Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kernel/mte.c
49381 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2020 ARM Ltd.
4
*/
5
6
#include <linux/bitops.h>
7
#include <linux/cpu.h>
8
#include <linux/kernel.h>
9
#include <linux/mm.h>
10
#include <linux/prctl.h>
11
#include <linux/sched.h>
12
#include <linux/sched/mm.h>
13
#include <linux/string.h>
14
#include <linux/swap.h>
15
#include <linux/swapops.h>
16
#include <linux/thread_info.h>
17
#include <linux/types.h>
18
#include <linux/uaccess.h>
19
#include <linux/uio.h>
20
21
#include <asm/barrier.h>
22
#include <asm/cpufeature.h>
23
#include <asm/mte.h>
24
#include <asm/ptrace.h>
25
#include <asm/sysreg.h>
26
27
static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28
29
#ifdef CONFIG_KASAN_HW_TAGS
30
/*
31
* The asynchronous and asymmetric MTE modes have the same behavior for
32
* store operations. This flag is set when either of these modes is enabled.
33
*/
34
DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35
EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36
#endif
37
38
void mte_sync_tags(pte_t pte, unsigned int nr_pages)
39
{
40
struct page *page = pte_page(pte);
41
struct folio *folio = page_folio(page);
42
unsigned long i;
43
44
if (folio_test_hugetlb(folio)) {
45
unsigned long nr = folio_nr_pages(folio);
46
47
/* Hugetlb MTE flags are set for head page only */
48
if (folio_try_hugetlb_mte_tagging(folio)) {
49
for (i = 0; i < nr; i++, page++)
50
mte_clear_page_tags(page_address(page));
51
folio_set_hugetlb_mte_tagged(folio);
52
}
53
54
/* ensure the tags are visible before the PTE is set */
55
smp_wmb();
56
57
return;
58
}
59
60
/* if PG_mte_tagged is set, tags have already been initialised */
61
for (i = 0; i < nr_pages; i++, page++) {
62
if (try_page_mte_tagging(page)) {
63
mte_clear_page_tags(page_address(page));
64
set_page_mte_tagged(page);
65
}
66
}
67
68
/* ensure the tags are visible before the PTE is set */
69
smp_wmb();
70
}
71
72
int memcmp_pages(struct page *page1, struct page *page2)
73
{
74
char *addr1, *addr2;
75
int ret;
76
77
addr1 = page_address(page1);
78
addr2 = page_address(page2);
79
ret = memcmp(addr1, addr2, PAGE_SIZE);
80
81
if (!system_supports_mte() || ret)
82
return ret;
83
84
/*
85
* If the page content is identical but at least one of the pages is
86
* tagged, return non-zero to avoid KSM merging. If only one of the
87
* pages is tagged, __set_ptes() may zero or change the tags of the
88
* other page via mte_sync_tags().
89
*/
90
if (page_mte_tagged(page1) || page_mte_tagged(page2))
91
return addr1 != addr2;
92
93
return ret;
94
}
95
96
static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
97
{
98
/* Enable MTE Sync Mode for EL1. */
99
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
100
SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
101
isb();
102
103
pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
104
}
105
106
#ifdef CONFIG_KASAN_HW_TAGS
107
void mte_enable_kernel_sync(void)
108
{
109
/*
110
* Make sure we enter this function when no PE has set
111
* async mode previously.
112
*/
113
WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
114
"MTE async mode enabled system wide!");
115
116
__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
117
}
118
119
void mte_enable_kernel_async(void)
120
{
121
__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
122
123
/*
124
* MTE async mode is set system wide by the first PE that
125
* executes this function.
126
*
127
* Note: If in future KASAN acquires a runtime switching
128
* mode in between sync and async, this strategy needs
129
* to be reviewed.
130
*/
131
if (!system_uses_mte_async_or_asymm_mode())
132
static_branch_enable(&mte_async_or_asymm_mode);
133
}
134
135
void mte_enable_kernel_asymm(void)
136
{
137
if (cpus_have_cap(ARM64_MTE_ASYMM)) {
138
__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
139
140
/*
141
* MTE asymm mode behaves as async mode for store
142
* operations. The mode is set system wide by the
143
* first PE that executes this function.
