supported: */
1071
bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1072
1073
/* Find the lowest such VQ, if any: */
1074
b = find_last_bit(tmp_map, SVE_VQ_MAX);
1075
if (b >= SVE_VQ_MAX)
1076
return 0; /* no mismatches */
1077
1078
/*
1079
* Mismatches above sve_max_virtualisable_vl are fine, since
1080
* no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1081
*/
1082
if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1083
pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1084
info->name, smp_processor_id());
1085
return -EINVAL;
1086
}
1087
1088
return 0;
1089
}
1090
1091
void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
1092
{
1093
write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1094
isb();
1095
1096
write_sysreg_s(0, SYS_ZCR_EL1);
1097
}
1098
1099
void __init sve_setup(void)
1100
{
1101
struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1102
DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1103
unsigned long b;
1104
int max_bit;
1105
1106
if (!system_supports_sve())
1107
return;
1108
1109
/*
1110
* The SVE architecture mandates support for 128-bit vectors,
1111
* so sve_vq_map must have at least SVE_VQ_MIN set.
1112
* If something went wrong, at least try to patch it up:
1113
*/
1114
if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1115
set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1116
1117
max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1118
info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1119
1120
/*
1121
* For the default VL, pick the maximum supported value <= 64.
1122
* VL == 64 is guaranteed not to grow the signal frame.
1123
*/
1124
set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1125
1126
bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1127
SVE_VQ_MAX);
1128
1129
b = find_last_bit(tmp_map, SVE_VQ_MAX);
1130
if (b >= SVE_VQ_MAX)
1131
/* No non-virtualisable VLs found */
1132
info->max_virtualisable_vl = SVE_VQ_MAX;
1133
else if (WARN_ON(b == SVE_VQ_MAX - 1))
1134
/* No virtualisable VLs? This is architecturally forbidden. */
1135
info->max_virtualisable_vl = SVE_VQ_MIN;
1136
else /* b + 1 < SVE_VQ_MAX */
1137
info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1138
1139
if (info->max_virtualisable_vl > info->max_vl)
1140
info->max_virtualisable_vl = info->max_vl;
1141
1142
pr_info("%s: maximum available vector length %u bytes per vector\n",
1143
info->name, info->max_vl);
1144
pr_info("%s: default vector length %u bytes per vector\n",
1145
info->name, get_sve_default_vl());
1146
1147
/* KVM decides whether to support mismatched systems. Just warn here: */
1148
if (sve_max_virtualisable_vl() < sve_max_vl())
1149
pr_warn("%s: unvirtualisable vector lengths present\n",
1150
info->name);
1151
}
1152
1153
/*
1154
* Called from the put_task_struct() path, which cannot get here
1155
* unless dead_task is really dead and not schedulable.
1156
*/
1157
void fpsimd_release_task(struct task_struct *dead_task)
1158
{
1159
sve_free(dead_task);
1160
sme_free(dead_task);
1161
}
1162
1163
#endif /* CONFIG_ARM64_SVE */
1164
1165
#ifdef CONFIG_ARM64_SME
1166
1167
/*
1168
* Ensure that task->thread.sme_state is allocated and sufficiently large.
1169
*
1170
* This function should be used only in preparation for replacing
1171
* task->thread.sme_state with new data. The memory is always zeroed
1172
* here to prevent stale data from showing through: this is done in
1173
* the interest of testability and predictability, the architecture
1174
* guarantees that when ZA is enabled it will be zeroed.
