Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/arm.c
26442 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
4
* Author: Christoffer Dall <[email protected]>
5
*/
6
7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/entry-kvm.h>
10
#include <linux/errno.h>
11
#include <linux/err.h>
12
#include <linux/kvm_host.h>
13
#include <linux/list.h>
14
#include <linux/module.h>
15
#include <linux/vmalloc.h>
16
#include <linux/fs.h>
17
#include <linux/mman.h>
18
#include <linux/sched.h>
19
#include <linux/kvm.h>
20
#include <linux/kvm_irqfd.h>
21
#include <linux/irqbypass.h>
22
#include <linux/sched/stat.h>
23
#include <linux/psci.h>
24
#include <trace/events/kvm.h>
25
26
#define CREATE_TRACE_POINTS
27
#include "trace_arm.h"
28
29
#include <linux/uaccess.h>
30
#include <asm/ptrace.h>
31
#include <asm/mman.h>
32
#include <asm/tlbflush.h>
33
#include <asm/cacheflush.h>
34
#include <asm/cpufeature.h>
35
#include <asm/virt.h>
36
#include <asm/kvm_arm.h>
37
#include <asm/kvm_asm.h>
38
#include <asm/kvm_emulate.h>
39
#include <asm/kvm_mmu.h>
40
#include <asm/kvm_nested.h>
41
#include <asm/kvm_pkvm.h>
42
#include <asm/kvm_ptrauth.h>
43
#include <asm/sections.h>
44
45
#include <kvm/arm_hypercalls.h>
46
#include <kvm/arm_pmu.h>
47
#include <kvm/arm_psci.h>
48
49
#include "sys_regs.h"
50
51
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
52
53
enum kvm_wfx_trap_policy {
54
KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
55
KVM_WFX_NOTRAP,
56
KVM_WFX_TRAP,
57
};
58
59
static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
60
static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
61
62
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
63
64
DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
65
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
66
67
DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
68
69
static bool vgic_present, kvm_arm_initialised;
70
71
static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
72
73
bool is_kvm_arm_initialised(void)
74
{
75
return kvm_arm_initialised;
76
}
77
78
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
79
{
80
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
81
}
82
83
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84
struct kvm_enable_cap *cap)
85
{
86
int r = -EINVAL;
87
88
if (cap->flags)
89
return -EINVAL;
90
91
if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap))
92
return -EINVAL;
93
94
switch (cap->cap) {
95
case KVM_CAP_ARM_NISV_TO_USER:
96
r = 0;
97
set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
98
&kvm->arch.flags);
99
break;
100
case KVM_CAP_ARM_MTE:
101
mutex_lock(&kvm->lock);
102
if (system_supports_mte() && !kvm->created_vcpus) {
103
r = 0;
104
set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
105
}
106
mutex_unlock(&kvm->lock);
107
break;
108
case KVM_CAP_ARM_SYSTEM_SUSPEND:
109
r = 0;
110
set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
111
break;
112
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
113
mutex_lock(&kvm->slots_lock);
114
/*
115
* To keep things simple, allow changing the chunk
116
* size only when no memory slots have been created.
117
*/
118
if (kvm_are_all_memslots_empty(kvm)) {
119
u64 new_cap = cap->args[0];
120
121
if (!new_cap || kvm_is_block_size_supported(new_cap)) {
122
r = 0;
123
kvm->arch.mmu.split_page_chunk_size = new_cap;
124
}
125
}
126
mutex_unlock(&kvm->slots_lock);
127
break;
128
case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
129
mutex_lock(&kvm->lock);
130
if (!kvm->created_vcpus) {
131
r = 0;
132
set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags);
133
}
134
mutex_unlock(&kvm->lock);
135
break;
136
default:
137
break;
138
}
139
140
return r;
141
}
142
143
static int kvm_arm_default_max_vcpus(void)
144
{
145
return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
}
147
148
/**
149
* kvm_arch_init_vm - initializes a VM data structure
150
* @kvm: pointer to the KVM struct
151
* @type: kvm device type
152
*/
153
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
154
{
155
int ret;
156
157
mutex_init(&kvm->arch.config_lock);
158
159
#ifdef CONFIG_LOCKDEP
160
/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
161
mutex_lock(&kvm->lock);
162
mutex_lock(&kvm->arch.config_lock);
163
mutex_unlock(&kvm->arch.config_lock);
164
mutex_unlock(&kvm->lock);
165
#endif
166
167
kvm_init_nested(kvm);
168
169
ret = kvm_share_hyp(kvm, kvm + 1);
170
if (ret)
171
return ret;
172
173
ret = pkvm_init_host_vm(kvm);
174
if (ret)
175
goto err_unshare_kvm;
176
177
if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
178
ret = -ENOMEM;
179
goto err_unshare_kvm;
180
}
181
cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
182
183
ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
184
if (ret)
185
goto err_free_cpumask;
186
187
kvm_vgic_early_init(kvm);
188
189
kvm_timer_init_vm(kvm);
190
191
/* The maximum number of VCPUs is limited by the host's GIC model */
192
kvm->max_vcpus = kvm_arm_default_max_vcpus();
193
194
kvm_arm_init_hypercalls(kvm);
195
196
bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
197
198
return 0;
199
200
err_free_cpumask:
201
free_cpumask_var(kvm->arch.supported_cpus);
202
err_unshare_kvm:
203
kvm_unshare_hyp(kvm, kvm + 1);
204
return ret;
205
}
206
207
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
208
{
209
return VM_FAULT_SIGBUS;
210
}
211
212
void kvm_arch_create_vm_debugfs(struct kvm *kvm)
213
{
214
kvm_sys_regs_create_debugfs(kvm);
215
kvm_s2_ptdump_create_debugfs(kvm);
216
}
217
218
static void kvm_destroy_mpidr_data(struct kvm *kvm)
219
{
220
struct kvm_mpidr_data *data;
221
222
mutex_lock(&kvm->arch.config_lock);
223
224
data = rcu_dereference_protected(kvm->arch.mpidr_data,
225
lockdep_is_held(&kvm->arch.config_lock));
226
if (data) {
227
rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
228
synchronize_rcu();
229
kfree(data);
230
}
231
232
mutex_unlock(&kvm->arch.config_lock);
233
}
234
235
/**
236
* kvm_arch_destroy_vm - destroy the VM data structure
237
* @kvm: pointer to the KVM struct
238
*/
239
void kvm_arch_destroy_vm(struct kvm *kvm)
240
{
241
bitmap_free(kvm->arch.pmu_filter);
242
free_cpumask_var(kvm->arch.supported_cpus);
243
244
kvm_vgic_destroy(kvm);
245
246
if (is_protected_kvm_enabled())
247
pkvm_destroy_hyp_vm(kvm);
248
249
kvm_destroy_mpidr_data(kvm);
250
251
kfree(kvm->arch.sysreg_masks);
252
kvm_destroy_vcpus(kvm);
253
254
kvm_unshare_hyp(kvm, kvm + 1);
255
256
kvm_arm_teardown_hypercalls(kvm);
257
}
258
259
static bool kvm_has_full_ptr_auth(void)
260
{
261
bool apa, gpa, api, gpi, apa3, gpa3;
262
u64 isar1, isar2, val;
263
264
/*
265
* Check that:
266
*
267
* - both Address and Generic auth are implemented for a given
268
* algorithm (Q5, IMPDEF or Q3)
269
* - only a single algorithm is implemented.
