Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kernel/mte.c
26439 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2020 ARM Ltd.
4
*/
5
6
#include <linux/bitops.h>
7
#include <linux/cpu.h>
8
#include <linux/kernel.h>
9
#include <linux/mm.h>
10
#include <linux/prctl.h>
11
#include <linux/sched.h>
12
#include <linux/sched/mm.h>
13
#include <linux/string.h>
14
#include <linux/swap.h>
15
#include <linux/swapops.h>
16
#include <linux/thread_info.h>
17
#include <linux/types.h>
18
#include <linux/uaccess.h>
19
#include <linux/uio.h>
20
21
#include <asm/barrier.h>
22
#include <asm/cpufeature.h>
23
#include <asm/mte.h>
24
#include <asm/ptrace.h>
25
#include <asm/sysreg.h>
26
27
static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28
29
#ifdef CONFIG_KASAN_HW_TAGS
30
/*
31
* The asynchronous and asymmetric MTE modes have the same behavior for
32
* store operations. This flag is set when either of these modes is enabled.
33
*/
34
DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35
EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36
#endif
37
38
void mte_sync_tags(pte_t pte, unsigned int nr_pages)
39
{
40
struct page *page = pte_page(pte);
41
struct folio *folio = page_folio(page);
42
unsigned long i;
43
44
if (folio_test_hugetlb(folio)) {
45
unsigned long nr = folio_nr_pages(folio);
46
47
/* Hugetlb MTE flags are set for head page only */
48
if (folio_try_hugetlb_mte_tagging(folio)) {
49
for (i = 0; i < nr; i++, page++)
50
mte_clear_page_tags(page_address(page));
51
folio_set_hugetlb_mte_tagged(folio);
52
}
53
54
/* ensure the tags are visible before the PTE is set */
55
smp_wmb();
56
57
return;
58
}
59
60
/* if PG_mte_tagged is set, tags have already been initialised */
61
for (i = 0; i < nr_pages; i++, page++) {
62
if (try_page_mte_tagging(page)) {
63
mte_clear_page_tags(page_address(page));
64
set_page_mte_tagged(page);
65
}
66
}
67
68
/* ensure the tags are visible before the PTE is set */
69
smp_wmb();
70
}
71
72
int memcmp_pages(struct page *page1, struct page *page2)
73
{
74
char *addr1, *addr2;
75
int ret;
76
77
addr1 = page_address(page1);
78
addr2 = page_address(page2);
79
ret = memcmp(addr1, addr2, PAGE_SIZE);
80
81
if (!system_supports_mte() || ret)
82
return ret;
83
84
/*
85
* If the page content is identical but at least one of the pages is
86
* tagged, return non-zero to avoid KSM merging. If only one of the
87
* pages is tagged, __set_ptes() may zero or change the tags of the
88
* other page via mte_sync_tags().
89
*/
90
if (page_mte_tagged(page1) || page_mte_tagged(page2))
91
return addr1 != addr2;
92
93
return ret;
94
}
95
96
static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
97
{
98
/* Enable MTE Sync Mode for EL1. */
99
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
100
SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
101
isb();
102
103
pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
104
}
105
106
#ifdef CONFIG_KASAN_HW_TAGS
107
void mte_enable_kernel_sync(void)
108
{
109
/*
110
* Make sure we enter this function when no PE has set
111
* async mode previously.
112
*/
113
WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
114
"MTE async mode enabled system wide!");
115
116
__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
117
}
118
119
void mte_enable_kernel_async(void)
120
{
121
__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
122
123
/*
124
* MTE async mode is set system wide by the first PE that
125
* executes this function.
126
*
127
* Note: If in future KASAN acquires a runtime switching
128
* mode in between sync and async, this strategy needs
129
* to be reviewed.