1175
*/
1176
void sme_alloc(struct task_struct *task, bool flush)
1177
{
1178
if (task->thread.sme_state) {
1179
if (flush)
1180
memset(task->thread.sme_state, 0,
1181
sme_state_size(task));
1182
return;
1183
}
1184
1185
/* This could potentially be up to 64K. */
1186
task->thread.sme_state =
1187
kzalloc(sme_state_size(task), GFP_KERNEL);
1188
}
1189
1190
static void sme_free(struct task_struct *task)
1191
{
1192
kfree(task->thread.sme_state);
1193
task->thread.sme_state = NULL;
1194
}
1195
1196
void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
1197
{
1198
/* Set priority for all PEs to architecturally defined minimum */
1199
write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1200
SYS_SMPRI_EL1);
1201
1202
/* Allow SME in kernel */
1203
write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1204
isb();
1205
1206
/* Ensure all bits in SMCR are set to known values */
1207
write_sysreg_s(0, SYS_SMCR_EL1);
1208
1209
/* Allow EL0 to access TPIDR2 */
1210
write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1211
isb();
1212
}
1213
1214
void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
1215
{
1216
/* This must be enabled after SME */
1217
BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
1218
1219
/* Allow use of ZT0 */
1220
write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1221
SYS_SMCR_EL1);
1222
}
1223
1224
void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
1225
{
1226
/* This must be enabled after SME */
1227
BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
1228
1229
/* Allow use of FA64 */
1230
write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1231
SYS_SMCR_EL1);
1232
}
1233
1234
void __init sme_setup(void)
1235
{
1236
struct vl_info *info = &vl_info[ARM64_VEC_SME];
1237
int min_bit, max_bit;
1238
1239
if (!system_supports_sme())
1240
return;
1241
1242
min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1243
1244
/*
1245
* SME doesn't require any particular vector length be
1246
* supported but it does require at least one. We should have
1247
* disabled the feature entirely while bringing up CPUs but
1248
* let's double check here. The bitmap is SVE_VQ_MAP sized for
1249
* sharing with SVE.
1250
*/
1251
WARN_ON(min_bit >= SVE_VQ_MAX);
1252
1253
info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1254
1255
max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
1256
info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
1257
1258
WARN_ON(info->min_vl > info->max_vl);
1259
1260
/*
1261
* For the default VL, pick the maximum supported value <= 32
1262
* (256 bits) if there is one since this is guaranteed not to
1263
* grow the signal frame when in streaming mode, otherwise the
1264
* minimum available VL will be used.
1265
*/
1266
set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1267
1268
pr_info("SME: minimum available vector length %u bytes per vector\n",
1269
info->min_vl);
1270
pr_info("SME: maximum available vector length %u bytes per vector\n",
1271
info->max_vl);
1272
pr_info("SME: default vector length %u bytes per vector\n",
1273
get_sme_default_vl());
1274
}
1275
1276
void sme_suspend_exit(void)
1277
{
1278
u64 smcr = 0;
1279
1280
if (!system_supports_sme())
1281
return;
1282
1283
if (system_supports_fa64())
1284
smcr |= SMCR_ELx_FA64;
1285
if (system_supports_sme2())
1286
smcr |= SMCR_ELx_EZT0;
1287
1288
write_sysreg_s(smcr, SYS_SMCR_EL1);
1289
write_sysreg_s(0, SYS_SMPRI_EL1);
1290
}
1291
1292
#endif /* CONFIG_ARM64_SME */
1293
1294
static void sve_init_regs(void)
1295
{
1296
/*
1297
* Convert the FPSIMD state to SVE, zeroing all the state that
1298
* is not shared with FPSIMD. If (as is likely) the current
1299
* state is live in the registers then do this there and
1300
* update our metadata for the current task including
1301
* disabling the trap, otherwise update our in-memory copy.
1302
* We are guaranteed to not be in streaming mode, we can only
1303
* take a SVE trap when not in streaming mode and we can't be
1304
* in streaming mode when taking a SME trap.
1305
*/
1306
if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1307
unsigned long vq_minus_one =
1308
sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1309
sve_set_vq(vq_minus_one);
1310
sve_flush_live(true, vq_minus_one);
1311
fpsimd_bind_task_to_cpu();
1312
} else {
1313
fpsimd_to_sve(current);
1314
current->thread.fp_type = FP_STATE_SVE;
1315
fpsimd_flush_task_state(current);
1316
}
1317
}
1318
1319
/*
1320
* Trapped SVE access
1321
*
1322
* Storage is allocated for the full SVE state, the current FPSIMD
1323
* register contents are migrated across, and the access trap is
1324
* disabled.