270
*/
271
if (!system_has_full_ptr_auth())
272
return false;
273
274
isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
275
isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
276
277
apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
278
val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
279
gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
280
281
api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
282
val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
283
gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
284
285
apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
286
val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
287
gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
288
289
return (apa == gpa && api == gpi && apa3 == gpa3 &&
290
(apa + api + apa3) == 1);
291
}
292
293
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
294
{
295
int r;
296
297
if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext))
298
return 0;
299
300
switch (ext) {
301
case KVM_CAP_IRQCHIP:
302
r = vgic_present;
303
break;
304
case KVM_CAP_IOEVENTFD:
305
case KVM_CAP_USER_MEMORY:
306
case KVM_CAP_SYNC_MMU:
307
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
308
case KVM_CAP_ONE_REG:
309
case KVM_CAP_ARM_PSCI:
310
case KVM_CAP_ARM_PSCI_0_2:
311
case KVM_CAP_READONLY_MEM:
312
case KVM_CAP_MP_STATE:
313
case KVM_CAP_IMMEDIATE_EXIT:
314
case KVM_CAP_VCPU_EVENTS:
315
case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
316
case KVM_CAP_ARM_NISV_TO_USER:
317
case KVM_CAP_ARM_INJECT_EXT_DABT:
318
case KVM_CAP_SET_GUEST_DEBUG:
319
case KVM_CAP_VCPU_ATTRIBUTES:
320
case KVM_CAP_PTP_KVM:
321
case KVM_CAP_ARM_SYSTEM_SUSPEND:
322
case KVM_CAP_IRQFD_RESAMPLE:
323
case KVM_CAP_COUNTER_OFFSET:
324
case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
325
r = 1;
326
break;
327
case KVM_CAP_SET_GUEST_DEBUG2:
328
return KVM_GUESTDBG_VALID_MASK;
329
case KVM_CAP_ARM_SET_DEVICE_ADDR:
330
r = 1;
331
break;
332
case KVM_CAP_NR_VCPUS:
333
/*
334
* ARM64 treats KVM_CAP_NR_CPUS differently from all other
335
* architectures, as it does not always bound it to
336
* KVM_CAP_MAX_VCPUS. It should not matter much because
337
* this is just an advisory value.
338
*/
339
r = min_t(unsigned int, num_online_cpus(),
340
kvm_arm_default_max_vcpus());
341
break;
342
case KVM_CAP_MAX_VCPUS:
343
case KVM_CAP_MAX_VCPU_ID:
344
if (kvm)
345
r = kvm->max_vcpus;
346
else
347
r = kvm_arm_default_max_vcpus();
348
break;
349
case KVM_CAP_MSI_DEVID:
350
if (!kvm)
351
r = -EINVAL;
352
else
353
r = kvm->arch.vgic.msis_require_devid;
354
break;
355
case KVM_CAP_ARM_USER_IRQ:
356
/*
357
* 1: EL1_VTIMER, EL1_PTIMER, and PMU.