130
*/
131
if (!system_uses_mte_async_or_asymm_mode())
132
static_branch_enable(&mte_async_or_asymm_mode);
133
}
134
135
void mte_enable_kernel_asymm(void)
136
{
137
if (cpus_have_cap(ARM64_MTE_ASYMM)) {
138
__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
139
140
/*
141
* MTE asymm mode behaves as async mode for store
142
* operations. The mode is set system wide by the
143
* first PE that executes this function.
144
*
145
* Note: If in future KASAN acquires a runtime switching
146
* mode in between sync and async, this strategy needs
147
* to be reviewed.
148
*/
149
if (!system_uses_mte_async_or_asymm_mode())
150
static_branch_enable(&mte_async_or_asymm_mode);
151
} else {
152
/*
153
* If the CPU does not support MTE asymmetric mode the
154
* kernel falls back on synchronous mode which is the
155
* default for kasan=on.
156
*/
157
mte_enable_kernel_sync();
158
}
159
}
160
#endif
161
162
#ifdef CONFIG_KASAN_HW_TAGS
163
void mte_check_tfsr_el1(void)
164
{
165
u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
166
167
if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
168
/*
169
* Note: isb() is not required after this direct write
170
* because there is no indirect read subsequent to it
171
* (per ARM DDI 0487F.c table D13-1).
172
*/
173
write_sysreg_s(0, SYS_TFSR_EL1);
174
175
kasan_report_async();
176
}
177
}
178
#endif
179
180
/*
181
* This is where we actually resolve the system and process MTE mode
182
* configuration into an actual value in SCTLR_EL1 that affects
183
* userspace.
184
*/
185
static void mte_update_sctlr_user(struct task_struct *task)
186
{
187
/*
188
* This must be called with preemption disabled and can only be called
189
* on the current or next task since the CPU must match where the thread
190
* is going to run. The caller is responsible for calling
191
* update_sctlr_el1() later in the same preemption disabled block.
192
*/
193
unsigned long sctlr = task->thread.sctlr_user;
194
unsigned long mte_ctrl = task->thread.mte_ctrl;
195
unsigned long pref, resolved_mte_tcf;
196
197
pref = __this_cpu_read(mte_tcf_preferred);
198
/*
199
* If there is no overlap between the system preferred and
200
* program requested values go with what was requested.
201
*/
202
resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
203
sctlr &= ~(SCTLR_EL1_TCF0_MASK | SCTLR_EL1_TCSO0_MASK);
204
/*
205
* Pick an actual setting. The order in which we check for
206
* set bits and map into register values determines our
207
* default order.
208
*/
209
if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
210
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
211
else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
212
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
213
else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
214
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
215
216
if (mte_ctrl & MTE_CTRL_STORE_ONLY)
217
sctlr |= SYS_FIELD_PREP(SCTLR_EL1, TCSO0, 1);
218
219
task->thread.sctlr_user = sctlr;
220
}
221
222
static void mte_update_gcr_excl(struct task_struct *task)
223
{
224
/*
225
* SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
226
* mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
227
*/
228
if (kasan_hw_tags_enabled())
229
return;
230
231
write_sysreg_s(
232
((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
233
SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
234
SYS_GCR_EL1);
235
}
236
237
#ifdef CONFIG_KASAN_HW_TAGS
238
/* Only called from assembly, silence sparse */
239
void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
240
__le32 *updptr, int nr_inst);
241
242
void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
243
__le32 *updptr, int nr_inst)
244
{
245
BUG_ON(nr_inst != 1); /* Branch -> NOP */
246
247
if (kasan_hw_tags_enabled())
248
*updptr = cpu_to_le32(aarch64_insn_gen_nop());
249
}
250
#endif
251
252
void mte_thread_init_user(void)
253
{
254
if (!system_supports_mte())
255
return;
256
257
/* clear any pending asynchronous tag fault */
258
dsb(ish);
259
write_sysreg_s(0, SYS_TFSRE0_EL1);
260
clear_thread_flag(TIF_MTE_ASYNC_FAULT);
261
/* disable tag checking and reset tag generation mask */
262
set_mte_ctrl(current, 0);
263
}
264
265
void mte_thread_switch(struct task_struct *next)
266
{
267
if (!system_supports_mte())
268
return;
269
270
mte_update_sctlr_user(next);
271
mte_update_gcr_excl(next);
272
273
/* TCO may not have been disabled on exception entry for the current task. */
274
mte_disable_tco_entry(next);
275
276
/*
277
* Check if an async tag exception occurred at EL1.