1325
*
1326
* TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1327
* would have disabled the SVE access trap for userspace during
1328
* ret_to_user, making an SVE access trap impossible in that case.
1329
*/
1330
void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1331
{
1332
/* Even if we chose not to use SVE, the hardware could still trap: */
1333
if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1334
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1335
return;
1336
}
1337
1338
sve_alloc(current, true);
1339
if (!current->thread.sve_state) {
1340
force_sig(SIGKILL);
1341
return;
1342
}
1343
1344
get_cpu_fpsimd_context();
1345
1346
if (test_and_set_thread_flag(TIF_SVE))
1347
WARN_ON(1); /* SVE access shouldn't have trapped */
1348
1349
/*
1350
* Even if the task can have used streaming mode we can only
1351
* generate SVE access traps in normal SVE mode and
1352
* transitioning out of streaming mode may discard any
1353
* streaming mode state. Always clear the high bits to avoid
1354
* any potential errors tracking what is properly initialised.
1355
*/
1356
sve_init_regs();
1357
1358
put_cpu_fpsimd_context();
1359
}
1360
1361
/*
1362
* Trapped SME access
1363
*
1364
* Storage is allocated for the full SVE and SME state, the current
1365
* FPSIMD register contents are migrated to SVE if SVE is not already
1366
* active, and the access trap is disabled.
1367
*
1368
* TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1369
* would have disabled the SME access trap for userspace during
1370
* ret_to_user, making an SME access trap impossible in that case.
1371
*/
1372
void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1373
{
1374
/* Even if we chose not to use SME, the hardware could still trap: */
1375
if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1376
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1377
return;
1378
}
1379
1380
/*
1381
* If this not a trap due to SME being disabled then something
1382
* is being used in the wrong mode, report as SIGILL.
1383
*/
1384
if (ESR_ELx_SME_ISS_SMTC(esr) != ESR_ELx_SME_ISS_SMTC_SME_DISABLED) {
1385
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1386
return;
1387
}
1388
1389
sve_alloc(current, false);
1390
sme_alloc(current, true);
1391
if (!current->thread.sve_state || !current->thread.sme_state) {
1392
force_sig(SIGKILL);
1393
return;
1394
}
1395
1396
get_cpu_fpsimd_context();
1397
1398
/* With TIF_SME userspace shouldn't generate any traps */
1399
if (test_and_set_thread_flag(TIF_SME))
1400
WARN_ON(1);
1401
1402
if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1403
unsigned long vq_minus_one =
1404
sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1405
sme_set_vq(vq_minus_one);
1406
1407
fpsimd_bind_task_to_cpu();
1408
} else {
1409
fpsimd_flush_task_state(current);
1410
}
1411
1412
put_cpu_fpsimd_context();
1413
}
1414
1415
/*
1416
* Trapped FP/ASIMD access.
1417
*/
1418
void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1419
{
1420
/* Even if we chose not to use FPSIMD, the hardware could still trap: */
1421
if (!system_supports_fpsimd()) {
1422
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1423
return;
1424
}
1425
1426
/*
1427
* When FPSIMD is enabled, we should never take a trap unless something
1428
* has gone very wrong.
1429
*/
1430
BUG();
1431
}
1432
1433
/*
1434
* Raise a SIGFPE for the current process.
1435
*/
1436
void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1437
{
1438
unsigned int si_code = FPE_FLTUNK;
1439
1440
if (esr & ESR_ELx_FP_EXC_TFV) {
1441
if (esr & FPEXC_IOF)
1442
si_code = FPE_FLTINV;
1443
else if (esr & FPEXC_DZF)
1444
si_code = FPE_FLTDIV;
1445
else if (esr & FPEXC_OFF)
1446
si_code = FPE_FLTOVF;
1447
else if (esr & FPEXC_UFF)
1448
si_code = FPE_FLTUND;
1449
else if (esr & FPEXC_IXF)
1450
si_code = FPE_FLTRES;
1451
}
1452
1453
send_sig_fault(SIGFPE, si_code,
1454
(void __user *)instruction_pointer(regs),
1455
current);
1456
}
1457
1458
static void fpsimd_load_kernel_state(struct task_struct *task)
1459
{
1460
struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1461
1462
/*
1463
* Elide the load if this CPU holds the most recent kernel mode
1464
* FPSIMD context of the current task.