358
* (bump this number if adding more devices)
359
*/
360
r = 1;
361
break;
362
case KVM_CAP_ARM_MTE:
363
r = system_supports_mte();
364
break;
365
case KVM_CAP_STEAL_TIME:
366
r = kvm_arm_pvtime_supported();
367
break;
368
case KVM_CAP_ARM_EL1_32BIT:
369
r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
370
break;
371
case KVM_CAP_ARM_EL2:
372
r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT);
373
break;
374
case KVM_CAP_ARM_EL2_E2H0:
375
r = cpus_have_final_cap(ARM64_HAS_HCR_NV1);
376
break;
377
case KVM_CAP_GUEST_DEBUG_HW_BPS:
378
r = get_num_brps();
379
break;
380
case KVM_CAP_GUEST_DEBUG_HW_WPS:
381
r = get_num_wrps();
382
break;
383
case KVM_CAP_ARM_PMU_V3:
384
r = kvm_supports_guest_pmuv3();
385
break;
386
case KVM_CAP_ARM_INJECT_SERROR_ESR:
387
r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
388
break;
389
case KVM_CAP_ARM_VM_IPA_SIZE:
390
r = get_kvm_ipa_limit();
391
break;
392
case KVM_CAP_ARM_SVE:
393
r = system_supports_sve();
394
break;
395
case KVM_CAP_ARM_PTRAUTH_ADDRESS:
396
case KVM_CAP_ARM_PTRAUTH_GENERIC:
397
r = kvm_has_full_ptr_auth();
398
break;
399
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
400
if (kvm)
401
r = kvm->arch.mmu.split_page_chunk_size;
402
else
403
r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
404
break;
405
case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
406
r = kvm_supported_block_sizes();
407
break;
408
case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
409
r = BIT(0);
410
break;
411
case KVM_CAP_ARM_CACHEABLE_PFNMAP_SUPPORTED:
412
if (!kvm)
413
r = -EINVAL;
414
else
415
r = kvm_supports_cacheable_pfnmap();
416
break;
417
418
default:
419
r = 0;
420
}
421
422
return r;
423
}
424
425
long kvm_arch_dev_ioctl(struct file *filp,
426
unsigned int ioctl, unsigned long arg)
427
{
428
return -EINVAL;
429
}
430
431
struct kvm *kvm_arch_alloc_vm(void)
432
{
433
size_t sz = sizeof(struct kvm);
434
435
if (!has_vhe())
436
return kzalloc(sz, GFP_KERNEL_ACCOUNT);
437
438
return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
439
}
440
441
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
442
{
443
if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
444
return -EBUSY;
445
446
if (id >= kvm->max_vcpus)
447
return -EINVAL;
448
449
return 0;
450
}
451
452
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
453
{
454
int err;
455
456
spin_lock_init(&vcpu->arch.mp_state_lock);
457
458
#ifdef CONFIG_LOCKDEP
459
/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
460
mutex_lock(&vcpu->mutex);
461
mutex_lock(&vcpu->kvm->arch.config_lock);
462
mutex_unlock(&vcpu->kvm->arch.config_lock);
463
mutex_unlock(&vcpu->mutex);
464
#endif
465
466
/* Force users to call KVM_ARM_VCPU_INIT */
467
vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
468
469
vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
470
471
/* Set up the timer */
472
kvm_timer_vcpu_init(vcpu);
473
474
kvm_pmu_vcpu_init(vcpu);
475
476
kvm_arm_pvtime_vcpu_init(&vcpu->arch);
477
478
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
479
480
/*
481
* This vCPU may have been created after mpidr_data was initialized.
482
* Throw out the pre-computed mappings if that is the case which forces
483
* KVM to fall back to iteratively searching the vCPUs.
484
*/
485
kvm_destroy_mpidr_data(vcpu->kvm);
486
487
err = kvm_vgic_vcpu_init(vcpu);
488
if (err)
489
return err;
490
491
err = kvm_share_hyp(vcpu, vcpu + 1);
492
if (err)
493
kvm_vgic_vcpu_destroy(vcpu);
494
495
return err;
496
}
497
498
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
499
{
500
}
501
502
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
503
{
504
if (!is_protected_kvm_enabled())
505
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
506
else
507
free_hyp_memcache(&vcpu->arch.pkvm_memcache);
508
kvm_timer_vcpu_terminate(vcpu);
509
kvm_pmu_vcpu_destroy(vcpu);
510
kvm_vgic_vcpu_destroy(vcpu);
511
kvm_arm_vcpu_destroy(vcpu);
512
}
513
514
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
515
{
516
517
}
518
519
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
520
{
521
522
}
523
524
static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
525
{
526
if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
527
/*
528
* Either we're running an L2 guest, and the API/APK bits come
529
* from L1's HCR_EL2, or API/APK are both set.
530
*/
531
if (unlikely(is_nested_ctxt(vcpu))) {
532
u64 val;
533
534
val = __vcpu_sys_reg(vcpu, HCR_EL2);
535
val &= (HCR_API | HCR_APK);
536
vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
537
vcpu->arch.hcr_el2 |= val;
538
} else {
539
vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
540
}
541
542
/*
543
* Save the host keys if there is any chance for the guest
544
* to use pauth, as the entry code will reload the guest
545
* keys in that case.
546
*/
547
if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
548
struct kvm_cpu_context *ctxt;
549
550
ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
551
ptrauth_save_keys(ctxt);
552
}
553
}
554
}
555
556
static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
557
{
558
if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
559
return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
560
561
return single_task_running() &&
562
(atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
563
vcpu->kvm->arch.vgic.nassgireq);
564
}
565
566
static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
567
{
568
if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
569
return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
570
571
return single_task_running();
572
}
573
574
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
575
{
576
struct kvm_s2_mmu *mmu;
577
int *last_ran;
578
579
if (is_protected_kvm_enabled())
580
goto nommu;
581
582
if (vcpu_has_nv(vcpu))
583
kvm_vcpu_load_hw_mmu(vcpu);
584
585
mmu = vcpu->arch.hw_mmu;
586
last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
587
588
/*
589
* Ensure a VMID is allocated for the MMU before programming VTTBR_EL2,
590
* which happens eagerly in VHE.
591
*
592
* Also, the VMID allocator only preserves VMIDs that are active at the
593
* time of rollover, so KVM might need to grab a new VMID for the MMU if
594
* this is called from kvm_sched_in().
595
*/
596
kvm_arm_vmid_update(&mmu->vmid);
597
598
/*
599
* We guarantee that both TLBs and I-cache are private to each
600
* vcpu. If detecting that a vcpu from the same VM has
601
* previously run on the same physical CPU, call into the
602
* hypervisor code to nuke the relevant contexts.
603
*
604
* We might get preempted before the vCPU actually runs, but
605
* over-invalidation doesn't affect correctness.