278
*
279
* Note: On the context switch path we rely on the dsb() present
280
* in __switch_to() to guarantee that the indirect writes to TFSR_EL1
281
* are synchronized before this point.
282
*/
283
isb();
284
mte_check_tfsr_el1();
285
}
286
287
void mte_cpu_setup(void)
288
{
289
u64 rgsr;
290
291
/*
292
* CnP must be enabled only after the MAIR_EL1 register has been set
293
* up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
294
* lead to the wrong memory type being used for a brief window during
295
* CPU power-up.
296
*
297
* CnP is not a boot feature so MTE gets enabled before CnP, but let's
298
* make sure that is the case.
299
*/
300
BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
301
BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
302
303
/* Normal Tagged memory type at the corresponding MAIR index */
304
sysreg_clear_set(mair_el1,
305
MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
306
MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
307
MT_NORMAL_TAGGED));
308
309
write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
310
311
/*
312
* If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
313
* RGSR_EL1.SEED must be non-zero for IRG to produce
314
* pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
315
* must initialize it.
316
*/
317
rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
318
SYS_RGSR_EL1_SEED_SHIFT;
319
if (rgsr == 0)
320
rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
321
write_sysreg_s(rgsr, SYS_RGSR_EL1);
322
323
/* clear any pending tag check faults in TFSR*_EL1 */
324
write_sysreg_s(0, SYS_TFSR_EL1);
325
write_sysreg_s(0, SYS_TFSRE0_EL1);
326
327
local_flush_tlb_all();
328
}
329
330
void mte_suspend_enter(void)
331
{
332
if (!system_supports_mte())
333
return;
334
335
/*
336
* The barriers are required to guarantee that the indirect writes
337
* to TFSR_EL1 are synchronized before we report the state.
338
*/
339
dsb(nsh);
340
isb();
341
342
/* Report SYS_TFSR_EL1 before suspend entry */
343
mte_check_tfsr_el1();
344
}
345
346
void mte_suspend_exit(void)
347
{
348
if (!system_supports_mte())
349
return;
350
351
mte_cpu_setup();
352
}
353
354
long set_mte_ctrl(struct task_struct *task, unsigned long arg)
355
{
356
u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
357
SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
358
359
if (!system_supports_mte())
360
return 0;
361
362
if (arg & PR_MTE_TCF_ASYNC)
363
mte_ctrl |= MTE_CTRL_TCF_ASYNC;
364
if (arg & PR_MTE_TCF_SYNC)
365
mte_ctrl |= MTE_CTRL_TCF_SYNC;
366
367
/*
368
* If the system supports it and both sync and async modes are
369
* specified then implicitly enable asymmetric mode.
370
* Userspace could see a mix of both sync and async anyway due
371
* to differing or changing defaults on CPUs.