1465
*/
1466
if (last->st == task->thread.kernel_fpsimd_state &&
1467
task->thread.kernel_fpsimd_cpu == smp_processor_id())
1468
return;
1469
1470
fpsimd_load_state(task->thread.kernel_fpsimd_state);
1471
}
1472
1473
static void fpsimd_save_kernel_state(struct task_struct *task)
1474
{
1475
struct cpu_fp_state cpu_fp_state = {
1476
.st = task->thread.kernel_fpsimd_state,
1477
.to_save = FP_STATE_FPSIMD,
1478
};
1479
1480
BUG_ON(!cpu_fp_state.st);
1481
1482
fpsimd_save_state(task->thread.kernel_fpsimd_state);
1483
fpsimd_bind_state_to_cpu(&cpu_fp_state);
1484
1485
task->thread.kernel_fpsimd_cpu = smp_processor_id();
1486
}
1487
1488
/*
1489
* Invalidate any task's FPSIMD state that is present on this cpu.
1490
* The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1491
* before calling this function.
1492
*/
1493
static void fpsimd_flush_cpu_state(void)
1494
{
1495
WARN_ON(!system_supports_fpsimd());
1496
__this_cpu_write(fpsimd_last_state.st, NULL);
1497
1498
/*
1499
* Leaving streaming mode enabled will cause issues for any kernel
1500
* NEON and leaving streaming mode or ZA enabled may increase power
1501
* consumption.
1502
*/
1503
if (system_supports_sme())
1504
sme_smstop();
1505
1506
set_thread_flag(TIF_FOREIGN_FPSTATE);
1507
}
1508
1509
void fpsimd_thread_switch(struct task_struct *next)
1510
{
1511
bool wrong_task, wrong_cpu;
1512
1513
if (!system_supports_fpsimd())
1514
return;
1515
1516
WARN_ON_ONCE(!irqs_disabled());
1517
1518
/* Save unsaved fpsimd state, if any: */
1519
if (test_thread_flag(TIF_KERNEL_FPSTATE))
1520
fpsimd_save_kernel_state(current);
1521
else
1522
fpsimd_save_user_state();
1523
1524
if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
1525
fpsimd_flush_cpu_state();
1526
fpsimd_load_kernel_state(next);
1527
} else {
1528
/*
1529
* Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1530
* state. For kernel threads, FPSIMD registers are never
1531
* loaded with user mode FPSIMD state and so wrong_task and
1532
* wrong_cpu will always be true.
1533
*/
1534
wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1535
&next->thread.uw.fpsimd_state;
1536
wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1537
1538
update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1539
wrong_task || wrong_cpu);
1540
}
1541
}
1542
1543
static void fpsimd_flush_thread_vl(enum vec_type type)
1544
{
1545
int vl, supported_vl;
1546
1547
/*
1548
* Reset the task vector length as required. This is where we
1549
* ensure that all user tasks have a valid vector length
1550
* configured: no kernel task can become a user task without
1551
* an exec and hence a call to this function. By the time the
1552
* first call to this function is made, all early hardware
1553
* probing is complete, so __sve_default_vl should be valid.
1554
* If a bug causes this to go wrong, we make some noise and
1555
* try to fudge thread.sve_vl to a safe value here.