606
*/
607
if (*last_ran != vcpu->vcpu_idx) {
608
kvm_call_hyp(__kvm_flush_cpu_context, mmu);
609
*last_ran = vcpu->vcpu_idx;
610
}
611
612
nommu:
613
vcpu->cpu = cpu;
614
615
/*
616
* The timer must be loaded before the vgic to correctly set up physical
617
* interrupt deactivation in nested state (e.g. timer interrupt).
618
*/
619
kvm_timer_vcpu_load(vcpu);
620
kvm_vgic_load(vcpu);
621
kvm_vcpu_load_debug(vcpu);
622
if (has_vhe())
623
kvm_vcpu_load_vhe(vcpu);
624
kvm_arch_vcpu_load_fp(vcpu);
625
kvm_vcpu_pmu_restore_guest(vcpu);
626
if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
627
kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
628
629
if (kvm_vcpu_should_clear_twe(vcpu))
630
vcpu->arch.hcr_el2 &= ~HCR_TWE;
631
else
632
vcpu->arch.hcr_el2 |= HCR_TWE;
633
634
if (kvm_vcpu_should_clear_twi(vcpu))
635
vcpu->arch.hcr_el2 &= ~HCR_TWI;
636
else
637
vcpu->arch.hcr_el2 |= HCR_TWI;
638
639
vcpu_set_pauth_traps(vcpu);
640
641
if (is_protected_kvm_enabled()) {
642
kvm_call_hyp_nvhe(__pkvm_vcpu_load,
643
vcpu->kvm->arch.pkvm.handle,
644
vcpu->vcpu_idx, vcpu->arch.hcr_el2);
645
kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
646
&vcpu->arch.vgic_cpu.vgic_v3);
647
}
648
649
if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
650
vcpu_set_on_unsupported_cpu(vcpu);
651
}
652
653
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
654
{
655
if (is_protected_kvm_enabled()) {
656
kvm_call_hyp(__vgic_v3_save_vmcr_aprs,
657
&vcpu->arch.vgic_cpu.vgic_v3);
658
kvm_call_hyp_nvhe(__pkvm_vcpu_put);
659
}
660
661
kvm_vcpu_put_debug(vcpu);
662
kvm_arch_vcpu_put_fp(vcpu);
663
if (has_vhe())
664
kvm_vcpu_put_vhe(vcpu);
665
kvm_timer_vcpu_put(vcpu);
666
kvm_vgic_put(vcpu);
667
kvm_vcpu_pmu_restore_host(vcpu);
668
if (vcpu_has_nv(vcpu))
669
kvm_vcpu_put_hw_mmu(vcpu);
670
kvm_arm_vmid_clear_active();
671
672
vcpu_clear_on_unsupported_cpu(vcpu);
673
vcpu->cpu = -1;
674
}
675
676
static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
677
{
678
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
679
kvm_make_request(KVM_REQ_SLEEP, vcpu);
680
kvm_vcpu_kick(vcpu);
681
}
682
683
void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
684
{
685
spin_lock(&vcpu->arch.mp_state_lock);
686
__kvm_arm_vcpu_power_off(vcpu);
687
spin_unlock(&vcpu->arch.mp_state_lock);
688
}
689
690
bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
691
{
692
return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
693
}
694
695
static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
696
{
697
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
698
kvm_make_request(KVM_REQ_SUSPEND, vcpu);
699
kvm_vcpu_kick(vcpu);
700
}
701
702
static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
703
{
704
return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
705
}
706
707
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
708
struct kvm_mp_state *mp_state)
709
{
710
*mp_state = READ_ONCE(vcpu->arch.mp_state);
711
712
return 0;
713
}
714
715
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
716
struct kvm_mp_state *mp_state)
717
{
718
int ret = 0;
719
720
spin_lock(&vcpu->arch.mp_state_lock);
721
722
switch (mp_state->mp_state) {
723
case KVM_MP_STATE_RUNNABLE:
724
WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
725
break;
726
case KVM_MP_STATE_STOPPED:
727
__kvm_arm_vcpu_power_off(vcpu);
728
break;
729
case KVM_MP_STATE_SUSPENDED:
730
kvm_arm_vcpu_suspend(vcpu);
731
break;
732
default:
733
ret = -EINVAL;
734
}
735
736
spin_unlock(&vcpu->arch.mp_state_lock);
737
738
return ret;
739
}
740
741
/**
742
* kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
743
* @v: The VCPU pointer
744
*
745
* If the guest CPU is not waiting for interrupts or an interrupt line is
746
* asserted, the CPU is by definition runnable.
747
*/
748
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
749
{
750
bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE);
751
752
return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
753
&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
754
}
755
756
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
757
{
758
return vcpu_mode_priv(vcpu);
759
}
760
761
#ifdef CONFIG_GUEST_PERF_EVENTS
762
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
763
{
764
return *vcpu_pc(vcpu);
765
}
766
#endif
767
768
static void kvm_init_mpidr_data(struct kvm *kvm)
769
{
770
struct kvm_mpidr_data *data = NULL;
771
unsigned long c, mask, nr_entries;
772
u64 aff_set = 0, aff_clr = ~0UL;
773
struct kvm_vcpu *vcpu;
774
775
mutex_lock(&kvm->arch.config_lock);
776
777
if (rcu_access_pointer(kvm->arch.mpidr_data) ||
778
atomic_read(&kvm->online_vcpus) == 1)
779
goto out;
780
781
kvm_for_each_vcpu(c, vcpu, kvm) {
782
u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
783
aff_set |= aff;
784
aff_clr &= aff;
785
}
786
787
/*
788
* A significant bit can be either 0 or 1, and will only appear in
789
* aff_set. Use aff_clr to weed out the useless stuff.
790
*/
791
mask = aff_set ^ aff_clr;
792
nr_entries = BIT_ULL(hweight_long(mask));
793
794
/*
795
* Don't let userspace fool us. If we need more than a single page
796
* to describe the compressed MPIDR array, just fall back to the
797
* iterative method. Single vcpu VMs do not need this either.