144
*
145
* Note: If in future KASAN acquires a runtime switching
146
* mode in between sync and async, this strategy needs
147
* to be reviewed.
148
*/
149
if (!system_uses_mte_async_or_asymm_mode())
150
static_branch_enable(&mte_async_or_asymm_mode);
151
} else {
152
/*
153
* If the CPU does not support MTE asymmetric mode the
154
* kernel falls back on synchronous mode which is the
155
* default for kasan=on.
156
*/
157
mte_enable_kernel_sync();
158
}
159
}
160
161
int mte_enable_kernel_store_only(void)
162
{
163
/*
164
* If the CPU does not support MTE store only,
165
* the kernel checks all operations.
166
*/
167
if (!cpus_have_cap(ARM64_MTE_STORE_ONLY))
168
return -EINVAL;
169
170
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCSO_MASK,
171
SYS_FIELD_PREP(SCTLR_EL1, TCSO, 1));
172
isb();
173
174
pr_info_once("MTE: enabled store only mode at EL1\n");
175
176
return 0;
177
}
178
#endif
179
180
#ifdef CONFIG_KASAN_HW_TAGS
181
void mte_check_tfsr_el1(void)
182
{
183
u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
184
185
if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
186
/*
187
* Note: isb() is not required after this direct write
188
* because there is no indirect read subsequent to it
189
* (per ARM DDI 0487F.c table D13-1).
190
*/
191
write_sysreg_s(0, SYS_TFSR_EL1);
192
193
kasan_report_async();
194
}
195
}
196
#endif
197
198
/*
199
* This is where we actually resolve the system and process MTE mode
200
* configuration into an actual value in SCTLR_EL1 that affects
201
* userspace.
202
*/
203
static void mte_update_sctlr_user(struct task_struct *task)
204
{
205
/*
206
* This must be called with preemption disabled and can only be called
207
* on the current or next task since the CPU must match where the thread
208
* is going to run. The caller is responsible for calling
209
* update_sctlr_el1() later in the same preemption disabled block.
210
*/
211
unsigned long sctlr = task->thread.sctlr_user;
212
unsigned long mte_ctrl = task->thread.mte_ctrl;
213
unsigned long pref, resolved_mte_tcf;
214
215
pref = __this_cpu_read(mte_tcf_preferred);
216
/*
217
* If there is no overlap between the system preferred and
218
* program requested values go with what was requested.
219
*/
220
resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
221
sctlr &= ~(SCTLR_EL1_TCF0_MASK | SCTLR_EL1_TCSO0_MASK);
222
/*
223
* Pick an actual setting. The order in which we check for
224
* set bits and map into register values determines our
225
* default order.
226
*/
227
if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
228
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
229
else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
230
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
231
else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
232
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
233
234
if (mte_ctrl & MTE_CTRL_STORE_ONLY)
235
sctlr |= SYS_FIELD_PREP(SCTLR_EL1, TCSO0, 1);
236
237
task->thread.sctlr_user = sctlr;
238
}
239
240
static void mte_update_gcr_excl(struct task_struct *task)
241
{
242
/*
243
* SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
244
* mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
245
*/
246
if (kasan_hw_tags_enabled())
247
return;
248
249
write_sysreg_s(
250
((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
251
SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
252
SYS_GCR_EL1);
253
}
254
255
#ifdef CONFIG_KASAN_HW_TAGS
256
/* Only called from assembly, silence sparse */
257
void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
258
__le32 *updptr, int nr_inst);
259
260
void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
261
__le32 *updptr, int nr_inst)
262
{
263
BUG_ON(nr_inst != 1); /* Branch -> NOP */
264
265
if (kasan_hw_tags_enabled())
266
*updptr = cpu_to_le32(aarch64_insn_gen_nop());
267
}
268
#endif
269
270
void mte_thread_init_user(void)
271
{
272
if (!system_supports_mte())
273
return;
274
275
/* clear any pending asynchronous tag fault */
276
dsb(ish);
277
write_sysreg_s(0, SYS_TFSRE0_EL1);
278
clear_thread_flag(TIF_MTE_ASYNC_FAULT);
279
/* disable tag checking and reset tag generation mask */
280
set_mte_ctrl(current, 0);
281
}
282
283
void mte_thread_switch(struct task_struct *next)
284
{
285
if (!system_supports_mte())
286
return;
287
288
mte_update_sctlr_user(next);
289
mte_update_gcr_excl(next);
290
291
/* TCO may not have been disabled on exception entry for the current task. */
292
mte_disable_tco_entry(next);
293
294
/*
295
* Check if an async tag exception occurred at EL1.