1556
*/
1557
vl = task_get_vl_onexec(current, type);
1558
if (!vl)
1559
vl = get_default_vl(type);
1560
1561
if (WARN_ON(!sve_vl_valid(vl)))
1562
vl = vl_info[type].min_vl;
1563
1564
supported_vl = find_supported_vector_length(type, vl);
1565
if (WARN_ON(supported_vl != vl))
1566
vl = supported_vl;
1567
1568
task_set_vl(current, type, vl);
1569
1570
/*
1571
* If the task is not set to inherit, ensure that the vector
1572
* length will be reset by a subsequent exec:
1573
*/
1574
if (!test_thread_flag(vec_vl_inherit_flag(type)))
1575
task_set_vl_onexec(current, type, 0);
1576
}
1577
1578
void fpsimd_flush_thread(void)
1579
{
1580
void *sve_state = NULL;
1581
void *sme_state = NULL;
1582
1583
if (!system_supports_fpsimd())
1584
return;
1585
1586
get_cpu_fpsimd_context();
1587
1588
fpsimd_flush_task_state(current);
1589
memset(&current->thread.uw.fpsimd_state, 0,
1590
sizeof(current->thread.uw.fpsimd_state));
1591
1592
if (system_supports_sve()) {
1593
clear_thread_flag(TIF_SVE);
1594
1595
/* Defer kfree() while in atomic context */
1596
sve_state = current->thread.sve_state;
1597
current->thread.sve_state = NULL;
1598
1599
fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1600
}
1601
1602
if (system_supports_sme()) {
1603
clear_thread_flag(TIF_SME);
1604
1605
/* Defer kfree() while in atomic context */
1606
sme_state = current->thread.sme_state;
1607
current->thread.sme_state = NULL;
1608
1609
fpsimd_flush_thread_vl(ARM64_VEC_SME);
1610
current->thread.svcr = 0;
1611
}
1612
1613
if (system_supports_fpmr())
1614
current->thread.uw.fpmr = 0;
1615
1616
current->thread.fp_type = FP_STATE_FPSIMD;
1617
1618
put_cpu_fpsimd_context();
1619
kfree(sve_state);
1620
kfree(sme_state);
1621
}
1622
1623
/*
1624
* Save the userland FPSIMD state of 'current' to memory, but only if the state
1625
* currently held in the registers does in fact belong to 'current'
1626
*/
1627
void fpsimd_preserve_current_state(void)
1628
{
1629
if (!system_supports_fpsimd())
1630
return;
1631
1632
get_cpu_fpsimd_context();
1633
fpsimd_save_user_state();
1634
put_cpu_fpsimd_context();
1635
}
1636
1637
/*
1638
* Associate current's FPSIMD context with this cpu
1639
* The caller must have ownership of the cpu FPSIMD context before calling
1640
* this function.
1641
*/
1642
static void fpsimd_bind_task_to_cpu(void)
1643
{
1644
struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1645
1646
WARN_ON(!system_supports_fpsimd());
1647
last->st = &current->thread.uw.fpsimd_state;
1648
last->sve_state = current->thread.sve_state;
1649
last->sme_state = current->thread.sme_state;
1650
last->sve_vl = task_get_sve_vl(current);
1651
last->sme_vl = task_get_sme_vl(current);
1652
last->svcr = &current->thread.svcr;
1653
last->fpmr = &current->thread.uw.fpmr;
1654
last->fp_type = &current->thread.fp_type;
1655
last->to_save = FP_STATE_CURRENT;
1656
current->thread.fpsimd_cpu = smp_processor_id();
1657
1658
/*
1659
* Toggle SVE and SME trapping for userspace if needed, these
1660
* are serialsied by ret_to_user().
1661
*/
1662
if (system_supports_sme()) {
1663
if (test_thread_flag(TIF_SME))
1664
sme_user_enable();
1665
else
1666
sme_user_disable();
1667
}
1668
1669
if (system_supports_sve()) {
1670
if (test_thread_flag(TIF_SVE))
1671
sve_user_enable();
1672
else
1673
sve_user_disable();
1674
}
1675
}
1676
1677
void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1678
{
1679
struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1680
1681
WARN_ON(!system_supports_fpsimd());
1682
WARN_ON(!in_softirq() && !irqs_disabled());
1683
1684
*last = *state;
1685
}
1686
1687
/*
1688
* Load the userland FPSIMD state of 'current' from memory, but only if the
1689
* FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1690
* state of 'current'. This is called when we are preparing to return to
1691
* userspace to ensure that userspace sees a good register state.
1692
*/
1693
void fpsimd_restore_current_state(void)
1694
{
1695
/*
1696
* TIF_FOREIGN_FPSTATE is set on the init task and copied by
1697
* arch_dup_task_struct() regardless of whether FP/SIMD is detected.