798
*/
799
if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
800
data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
801
GFP_KERNEL_ACCOUNT);
802
803
if (!data)
804
goto out;
805
806
data->mpidr_mask = mask;
807
808
kvm_for_each_vcpu(c, vcpu, kvm) {
809
u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
810
u16 index = kvm_mpidr_index(data, aff);
811
812
data->cmpidr_to_idx[index] = c;
813
}
814
815
rcu_assign_pointer(kvm->arch.mpidr_data, data);
816
out:
817
mutex_unlock(&kvm->arch.config_lock);
818
}
819
820
/*
821
* Handle both the initialisation that is being done when the vcpu is
822
* run for the first time, as well as the updates that must be
823
* performed each time we get a new thread dealing with this vcpu.
824
*/
825
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
826
{
827
struct kvm *kvm = vcpu->kvm;
828
int ret;
829
830
if (!kvm_vcpu_initialized(vcpu))
831
return -ENOEXEC;
832
833
if (!kvm_arm_vcpu_is_finalized(vcpu))
834
return -EPERM;
835
836
if (likely(vcpu_has_run_once(vcpu)))
837
return 0;
838
839
kvm_init_mpidr_data(kvm);
840
841
if (likely(irqchip_in_kernel(kvm))) {
842
/*
843
* Map the VGIC hardware resources before running a vcpu the
844
* first time on this VM.
845
*/
846
ret = kvm_vgic_map_resources(kvm);
847
if (ret)
848
return ret;
849
}
850
851
ret = kvm_finalize_sys_regs(vcpu);
852
if (ret)
853
return ret;
854
855
if (vcpu_has_nv(vcpu)) {
856
ret = kvm_vcpu_allocate_vncr_tlb(vcpu);
857
if (ret)
858
return ret;
859
860
ret = kvm_vgic_vcpu_nv_init(vcpu);
861
if (ret)
862
return ret;
863
}
864
865
/*
866
* This needs to happen after any restriction has been applied
867
* to the feature set.
868
*/
869
kvm_calculate_traps(vcpu);
870
871
ret = kvm_timer_enable(vcpu);
872
if (ret)
873
return ret;
874
875
if (kvm_vcpu_has_pmu(vcpu)) {
876
ret = kvm_arm_pmu_v3_enable(vcpu);
877
if (ret)
878
return ret;
879
}
880
881
if (is_protected_kvm_enabled()) {
882
ret = pkvm_create_hyp_vm(kvm);
883
if (ret)
884
return ret;
885
886
ret = pkvm_create_hyp_vcpu(vcpu);
887
if (ret)
888
return ret;
889
}
890
891
mutex_lock(&kvm->arch.config_lock);
892
set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
893
mutex_unlock(&kvm->arch.config_lock);
894
895
return ret;
896
}
897
898
bool kvm_arch_intc_initialized(struct kvm *kvm)
899
{
900
return vgic_initialized(kvm);
901
}
902
903
void kvm_arm_halt_guest(struct kvm *kvm)
904
{
905
unsigned long i;
906
struct kvm_vcpu *vcpu;
907
908
kvm_for_each_vcpu(i, vcpu, kvm)
909
vcpu->arch.pause = true;
910
kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
911
}
912
913
void kvm_arm_resume_guest(struct kvm *kvm)
914
{
915
unsigned long i;
916
struct kvm_vcpu *vcpu;
917
918
kvm_for_each_vcpu(i, vcpu, kvm) {
919
vcpu->arch.pause = false;
920
__kvm_vcpu_wake_up(vcpu);
921
}
922
}
923
924
static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
925
{
926
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
927
928
rcuwait_wait_event(wait,
929
(!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
930
TASK_INTERRUPTIBLE);
931
932
if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
933
/* Awaken to handle a signal, request we sleep again later. */
934
kvm_make_request(KVM_REQ_SLEEP, vcpu);
935
}
936
937
/*
938
* Make sure we will observe a potential reset request if we've
939
* observed a change to the power state. Pairs with the smp_wmb() in
940
* kvm_psci_vcpu_on().
941
*/
942
smp_rmb();
943
}
944
945
/**
946
* kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
947
* @vcpu: The VCPU pointer
948
*
949
* Suspend execution of a vCPU until a valid wake event is detected, i.e. until
950
* the vCPU is runnable. The vCPU may or may not be scheduled out, depending
951
* on when a wake event arrives, e.g. there may already be a pending wake event.
952
*/
953
void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
954
{
955
/*
956
* Sync back the state of the GIC CPU interface so that we have
957
* the latest PMR and group enables. This ensures that
958
* kvm_arch_vcpu_runnable has up-to-date data to decide whether
959
* we have pending interrupts, e.g. when determining if the
960
* vCPU should block.
961
*
962
* For the same reason, we want to tell GICv4 that we need
963
* doorbells to be signalled, should an interrupt become pending.
964
*/
965
preempt_disable();
966
vcpu_set_flag(vcpu, IN_WFI);
967
kvm_vgic_put(vcpu);
968
preempt_enable();
969
970
kvm_vcpu_halt(vcpu);
971
vcpu_clear_flag(vcpu, IN_WFIT);
972
973
preempt_disable();
974
vcpu_clear_flag(vcpu, IN_WFI);
975
kvm_vgic_load(vcpu);
976
preempt_enable();
977
}
978
979
static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
980
{
981
if (!kvm_arm_vcpu_suspended(vcpu))
982
return 1;
983
984
kvm_vcpu_wfi(vcpu);
985
986
/*
987
* The suspend state is sticky; we do not leave it until userspace
988
* explicitly marks the vCPU as runnable. Request that we suspend again
989
* later.
990
*/
991
kvm_make_request(KVM_REQ_SUSPEND, vcpu);
992
993
/*
994
* Check to make sure the vCPU is actually runnable. If so, exit to
995
* userspace informing it of the wakeup condition.
