Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kernel/module-plts.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2014-2017 Linaro Ltd. <[email protected]>
4
*/
5
6
#include <linux/elf.h>
7
#include <linux/ftrace.h>
8
#include <linux/kernel.h>
9
#include <linux/module.h>
10
#include <linux/moduleloader.h>
11
#include <linux/sort.h>
12
13
static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
14
enum aarch64_insn_register reg)
15
{
16
u32 adrp, add;
17
18
adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
19
add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
20
AARCH64_INSN_VARIANT_64BIT,
21
AARCH64_INSN_ADSB_ADD);
22
23
return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
24
}
25
26
struct plt_entry get_plt_entry(u64 dst, void *pc)
27
{
28
struct plt_entry plt;
29
static u32 br;
30
31
if (!br)
32
br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
33
AARCH64_INSN_BRANCH_NOLINK);
34
35
plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
36
plt.br = cpu_to_le32(br);
37
38
return plt;
39
}
40
41
static bool plt_entries_equal(const struct plt_entry *a,
42
const struct plt_entry *b)
43
{
44
u64 p, q;
45
46
/*
47
* Check whether both entries refer to the same target:
48
* do the cheapest checks first.
49
* If the 'add' or 'br' opcodes are different, then the target
50
* cannot be the same.
51
*/
52
if (a->add != b->add || a->br != b->br)
53
return false;
54
55
p = ALIGN_DOWN((u64)a, SZ_4K);
56
q = ALIGN_DOWN((u64)b, SZ_4K);
57
58
/*
59
* If the 'adrp' opcodes are the same then we just need to check
60
* that they refer to the same 4k region.
61
*/
62
if (a->adrp == b->adrp && p == q)
63
return true;
64
65
return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
66
(q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
67
}
68
69
u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
70
void *loc, const Elf64_Rela *rela,
71
Elf64_Sym *sym)
72
{
73
struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ?
74
&mod->arch.core : &mod->arch.init;
75
struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
76
int i = pltsec->plt_num_entries;
77
int j = i - 1;
78
u64 val = sym->st_value + rela->r_addend;
79
80
if (is_forbidden_offset_for_adrp(&plt[i].adrp))
81
i++;
82
83
plt[i] = get_plt_entry(val, &plt[i]);
84
85
/*
86
* Check if the entry we just created is a duplicate. Given that the
87
* relocations are sorted, this will be the last entry we allocated.
88
* (if one exists).
89
*/
90
if (j >= 0 && plt_entries_equal(plt + i, plt + j))
91
return (u64)&plt[j];
92
93
pltsec->plt_num_entries += i - j;
94
if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
95
return 0;
96
97
return (u64)&plt[i];
98
}
99
100
#ifdef CONFIG_ARM64_ERRATUM_843419
101
u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
102
void *loc, u64 val)
103
{
104
struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ?
105
&mod->arch.core : &mod->arch.init;
106
struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
107
int i = pltsec->plt_num_entries++;
108
u32 br;
109
int rd;
110
111
if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
112
return 0;
113
114
if (is_forbidden_offset_for_adrp(&plt[i].adrp))
115
i = pltsec->plt_num_entries++;
116
117
/* get the destination register of the ADRP instruction */
118
rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
119
le32_to_cpup((__le32 *)loc));
120
121
br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
122
AARCH64_INSN_BRANCH_NOLINK);
123
124
plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
125
plt[i].br = cpu_to_le32(br);
126
127
return (u64)&plt[i];
128
}
129
#endif
130
131
#define cmp_3way(a, b) ((a) < (b) ? -1 : (a) > (b))
132
133
static int cmp_rela(const void *a, const void *b)
134
{
135
const Elf64_Rela *x = a, *y = b;
136
int i;
137
138
/* sort by type, symbol index and addend */
139
i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
140
if (i == 0)
141
i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
142
if (i == 0)
143
i = cmp_3way(x->r_addend, y->r_addend);
144
return i;
145
}
146
147
static bool duplicate_rel(const Elf64_Rela *rela, int num)
148
{
149
/*
150
* Entries are sorted by type, symbol index and addend. That means
151
* that, if a duplicate entry exists, it must be in the preceding
152
* slot.
153
*/
154
return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
155
}
156
157
static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
158
Elf64_Word dstidx, Elf_Shdr *dstsec)
159
{
160
unsigned int ret = 0;
161
Elf64_Sym *s;
162
int i;
163
164
for (i = 0; i < num; i++) {
165
u64 min_align;
166
167
switch (ELF64_R_TYPE(rela[i].r_info)) {
168
case R_AARCH64_JUMP26:
169
case R_AARCH64_CALL26:
170
/*
171
* We only have to consider branch targets that resolve
172
* to symbols that are defined in a different section.
173
* This is not simply a heuristic, it is a fundamental
174
* limitation, since there is no guaranteed way to emit
175
* PLT entries sufficiently close to the branch if the
176
* section size exceeds the range of a branch
177
* instruction. So ignore relocations against defined
178
* symbols if they live in the same section as the
179
* relocation target.
180
*/
181
s = syms + ELF64_R_SYM(rela[i].r_info);
182
if (s->st_shndx == dstidx)
183
break;
184
185
/*
186
* Jump relocations with non-zero addends against
187
* undefined symbols are supported by the ELF spec, but
188
* do not occur in practice (e.g., 'jump n bytes past
189
* the entry point of undefined function symbol f').
190
* So we need to support them, but there is no need to
191
* take them into consideration when trying to optimize
192
* this code. So let's only check for duplicates when
193
* the addend is zero: this allows us to record the PLT
194
* entry address in the symbol table itself, rather than
195
* having to search the list for duplicates each time we
196
* emit one.