372
*/
373
if (cpus_have_cap(ARM64_MTE_ASYMM) &&
374
(arg & PR_MTE_TCF_ASYNC) &&
375
(arg & PR_MTE_TCF_SYNC))
376
mte_ctrl |= MTE_CTRL_TCF_ASYMM;
377
378
if (arg & PR_MTE_STORE_ONLY)
379
mte_ctrl |= MTE_CTRL_STORE_ONLY;
380
381
task->thread.mte_ctrl = mte_ctrl;
382
if (task == current) {
383
preempt_disable();
384
mte_update_sctlr_user(task);
385
mte_update_gcr_excl(task);
386
update_sctlr_el1(task->thread.sctlr_user);
387
preempt_enable();
388
}
389
390
return 0;
391
}
392
393
long get_mte_ctrl(struct task_struct *task)
394
{
395
unsigned long ret;
396
u64 mte_ctrl = task->thread.mte_ctrl;
397
u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
398
SYS_GCR_EL1_EXCL_MASK;
399
400
if (!system_supports_mte())
401
return 0;
402
403
ret = incl << PR_MTE_TAG_SHIFT;
404
if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
405
ret |= PR_MTE_TCF_ASYNC;
406
if (mte_ctrl & MTE_CTRL_TCF_SYNC)
407
ret |= PR_MTE_TCF_SYNC;
408
if (mte_ctrl & MTE_CTRL_STORE_ONLY)
409
ret |= PR_MTE_STORE_ONLY;
410
411
return ret;
412
}
413
414
/*
415
* Access MTE tags in another process' address space as given in mm. Update
416
* the number of tags copied. Return 0 if any tags copied, error otherwise.
417
* Inspired by __access_remote_vm().
418
*/
419
static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
420
struct iovec *kiov, unsigned int gup_flags)
421
{
422
void __user *buf = kiov->iov_base;
423
size_t len = kiov->iov_len;
424
int err = 0;
425
int write = gup_flags & FOLL_WRITE;
426
427
if (!access_ok(buf, len))
428
return -EFAULT;
429
430
if (mmap_read_lock_killable(mm))
431
return -EIO;
432
433
while (len) {
434
struct vm_area_struct *vma;
435
unsigned long tags, offset;
436
void *maddr;
437
struct page *page = get_user_page_vma_remote(mm, addr,
438
gup_flags, &vma);
439
struct folio *folio;
440
441
if (IS_ERR(page)) {
442
err = PTR_ERR(page);
443
break;
444
}
445
446
/*
447
* Only copy tags if the page has been mapped as PROT_MTE
448
* (PG_mte_tagged set). Otherwise the tags are not valid and
449
* not accessible to user. Moreover, an mprotect(PROT_MTE)
450
* would cause the existing tags to be cleared if the page
451
* was never mapped with PROT_MTE.
452
*/
453
if (!(vma->vm_flags & VM_MTE)) {
454
err = -EOPNOTSUPP;
455
put_page(page);
456
break;
457
}
458
459
folio = page_folio(page);
460
if (folio_test_hugetlb(folio))
461
WARN_ON_ONCE(!folio_test_hugetlb_mte_tagged(folio));
462
else
463
WARN_ON_ONCE(!page_mte_tagged(page));
464
465
/* limit access to the end of the page */
466
offset = offset_in_page(addr);
467
tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
468
469
maddr = page_address(page);
470
if (write) {
471
tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
472
set_page_dirty_lock(page);
473
} else {
474
tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
475
}
476
put_page(page);
477
478
/* error accessing the tracer's buffer */
479
if (!tags)
480
break;
481
482
len -= tags;
483
buf += tags;
484
addr += tags * MTE_GRANULE_SIZE;
485
}
486
mmap_read_unlock(mm);
487
488
/* return an error if no tags copied */
489
kiov->iov_len = buf - kiov->iov_base;
490
if (!kiov->iov_len) {
491
/* check for error accessing the tracee's address space */
492
if (err)
493
return -EIO;
494
else
495
return -EFAULT;
496
}
497
498
return 0;
499
}
500
501
/*
502
* Copy MTE tags in another process' address space at 'addr' to/from tracer's