996
*/
997
if (kvm_arch_vcpu_runnable(vcpu)) {
998
memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
999
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
1000
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1001
return 0;
1002
}
1003
1004
/*
1005
* Otherwise, we were unblocked to process a different event, such as a
1006
* pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
1007
* process the event.
1008
*/
1009
return 1;
1010
}
1011
1012
/**
1013
* check_vcpu_requests - check and handle pending vCPU requests
1014
* @vcpu: the VCPU pointer
1015
*
1016
* Return: 1 if we should enter the guest
1017
* 0 if we should exit to userspace
1018
* < 0 if we should exit to userspace, where the return value indicates
1019
* an error
1020
*/
1021
static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1022
{
1023
if (kvm_request_pending(vcpu)) {
1024
if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1025
return -EIO;
1026
1027
if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1028
kvm_vcpu_sleep(vcpu);
1029
1030
if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1031
kvm_reset_vcpu(vcpu);
1032
1033
/*
1034
* Clear IRQ_PENDING requests that were made to guarantee
1035
* that a VCPU sees new virtual interrupts.
1036
*/
1037
kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1038
1039
if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1040
kvm_update_stolen_time(vcpu);
1041
1042
if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1043
/* The distributor enable bits were changed */
1044
preempt_disable();
1045
vgic_v4_put(vcpu);
1046
vgic_v4_load(vcpu);
1047
preempt_enable();
1048
}
1049
1050
if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1051
kvm_vcpu_reload_pmu(vcpu);
1052
1053
if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1054
kvm_vcpu_pmu_restore_guest(vcpu);
1055
1056
if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1057
return kvm_vcpu_suspend(vcpu);
1058
1059
if (kvm_dirty_ring_check_request(vcpu))
1060
return 0;
1061
1062
check_nested_vcpu_requests(vcpu);
1063
}
1064
1065
return 1;
1066
}
1067
1068
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1069
{
1070
if (likely(!vcpu_mode_is_32bit(vcpu)))
1071
return false;
1072
1073
if (vcpu_has_nv(vcpu))
1074
return true;
1075
1076
return !kvm_supports_32bit_el0();
1077
}
1078
1079
/**
1080
* kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1081
* @vcpu: The VCPU pointer
1082
* @ret: Pointer to write optional return code
1083
*
1084
* Returns: true if the VCPU needs to return to a preemptible + interruptible
1085
* and skip guest entry.
1086
*
1087
* This function disambiguates between two different types of exits: exits to a
1088
* preemptible + interruptible kernel context and exits to userspace. For an
1089
* exit to userspace, this function will write the return code to ret and return
1090
* true. For an exit to preemptible + interruptible kernel context (i.e. check
1091
* for pending work and re-enter), return true without writing to ret.
1092
*/
1093
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1094
{
1095
struct kvm_run *run = vcpu->run;
1096
1097
/*
1098
* If we're using a userspace irqchip, then check if we need
1099
* to tell a userspace irqchip about timer or PMU level
1100
* changes and if so, exit to userspace (the actual level
1101
* state gets updated in kvm_timer_update_run and
1102
* kvm_pmu_update_run below).
1103
*/
1104
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1105
if (kvm_timer_should_notify_user(vcpu) ||
1106
kvm_pmu_should_notify_user(vcpu)) {
1107
*ret = -EINTR;
1108
run->exit_reason = KVM_EXIT_INTR;
1109
return true;
1110
}
1111
}
1112
1113
if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1114
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1115
run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1116
run->fail_entry.cpu = smp_processor_id();
1117
*ret = 0;
1118
return true;
1119
}
1120
1121
return kvm_request_pending(vcpu) ||
1122
xfer_to_guest_mode_work_pending();
1123
}
1124
1125
/*
1126
* Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1127
* the vCPU is running.
1128
*
1129
* This must be noinstr as instrumentation may make use of RCU, and this is not
1130
* safe during the EQS.
1131
*/
1132
static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1133
{
1134
int ret;
1135
1136
guest_state_enter_irqoff();
1137
ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1138
guest_state_exit_irqoff();
1139
1140
return ret;
1141
}
1142
1143
/**
1144
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1145
* @vcpu: The VCPU pointer
1146
*
1147
* This function is called through the VCPU_RUN ioctl called from user space. It
1148
* will execute VM code in a loop until the time slice for the process is used
1149
* or some emulation is needed from user space in which case the function will
1150
* return with return value 0 and with the kvm_run structure filled in with the
1151
* required data for the requested emulation.
1152
*/
1153
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1154
{
1155
struct kvm_run *run = vcpu->run;
1156
int ret;
1157
1158
if (run->exit_reason == KVM_EXIT_MMIO) {
1159
ret = kvm_handle_mmio_return(vcpu);
1160
if (ret <= 0)
1161
return ret;
1162
}
1163
1164
vcpu_load(vcpu);
1165
1166
if (!vcpu->wants_to_run) {
1167
ret = -EINTR;
1168
goto out;
1169
}
1170
1171
kvm_sigset_activate(vcpu);
1172
1173
ret = 1;
1174
run->exit_reason = KVM_EXIT_UNKNOWN;
1175
run->flags = 0;
1176
while (ret > 0) {
1177
/*
1178
* Check conditions before entering the guest
1179
*/
1180
ret = xfer_to_guest_mode_handle_work(vcpu);
1181
if (!ret)
1182
ret = 1;
1183
1184
if (ret > 0)
1185
ret = check_vcpu_requests(vcpu);
1186
1187
/*
1188
* Preparing the interrupts to be injected also
1189
* involves poking the GIC, which must be done in a
1190
* non-preemptible context.