296
*
297
* Note: On the context switch path we rely on the dsb() present
298
* in __switch_to() to guarantee that the indirect writes to TFSR_EL1
299
* are synchronized before this point.
300
*/
301
isb();
302
mte_check_tfsr_el1();
303
}
304
305
void mte_cpu_setup(void)
306
{
307
u64 rgsr;
308
309
/*
310
* CnP must be enabled only after the MAIR_EL1 register has been set
311
* up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
312
* lead to the wrong memory type being used for a brief window during
313
* CPU power-up.
314
*
315
* CnP is not a boot feature so MTE gets enabled before CnP, but let's
316
* make sure that is the case.
317
*/
318
BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
319
BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
320
321
/* Normal Tagged memory type at the corresponding MAIR index */
322
sysreg_clear_set(mair_el1,
323
MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
324
MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
325
MT_NORMAL_TAGGED));
326
327
write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
328
329
/*
330
* If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
331
* RGSR_EL1.SEED must be non-zero for IRG to produce
332
* pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
333
* must initialize it.
334
*/
335
rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
336
SYS_RGSR_EL1_SEED_SHIFT;
337
if (rgsr == 0)
338
rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
339
write_sysreg_s(rgsr, SYS_RGSR_EL1);
340
341
/* clear any pending tag check faults in TFSR*_EL1 */
342
write_sysreg_s(0, SYS_TFSR_EL1);
343
write_sysreg_s(0, SYS_TFSRE0_EL1);
344
345
local_flush_tlb_all();
346
}
347
348
void mte_suspend_enter(void)
349
{
350
if (!system_supports_mte())
351
return;
352
353
/*
354
* The barriers are required to guarantee that the indirect writes
355
* to TFSR_EL1 are synchronized before we report the state.
356
*/
357
dsb(nsh);
358
isb();
359
360
/* Report SYS_TFSR_EL1 before suspend entry */
361
mte_check_tfsr_el1();
362
}
363
364
void mte_suspend_exit(void)
365
{
366
if (!system_supports_mte())
367
return;
368
369
mte_cpu_setup();
370
}
371
372
long set_mte_ctrl(struct task_struct *task, unsigned long arg)
373
{
374
u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
375
SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
376
377
if (!system_supports_mte())
378
return 0;
379
380
if (arg & PR_MTE_TCF_ASYNC)
381
mte_ctrl |= MTE_CTRL_TCF_ASYNC;
382
if (arg & PR_MTE_TCF_SYNC)
383
mte_ctrl |= MTE_CTRL_TCF_SYNC;
384
385
/*
386
* If the system supports it and both sync and async modes are
387
* specified then implicitly enable asymmetric mode.
388
* Userspace could see a mix of both sync and async anyway due
389
* to differing or changing defaults on CPUs.