1698
* Thus user threads can have this set even when FP/SIMD hasn't been
1699
* detected.
1700
*
1701
* When FP/SIMD is detected, begin_new_exec() will set
1702
* TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
1703
* and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
1704
* switching tasks. We detect FP/SIMD before we exec the first user
1705
* process, ensuring this has TIF_FOREIGN_FPSTATE set and
1706
* do_notify_resume() will call fpsimd_restore_current_state() to
1707
* install the user FP/SIMD context.
1708
*
1709
* When FP/SIMD is not detected, nothing else will clear or set
1710
* TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
1711
* we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
1712
* looping forever calling fpsimd_restore_current_state().
1713
*/
1714
if (!system_supports_fpsimd()) {
1715
clear_thread_flag(TIF_FOREIGN_FPSTATE);
1716
return;
1717
}
1718
1719
get_cpu_fpsimd_context();
1720
1721
if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1722
task_fpsimd_load();
1723
fpsimd_bind_task_to_cpu();
1724
}
1725
1726
put_cpu_fpsimd_context();
1727
}
1728
1729
void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1730
{
1731
if (WARN_ON(!system_supports_fpsimd()))
1732
return;
1733
1734
current->thread.uw.fpsimd_state = *state;
1735
if (current->thread.fp_type == FP_STATE_SVE)
1736
fpsimd_to_sve(current);
1737
}
1738
1739
/*
1740
* Invalidate live CPU copies of task t's FPSIMD state
1741
*
1742
* This function may be called with preemption enabled. The barrier()
1743
* ensures that the assignment to fpsimd_cpu is visible to any
1744
* preemption/softirq that could race with set_tsk_thread_flag(), so
1745
* that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1746
*
1747
* The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1748
* subsequent code.
1749
*/
1750
void fpsimd_flush_task_state(struct task_struct *t)
1751
{
1752
t->thread.fpsimd_cpu = NR_CPUS;
1753
t->thread.kernel_fpsimd_state = NULL;
1754
/*
1755
* If we don't support fpsimd, bail out after we have
1756
* reset the fpsimd_cpu for this task and clear the
1757
* FPSTATE.
1758
*/
1759
if (!system_supports_fpsimd())
1760
return;
1761
barrier();
1762
set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1763
1764
barrier();
1765
}
1766
1767
void fpsimd_save_and_flush_current_state(void)
1768
{
1769
if (!system_supports_fpsimd())
1770
return;
1771
1772
get_cpu_fpsimd_context();
1773
fpsimd_save_user_state();
1774
fpsimd_flush_task_state(current);
1775
put_cpu_fpsimd_context();
1776
}
1777
1778
/*
1779
* Save the FPSIMD state to memory and invalidate cpu view.
1780
* This function must be called with preemption disabled.
1781
*/
1782
void fpsimd_save_and_flush_cpu_state(void)
1783
{
1784
unsigned long flags;
1785
1786
if (!system_supports_fpsimd())
1787
return;
1788
WARN_ON(preemptible());
1789
local_irq_save(flags);
1790
fpsimd_save_user_state();
1791
fpsimd_flush_cpu_state();
1792
local_irq_restore(flags);
1793
}
1794
1795
#ifdef CONFIG_KERNEL_MODE_NEON
1796
1797
/*
1798
* Kernel-side NEON support functions
1799
*/
1800
1801
/*
1802
* kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1803
* context
1804
*
1805
* Must not be called unless may_use_simd() returns true.
1806
* Task context in the FPSIMD registers is saved back to memory as necessary.
1807
*
1808
* A matching call to kernel_neon_end() must be made before returning from the
1809
* calling context.
1810
*
1811
* The caller may freely use the FPSIMD registers until kernel_neon_end() is
1812
* called.
1813
*
1814
* Unless called from non-preemptible task context, @state must point to a
1815
* caller provided buffer that will be used to preserve the task's kernel mode
1816
* FPSIMD context when it is scheduled out, or if it is interrupted by kernel
1817
* mode FPSIMD occurring in softirq context. May be %NULL otherwise.