1191
*/
1192
preempt_disable();
1193
1194
kvm_nested_flush_hwstate(vcpu);
1195
1196
if (kvm_vcpu_has_pmu(vcpu))
1197
kvm_pmu_flush_hwstate(vcpu);
1198
1199
local_irq_disable();
1200
1201
kvm_vgic_flush_hwstate(vcpu);
1202
1203
kvm_pmu_update_vcpu_events(vcpu);
1204
1205
/*
1206
* Ensure we set mode to IN_GUEST_MODE after we disable
1207
* interrupts and before the final VCPU requests check.
1208
* See the comment in kvm_vcpu_exiting_guest_mode() and
1209
* Documentation/virt/kvm/vcpu-requests.rst
1210
*/
1211
smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1212
1213
if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1214
vcpu->mode = OUTSIDE_GUEST_MODE;
1215
isb(); /* Ensure work in x_flush_hwstate is committed */
1216
if (kvm_vcpu_has_pmu(vcpu))
1217
kvm_pmu_sync_hwstate(vcpu);
1218
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1219
kvm_timer_sync_user(vcpu);
1220
kvm_vgic_sync_hwstate(vcpu);
1221
local_irq_enable();
1222
preempt_enable();
1223
continue;
1224
}
1225
1226
kvm_arch_vcpu_ctxflush_fp(vcpu);
1227
1228
/**************************************************************
1229
* Enter the guest
1230
*/
1231
trace_kvm_entry(*vcpu_pc(vcpu));
1232
guest_timing_enter_irqoff();
1233
1234
ret = kvm_arm_vcpu_enter_exit(vcpu);
1235
1236
vcpu->mode = OUTSIDE_GUEST_MODE;
1237
vcpu->stat.exits++;
1238
/*
1239
* Back from guest
1240
*************************************************************/
1241
1242
/*
1243
* We must sync the PMU state before the vgic state so
1244
* that the vgic can properly sample the updated state of the
1245
* interrupt line.
1246
*/
1247
if (kvm_vcpu_has_pmu(vcpu))
1248
kvm_pmu_sync_hwstate(vcpu);
1249
1250
/*
1251
* Sync the vgic state before syncing the timer state because
1252
* the timer code needs to know if the virtual timer
1253
* interrupts are active.
1254
*/
1255
kvm_vgic_sync_hwstate(vcpu);
1256
1257
/*
1258
* Sync the timer hardware state before enabling interrupts as
1259
* we don't want vtimer interrupts to race with syncing the
1260
* timer virtual interrupt state.
1261
*/
1262
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1263
kvm_timer_sync_user(vcpu);
1264
1265
if (is_hyp_ctxt(vcpu))
1266
kvm_timer_sync_nested(vcpu);
1267
1268
kvm_arch_vcpu_ctxsync_fp(vcpu);
1269
1270
/*
1271
* We must ensure that any pending interrupts are taken before
1272
* we exit guest timing so that timer ticks are accounted as
1273
* guest time. Transiently unmask interrupts so that any
1274
* pending interrupts are taken.
1275
*
1276
* Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1277
* context synchronization event) is necessary to ensure that
1278
* pending interrupts are taken.
1279
*/
1280
if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1281
local_irq_enable();
1282
isb();
1283
local_irq_disable();
1284
}
1285
1286
guest_timing_exit_irqoff();
1287
1288
local_irq_enable();
1289
1290
trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1291
1292
/* Exit types that need handling before we can be preempted */
1293
handle_exit_early(vcpu, ret);
1294
1295
kvm_nested_sync_hwstate(vcpu);
1296
1297
preempt_enable();
1298
1299
/*
1300
* The ARMv8 architecture doesn't give the hypervisor
1301
* a mechanism to prevent a guest from dropping to AArch32 EL0
1302
* if implemented by the CPU. If we spot the guest in such
1303
* state and that we decided it wasn't supposed to do so (like
1304
* with the asymmetric AArch32 case), return to userspace with
1305
* a fatal error.
1306
*/
1307
if (vcpu_mode_is_bad_32bit(vcpu)) {
1308
/*
1309
* As we have caught the guest red-handed, decide that
1310
* it isn't fit for purpose anymore by making the vcpu
1311
* invalid. The VMM can try and fix it by issuing a
1312
* KVM_ARM_VCPU_INIT if it really wants to.
1313
*/
1314
vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1315
ret = ARM_EXCEPTION_IL;
1316
}
1317
1318
ret = handle_exit(vcpu, ret);
1319
}
1320
1321
/* Tell userspace about in-kernel device output levels */
1322
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1323
kvm_timer_update_run(vcpu);
1324
kvm_pmu_update_run(vcpu);
1325
}
1326
1327
kvm_sigset_deactivate(vcpu);
1328
1329
out:
1330
/*
1331
* In the unlikely event that we are returning to userspace
1332
* with pending exceptions or PC adjustment, commit these
1333
* adjustments in order to give userspace a consistent view of
1334
* the vcpu state. Note that this relies on __kvm_adjust_pc()
1335
* being preempt-safe on VHE.
1336
*/
1337
if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1338
vcpu_get_flag(vcpu, INCREMENT_PC)))
1339
kvm_call_hyp(__kvm_adjust_pc, vcpu);
1340
1341
vcpu_put(vcpu);
1342
return ret;
1343
}
1344
1345
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1346
{
1347
int bit_index;
1348
bool set;
1349
unsigned long *hcr;
1350
1351
if (number == KVM_ARM_IRQ_CPU_IRQ)
1352
bit_index = __ffs(HCR_VI);
1353
else /* KVM_ARM_IRQ_CPU_FIQ */
1354
bit_index = __ffs(HCR_VF);
1355
1356
hcr = vcpu_hcr(vcpu);
1357
if (level)
1358
set = test_and_set_bit(bit_index, hcr);
1359
else
1360
set = test_and_clear_bit(bit_index, hcr);
1361
1362
/*
1363
* If we didn't change anything, no need to wake up or kick other CPUs
1364
*/
1365
if (set == level)
1366
return 0;
1367
1368
/*
1369
* The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1370
* trigger a world-switch round on the running physical CPU to set the
1371
* virtual IRQ/FIQ fields in the HCR appropriately.