390
*/
391
if (cpus_have_cap(ARM64_MTE_ASYMM) &&
392
(arg & PR_MTE_TCF_ASYNC) &&
393
(arg & PR_MTE_TCF_SYNC))
394
mte_ctrl |= MTE_CTRL_TCF_ASYMM;
395
396
if (arg & PR_MTE_STORE_ONLY)
397
mte_ctrl |= MTE_CTRL_STORE_ONLY;
398
399
task->thread.mte_ctrl = mte_ctrl;
400
if (task == current) {
401
preempt_disable();
402
mte_update_sctlr_user(task);
403
mte_update_gcr_excl(task);
404
update_sctlr_el1(task->thread.sctlr_user);
405
preempt_enable();
406
}
407
408
return 0;
409
}
410
411
long get_mte_ctrl(struct task_struct *task)
412
{
413
unsigned long ret;
414
u64 mte_ctrl = task->thread.mte_ctrl;
415
u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
416
SYS_GCR_EL1_EXCL_MASK;
417
418
if (!system_supports_mte())
419
return 0;
420
421
ret = incl << PR_MTE_TAG_SHIFT;
422
if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
423
ret |= PR_MTE_TCF_ASYNC;
424
if (mte_ctrl & MTE_CTRL_TCF_SYNC)
425
ret |= PR_MTE_TCF_SYNC;
426
if (mte_ctrl & MTE_CTRL_STORE_ONLY)
427
ret |= PR_MTE_STORE_ONLY;
428
429
return ret;
430
}
431
432
/*
433
* Access MTE tags in another process' address space as given in mm. Update
434
* the number of tags copied. Return 0 if any tags copied, error otherwise.
435
* Inspired by __access_remote_vm().
436
*/
437
static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
438
struct iovec *kiov, unsigned int gup_flags)
439
{
440
void __user *buf = kiov->iov_base;
441
size_t len = kiov->iov_len;
442
int err = 0;
443
int write = gup_flags & FOLL_WRITE;
444
445
if (!access_ok(buf, len))
446
return -EFAULT;
447
448
if (mmap_read_lock_killable(mm))
449
return -EIO;
450
451
while (len) {
452
struct vm_area_struct *vma;
453
unsigned long tags, offset;
454
void *maddr;
455
struct page *page = get_user_page_vma_remote(mm, addr,
456
gup_flags, &vma);
457
struct folio *folio;
458
459
if (IS_ERR(page)) {
460
err = PTR_ERR(page);
461
break;
462
}
463
464
/*
465
* Only copy tags if the page has been mapped as PROT_MTE
466
* (PG_mte_tagged set). Otherwise the tags are not valid and
467
* not accessible to user. Moreover, an mprotect(PROT_MTE)
468
* would cause the existing tags to be cleared if the page
469
* was never mapped with PROT_MTE.
470
*/
471
if (!(vma->vm_flags & VM_MTE)) {
472
err = -EOPNOTSUPP;
473
put_page(page);
474
break;
475
}
476
477
folio = page_folio(page);
478
if (folio_test_hugetlb(folio))
479
WARN_ON_ONCE(!folio_test_hugetlb_mte_tagged(folio) &&
480
!is_huge_zero_folio(folio));
481
else
482
WARN_ON_ONCE(!page_mte_tagged(page) && !is_zero_page(page));
483
484
/* limit access to the end of the page */
485
offset = offset_in_page(addr);
486
tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
487
488
maddr = page_address(page);
489
if (write) {
490
tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
491
set_page_dirty_lock(page);
492
} else {
493
tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
494
}
495
put_page(page);
496
497
/* error accessing the tracer's buffer */
498
if (!tags)
499
break;
500
501
len -= tags;
502
buf += tags;
503
addr += tags * MTE_GRANULE_SIZE;
504
}
505
mmap_read_unlock(mm);
506
507
/* return an error if no tags copied */
508
kiov->iov_len = buf - kiov->iov_base;
509
if (!kiov->iov_len) {
510
/* check for error accessing the tracee's address space */
511
if (err)
512
return -EIO;
513
else
514
return -EFAULT;
515
}
516
517
return 0;
518
}
519
520
/*
521
* Copy MTE tags in another process' address space at 'addr' to/from tracer's