1818
*/
1819
void kernel_neon_begin(struct user_fpsimd_state *state)
1820
{
1821
if (WARN_ON(!system_supports_fpsimd()))
1822
return;
1823
1824
WARN_ON((preemptible() || in_serving_softirq()) && !state);
1825
1826
BUG_ON(!may_use_simd());
1827
1828
get_cpu_fpsimd_context();
1829
1830
/* Save unsaved fpsimd state, if any: */
1831
if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
1832
BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
1833
fpsimd_save_state(state);
1834
} else {
1835
fpsimd_save_user_state();
1836
1837
/*
1838
* Set the thread flag so that the kernel mode FPSIMD state
1839
* will be context switched along with the rest of the task
1840
* state.
1841
*
1842
* On non-PREEMPT_RT, softirqs may interrupt task level kernel
1843
* mode FPSIMD, but the task will not be preemptible so setting
1844
* TIF_KERNEL_FPSTATE for those would be both wrong (as it
1845
* would mark the task context FPSIMD state as requiring a
1846
* context switch) and unnecessary.
1847
*
1848
* On PREEMPT_RT, softirqs are serviced from a separate thread,
1849
* which is scheduled as usual, and this guarantees that these
1850
* softirqs are not interrupting use of the FPSIMD in kernel
1851
* mode in task context. So in this case, setting the flag here
1852
* is always appropriate.
1853
*/
1854
if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq()) {
1855
/*
1856
* Record the caller provided buffer as the kernel mode
1857
* FP/SIMD buffer for this task, so that the state can
1858
* be preserved and restored on a context switch.
1859
*/
1860
WARN_ON(current->thread.kernel_fpsimd_state != NULL);
1861
current->thread.kernel_fpsimd_state = state;
1862
set_thread_flag(TIF_KERNEL_FPSTATE);
1863
}
1864
}
1865
1866
/* Invalidate any task state remaining in the fpsimd regs: */
1867
fpsimd_flush_cpu_state();
1868
1869
put_cpu_fpsimd_context();
1870
}
1871
EXPORT_SYMBOL_GPL(kernel_neon_begin);
1872
1873
/*
1874
* kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1875
*
1876
* Must be called from a context in which kernel_neon_begin() was previously
1877
* called, with no call to kernel_neon_end() in the meantime.
1878
*
1879
* The caller must not use the FPSIMD registers after this function is called,
1880
* unless kernel_neon_begin() is called again in the meantime.
1881
*
1882
* The value of @state must match the value passed to the preceding call to
1883
* kernel_neon_begin().
1884
*/
1885
void kernel_neon_end(struct user_fpsimd_state *state)
1886
{
1887
if (!system_supports_fpsimd())
1888
return;
1889
1890
if (!test_thread_flag(TIF_KERNEL_FPSTATE))
1891
return;
1892
1893
/*
1894
* If we are returning from a nested use of kernel mode FPSIMD, restore
1895
* the task context kernel mode FPSIMD state. This can only happen when
1896
* running in softirq context on non-PREEMPT_RT.
1897
*/
1898
if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq()) {
1899
fpsimd_load_state(state);
1900
} else {
1901
clear_thread_flag(TIF_KERNEL_FPSTATE);
1902
WARN_ON(current->thread.kernel_fpsimd_state != state);
1903
current->thread.kernel_fpsimd_state = NULL;
1904
}
1905
}
1906
EXPORT_SYMBOL_GPL(kernel_neon_end);
1907
1908
#ifdef CONFIG_EFI
1909
1910
static struct user_fpsimd_state efi_fpsimd_state;
1911
1912
/*
1913
* EFI runtime services support functions
1914
*
1915
* The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1916
* This means that for EFI (and only for EFI), we have to assume that FPSIMD
1917
* is always used rather than being an optional accelerator.
1918
*
1919
* These functions provide the necessary support for ensuring FPSIMD
1920
* save/restore in the contexts from which EFI is used.
1921
*
1922
* Do not use them for any other purpose -- if tempted to do so, you are
1923
* either doing something wrong or you need to propose some refactoring.