503
* iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
504
*/
505
static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
506
struct iovec *kiov, unsigned int gup_flags)
507
{
508
struct mm_struct *mm;
509
int ret;
510
511
mm = get_task_mm(tsk);
512
if (!mm)
513
return -EPERM;
514
515
if (!tsk->ptrace || (current != tsk->parent) ||
516
((get_dumpable(mm) != SUID_DUMP_USER) &&
517
!ptracer_capable(tsk, mm->user_ns))) {
518
mmput(mm);
519
return -EPERM;
520
}
521
522
ret = __access_remote_tags(mm, addr, kiov, gup_flags);
523
mmput(mm);
524
525
return ret;
526
}
527
528
int mte_ptrace_copy_tags(struct task_struct *child, long request,
529
unsigned long addr, unsigned long data)
530
{
531
int ret;
532
struct iovec kiov;
533
struct iovec __user *uiov = (void __user *)data;
534
unsigned int gup_flags = FOLL_FORCE;
535
536
if (!system_supports_mte())
537
return -EIO;
538
539
if (get_user(kiov.iov_base, &uiov->iov_base) ||
540
get_user(kiov.iov_len, &uiov->iov_len))
541
return -EFAULT;
542
543
if (request == PTRACE_POKEMTETAGS)
544
gup_flags |= FOLL_WRITE;
545
546
/* align addr to the MTE tag granule */
547
addr &= MTE_GRANULE_MASK;
548
549
ret = access_remote_tags(child, addr, &kiov, gup_flags);
550
if (!ret)
551
ret = put_user(kiov.iov_len, &uiov->iov_len);
552
553
return ret;
554
}
555
556
static ssize_t mte_tcf_preferred_show(struct device *dev,
557
struct device_attribute *attr, char *buf)
558
{
559
switch (per_cpu(mte_tcf_preferred, dev->id)) {
560
case MTE_CTRL_TCF_ASYNC:
561
return sysfs_emit(buf, "async\n");
562
case MTE_CTRL_TCF_SYNC:
563
return sysfs_emit(buf, "sync\n");
564
case MTE_CTRL_TCF_ASYMM:
565
return sysfs_emit(buf, "asymm\n");
566
default:
567
return sysfs_emit(buf, "???\n");
568
}
569
}
570
571
static ssize_t mte_tcf_preferred_store(struct device *dev,
572
struct device_attribute *attr,
573
const char *buf, size_t count)
574
{
575
u64 tcf;
576
577
if (sysfs_streq(buf, "async"))
578
tcf = MTE_CTRL_TCF_ASYNC;
579
else if (sysfs_streq(buf, "sync"))
580
tcf = MTE_CTRL_TCF_SYNC;
581
else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
582
tcf = MTE_CTRL_TCF_ASYMM;
583
else
584
return -EINVAL;
585
586
device_lock(dev);
587
per_cpu(mte_tcf_preferred, dev->id) = tcf;
588
device_unlock(dev);
589
590
return count;
591
}
592
static DEVICE_ATTR_RW(mte_tcf_preferred);
593
594
static int register_mte_tcf_preferred_sysctl(void)
595
{
596
unsigned int cpu;
597
598
if (!system_supports_mte())
599
return 0;
600
601
for_each_possible_cpu(cpu) {
602
per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
603
device_create_file(get_cpu_device(cpu),
604
&dev_attr_mte_tcf_preferred);
605
}
606
607
return 0;
608
}
609
subsys_initcall(register_mte_tcf_preferred_sysctl);
610
611
/*
612
* Return 0 on success, the number of bytes not probed otherwise.
613
*/
614
size_t mte_probe_user_range(const char __user *uaddr, size_t size)
615
{
616
const char __user *end = uaddr + size;
617
char val;
618
619
__raw_get_user(val, uaddr, efault);
620
621
uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
622
while (uaddr < end) {
623
/*
624
* A read is sufficient for mte, the caller should have probed
625
* for the pte write permission if required.
626
*/
627
__raw_get_user(val, uaddr, efault);
628
uaddr += MTE_GRANULE_SIZE;
629
}
630
(void)val;
631
632
return 0;
633
634
efault:
635
return end - uaddr;
636
}
637
638