197
*/
198
if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
199
ret++;
200
break;
201
case R_AARCH64_ADR_PREL_PG_HI21_NC:
202
case R_AARCH64_ADR_PREL_PG_HI21:
203
if (!cpus_have_final_cap(ARM64_WORKAROUND_843419))
204
break;
205
206
/*
207
* Determine the minimal safe alignment for this ADRP
208
* instruction: the section alignment at which it is
209
* guaranteed not to appear at a vulnerable offset.
210
*
211
* This comes down to finding the least significant zero
212
* bit in bits [11:3] of the section offset, and
213
* increasing the section's alignment so that the
214
* resulting address of this instruction is guaranteed
215
* to equal the offset in that particular bit (as well
216
* as all less significant bits). This ensures that the
217
* address modulo 4 KB != 0xfff8 or 0xfffc (which would
218
* have all ones in bits [11:3])
219
*/
220
min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
221
222
/*
223
* Allocate veneer space for each ADRP that may appear
224
* at a vulnerable offset nonetheless. At relocation
225
* time, some of these will remain unused since some
226
* ADRP instructions can be patched to ADR instructions
227
* instead.
228
*/
229
if (min_align > SZ_4K)
230
ret++;
231
else
232
dstsec->sh_addralign = max(dstsec->sh_addralign,
233
min_align);
234
break;
235
}
236
}
237
238
if (cpus_have_final_cap(ARM64_WORKAROUND_843419)) {
239
/*
240
* Add some slack so we can skip PLT slots that may trigger
241
* the erratum due to the placement of the ADRP instruction.
242
*/
243
ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
244
}
245
246
return ret;
247
}
248
249
static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
250
Elf64_Word dstidx)
251
{
252
253
Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
254
255
if (s->st_shndx == dstidx)
256
return false;
257
258
return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
259
ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
260
}
261
262
/* Group branch PLT relas at the front end of the array. */
263
static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
264
int numrels, Elf64_Word dstidx)
265
{
266
int i = 0, j = numrels - 1;
267
268
while (i < j) {
269
if (branch_rela_needs_plt(syms, &rela[i], dstidx))
270
i++;
271
else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
272
swap(rela[i], rela[j]);
273
else
274
j--;
275
}
276
277
return i;
278
}
279
280
int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
281
char *secstrings, struct module *mod)
282
{
283
unsigned long core_plts = 0;
284
unsigned long init_plts = 0;
285
Elf64_Sym *syms = NULL;
286
Elf_Shdr *pltsec, *tramp = NULL, *init_tramp = NULL;
287
int i;
288
289
/*
290
* Find the empty .plt section so we can expand it to store the PLT
291
* entries. Record the symtab address as well.
292
*/
293
for (i = 0; i < ehdr->e_shnum; i++) {
294
if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
295
mod->arch.core.plt_shndx = i;
296
else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
297
mod->arch.init.plt_shndx = i;
298
else if (!strcmp(secstrings + sechdrs[i].sh_name,
299
".text.ftrace_trampoline"))
300
tramp = sechdrs + i;
301
else if (!strcmp(secstrings + sechdrs[i].sh_name,
302
".init.text.ftrace_trampoline"))
303
init_tramp = sechdrs + i;
304
else if (sechdrs[i].sh_type == SHT_SYMTAB)
305
syms = (Elf64_Sym *)sechdrs[i].sh_addr;
306
}
307
308
if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
309
pr_err("%s: module PLT section(s) missing\n", mod->name);
310
return -ENOEXEC;
311
}
312
if (!syms) {
313
pr_err("%s: module symtab section missing\n", mod->name);
314
return -ENOEXEC;
315
}
316
317
for (i = 0; i < ehdr->e_shnum; i++) {
318
Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
319
int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
320
Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
321
322
if (sechdrs[i].sh_type != SHT_RELA)
323
continue;
324
325
/* ignore relocations that operate on non-exec sections */
326
if (!(dstsec->sh_flags & SHF_EXECINSTR))
327
continue;
328
329
/*
330
* sort branch relocations requiring a PLT by type, symbol index
331
* and addend
332
*/
333
nents = partition_branch_plt_relas(syms, rels, numrels,
334
sechdrs[i].sh_info);
335
if (nents)
336
sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
337
338
if (!module_init_layout_section(secstrings + dstsec->sh_name))
339
core_plts += count_plts(syms, rels, numrels,
340
sechdrs[i].sh_info, dstsec);
341
else
342
init_plts += count_plts(syms, rels, numrels,
343
sechdrs[i].sh_info, dstsec);
344
}
345
346
pltsec = sechdrs + mod->arch.core.plt_shndx;
347
pltsec->sh_type = SHT_NOBITS;
348
pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
349
pltsec->sh_addralign = L1_CACHE_BYTES;
350
pltsec->sh_size = (core_plts + 1) * sizeof(struct plt_entry);
351
mod->arch.core.plt_num_entries = 0;
352
mod->arch.core.plt_max_entries = core_plts;
353
354
pltsec = sechdrs + mod->arch.init.plt_shndx;
355
pltsec->sh_type = SHT_NOBITS;
356
pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
357
pltsec->sh_addralign = L1_CACHE_BYTES;
358
pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
359
mod->arch.init.plt_num_entries = 0;
360
mod->arch.init.plt_max_entries = init_plts;
361
362
if (tramp) {
363
tramp->sh_type = SHT_NOBITS;
364
tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
365
tramp->sh_addralign = __alignof__(struct plt_entry);
366
tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
367
}
368
369
if (init_tramp) {
370
init_tramp->sh_type = SHT_NOBITS;
371
init_tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
372
init_tramp->sh_addralign = __alignof__(struct plt_entry);
373
init_tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
374
}
375
376
return 0;
377
}
378
379