1924
*/
1925
1926
/*
1927
* __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1928
*/
1929
void __efi_fpsimd_begin(void)
1930
{
1931
if (!system_supports_fpsimd())
1932
return;
1933
1934
if (may_use_simd()) {
1935
kernel_neon_begin(&efi_fpsimd_state);
1936
} else {
1937
/*
1938
* We are running in hardirq or NMI context, and the only
1939
* legitimate case where this might happen is when EFI pstore
1940
* is attempting to record the system's dying gasps into EFI
1941
* variables. This could be due to an oops, a panic or a call
1942
* to emergency_restart(), and in none of those cases, we can
1943
* expect the current task to ever return to user space again,
1944
* or for the kernel to resume any normal execution, for that
1945
* matter (an oops in hardirq context triggers a panic too).
1946
*
1947
* Therefore, there is no point in attempting to preserve any
1948
* SVE/SME state here. On the off chance that we might have
1949
* ended up here for a different reason inadvertently, kill the
1950
* task and preserve/restore the base FP/SIMD state, which
1951
* might belong to kernel mode FP/SIMD.
1952
*/
1953
pr_warn_ratelimited("Calling EFI runtime from %s context\n",
1954
in_nmi() ? "NMI" : "hardirq");
1955
force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
1956
fpsimd_save_state(&efi_fpsimd_state);
1957
}
1958
}
1959
1960
/*
1961
* __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1962
*/
1963
void __efi_fpsimd_end(void)
1964
{
1965
if (!system_supports_fpsimd())
1966
return;
1967
1968
if (may_use_simd()) {
1969
kernel_neon_end(&efi_fpsimd_state);
1970
} else {
1971
fpsimd_load_state(&efi_fpsimd_state);
1972
}
1973
}
1974
1975
#endif /* CONFIG_EFI */
1976
1977
#endif /* CONFIG_KERNEL_MODE_NEON */
1978
1979
#ifdef CONFIG_CPU_PM
1980
static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1981
unsigned long cmd, void *v)
1982
{
1983
switch (cmd) {
1984
case CPU_PM_ENTER:
1985
fpsimd_save_and_flush_cpu_state();
1986
break;
1987
case CPU_PM_EXIT:
1988
break;
1989
case CPU_PM_ENTER_FAILED:
1990
default:
1991
return NOTIFY_DONE;
1992
}
1993
return NOTIFY_OK;
1994
}
1995
1996
static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1997
.notifier_call = fpsimd_cpu_pm_notifier,
1998
};
1999
2000
static void __init fpsimd_pm_init(void)
2001
{
2002
cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2003
}
2004
2005
#else
2006
static inline void fpsimd_pm_init(void) { }
2007
#endif /* CONFIG_CPU_PM */
2008
2009
#ifdef CONFIG_HOTPLUG_CPU
2010
static int fpsimd_cpu_dead(unsigned int cpu)
2011
{
2012
per_cpu(fpsimd_last_state.st, cpu) = NULL;
2013
return 0;
2014
}
2015
2016
static inline void fpsimd_hotplug_init(void)
2017
{
2018
cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2019
NULL, fpsimd_cpu_dead);
2020
}
2021
2022
#else
2023
static inline void fpsimd_hotplug_init(void) { }
2024
#endif
2025
2026
void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
2027
{
2028
unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
2029
write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
2030
isb();
2031
}
2032
2033
/*
2034
* FP/SIMD support code initialisation.
2035
*/
2036
static int __init fpsimd_init(void)
2037
{
2038
if (cpu_have_named_feature(FP)) {
2039
fpsimd_pm_init();
2040
fpsimd_hotplug_init();
2041
} else {
2042
pr_notice("Floating-point is not implemented\n");
2043
}
2044
2045
if (!cpu_have_named_feature(ASIMD))
2046
pr_notice("Advanced SIMD is not implemented\n");
2047
2048
2049
sve_sysctl_init();
2050
sme_sysctl_init();
2051
2052
return 0;
2053
}
2054
core_initcall(fpsimd_init);
2055
2056