522
* iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
523
*/
524
static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
525
struct iovec *kiov, unsigned int gup_flags)
526
{
527
struct mm_struct *mm;
528
int ret;
529
530
mm = get_task_mm(tsk);
531
if (!mm)
532
return -EPERM;
533
534
if (!tsk->ptrace || (current != tsk->parent) ||
535
((get_dumpable(mm) != SUID_DUMP_USER) &&
536
!ptracer_capable(tsk, mm->user_ns))) {
537
mmput(mm);
538
return -EPERM;
539
}
540
541
ret = __access_remote_tags(mm, addr, kiov, gup_flags);
542
mmput(mm);
543
544
return ret;
545
}
546
547
int mte_ptrace_copy_tags(struct task_struct *child, long request,
548
unsigned long addr, unsigned long data)
549
{
550
int ret;
551
struct iovec kiov;
552
struct iovec __user *uiov = (void __user *)data;
553
unsigned int gup_flags = FOLL_FORCE;
554
555
if (!system_supports_mte())
556
return -EIO;
557
558
if (get_user(kiov.iov_base, &uiov->iov_base) ||
559
get_user(kiov.iov_len, &uiov->iov_len))
560
return -EFAULT;
561
562
if (request == PTRACE_POKEMTETAGS)
563
gup_flags |= FOLL_WRITE;
564
565
/* align addr to the MTE tag granule */
566
addr &= MTE_GRANULE_MASK;
567
568
ret = access_remote_tags(child, addr, &kiov, gup_flags);
569
if (!ret)
570
ret = put_user(kiov.iov_len, &uiov->iov_len);
571
572
return ret;
573
}
574
575
static ssize_t mte_tcf_preferred_show(struct device *dev,
576
struct device_attribute *attr, char *buf)
577
{
578
switch (per_cpu(mte_tcf_preferred, dev->id)) {
579
case MTE_CTRL_TCF_ASYNC:
580
return sysfs_emit(buf, "async\n");
581
case MTE_CTRL_TCF_SYNC:
582
return sysfs_emit(buf, "sync\n");
583
case MTE_CTRL_TCF_ASYMM:
584
return sysfs_emit(buf, "asymm\n");
585
default:
586
return sysfs_emit(buf, "???\n");
587
}
588
}
589
590
static ssize_t mte_tcf_preferred_store(struct device *dev,
591
struct device_attribute *attr,
592
const char *buf, size_t count)
593
{
594
u64 tcf;
595
596
if (sysfs_streq(buf, "async"))
597
tcf = MTE_CTRL_TCF_ASYNC;
598
else if (sysfs_streq(buf, "sync"))
599
tcf = MTE_CTRL_TCF_SYNC;
600
else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
601
tcf = MTE_CTRL_TCF_ASYMM;
602
else
603
return -EINVAL;
604
605
device_lock(dev);
606
per_cpu(mte_tcf_preferred, dev->id) = tcf;
607
device_unlock(dev);
608
609
return count;
610
}
611
static DEVICE_ATTR_RW(mte_tcf_preferred);
612
613
static int register_mte_tcf_preferred_sysctl(void)
614
{
615
unsigned int cpu;
616
617
if (!system_supports_mte())
618
return 0;
619
620
for_each_possible_cpu(cpu) {
621
per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
622
device_create_file(get_cpu_device(cpu),
623
&dev_attr_mte_tcf_preferred);
624
}
625
626
return 0;
627
}
628
subsys_initcall(register_mte_tcf_preferred_sysctl);
629
630
/*
631
* Return 0 on success, the number of bytes not probed otherwise.
632
*/
633
size_t mte_probe_user_range(const char __user *uaddr, size_t size)
634
{
635
const char __user *end = uaddr + size;
636
char val;
637
638
__raw_get_user(val, uaddr, efault);
639
640
uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
641
while (uaddr < end) {
642
/*
643
* A read is sufficient for mte, the caller should have probed
644
* for the pte write permission if required.
645
*/
646
__raw_get_user(val, uaddr, efault);
647
uaddr += MTE_GRANULE_SIZE;
648
}
649
(void)val;
650
651
return 0;
652
653
efault:
654
return end - uaddr;
655
}
656
657