1372
*/
1373
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1374
kvm_vcpu_kick(vcpu);
1375
1376
return 0;
1377
}
1378
1379
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1380
bool line_status)
1381
{
1382
u32 irq = irq_level->irq;
1383
unsigned int irq_type, vcpu_id, irq_num;
1384
struct kvm_vcpu *vcpu = NULL;
1385
bool level = irq_level->level;
1386
1387
irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1388
vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1389
vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1390
irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1391
1392
trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1393
1394
switch (irq_type) {
1395
case KVM_ARM_IRQ_TYPE_CPU:
1396
if (irqchip_in_kernel(kvm))
1397
return -ENXIO;
1398
1399
vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1400
if (!vcpu)
1401
return -EINVAL;
1402
1403
if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1404
return -EINVAL;
1405
1406
return vcpu_interrupt_line(vcpu, irq_num, level);
1407
case KVM_ARM_IRQ_TYPE_PPI:
1408
if (!irqchip_in_kernel(kvm))
1409
return -ENXIO;
1410
1411
vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1412
if (!vcpu)
1413
return -EINVAL;
1414
1415
if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1416
return -EINVAL;
1417
1418
return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1419
case KVM_ARM_IRQ_TYPE_SPI:
1420
if (!irqchip_in_kernel(kvm))
1421
return -ENXIO;
1422
1423
if (irq_num < VGIC_NR_PRIVATE_IRQS)
1424
return -EINVAL;
1425
1426
return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1427
}
1428
1429
return -EINVAL;
1430
}
1431
1432
static unsigned long system_supported_vcpu_features(void)
1433
{
1434
unsigned long features = KVM_VCPU_VALID_FEATURES;
1435
1436
if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1437
clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1438
1439
if (!kvm_supports_guest_pmuv3())
1440
clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1441
1442
if (!system_supports_sve())
1443
clear_bit(KVM_ARM_VCPU_SVE, &features);
1444
1445
if (!kvm_has_full_ptr_auth()) {
1446
clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1447
clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1448
}
1449
1450
if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1451
clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1452
1453
return features;
1454
}
1455
1456
static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1457
const struct kvm_vcpu_init *init)
1458
{
1459
unsigned long features = init->features[0];
1460
int i;
1461
1462
if (features & ~KVM_VCPU_VALID_FEATURES)
1463
return -ENOENT;
1464
1465
for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1466
if (init->features[i])
1467
return -ENOENT;
1468
}
1469
1470
if (features & ~system_supported_vcpu_features())
1471
return -EINVAL;
1472
1473
/*
1474
* For now make sure that both address/generic pointer authentication
1475
* features are requested by the userspace together.
1476
*/
1477
if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1478
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1479
return -EINVAL;
1480
1481
if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1482
return 0;
1483
1484
/* MTE is incompatible with AArch32 */
1485
if (kvm_has_mte(vcpu->kvm))
1486
return -EINVAL;
1487
1488
/* NV is incompatible with AArch32 */
1489
if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1490
return -EINVAL;
1491
1492
return 0;
1493
}
1494
1495
static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1496
const struct kvm_vcpu_init *init)
1497
{
1498
unsigned long features = init->features[0];
1499
1500
return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1501
KVM_VCPU_MAX_FEATURES);
1502
}
1503
1504
static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1505
{
1506
struct kvm *kvm = vcpu->kvm;
1507
int ret = 0;
1508
1509
/*
1510
* When the vCPU has a PMU, but no PMU is set for the guest
1511
* yet, set the default one.
1512
*/
1513
if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1514
ret = kvm_arm_set_default_pmu(kvm);
1515
1516
/* Prepare for nested if required */
1517
if (!ret && vcpu_has_nv(vcpu))
1518
ret = kvm_vcpu_init_nested(vcpu);
1519
1520
return ret;
1521
}
1522
1523
static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1524
const struct kvm_vcpu_init *init)
1525
{
1526
unsigned long features = init->features[0];
1527
struct kvm *kvm = vcpu->kvm;
1528
int ret = -EINVAL;
1529
1530
mutex_lock(&kvm->arch.config_lock);
1531
1532
if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1533
kvm_vcpu_init_changed(vcpu, init))
1534
goto out_unlock;
1535
1536
bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1537
1538
ret = kvm_setup_vcpu(vcpu);
1539
if (ret)
1540
goto out_unlock;
1541
1542
/* Now we know what it is, we can reset it. */
1543
kvm_reset_vcpu(vcpu);
1544
1545
set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1546
vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1547
ret = 0;
1548
out_unlock:
1549
mutex_unlock(&kvm->arch.config_lock);
1550
return ret;
1551
}
1552
1553
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1554
const struct kvm_vcpu_init *init)
1555
{
1556
int ret;
1557
1558
if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1559
init->target != kvm_target_cpu())
1560
return -EINVAL;
1561
1562
ret = kvm_vcpu_init_check_features(vcpu, init);
1563
if (ret)
1564
return ret;
1565
1566
if (!kvm_vcpu_initialized(vcpu))
1567
return __kvm_vcpu_set_target(vcpu, init);
1568
1569
if (kvm_vcpu_init_changed(vcpu, init))
1570
return -EINVAL;
1571
1572
kvm_reset_vcpu(vcpu);
1573
return 0;
1574
}
1575
1576
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1577
struct kvm_vcpu_init *init)
1578
{
1579
bool power_off = false;
1580
int ret;
1581
1582
/*
1583
* Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1584
* reflecting it in the finalized feature set, thus limiting its scope
1585
* to a single KVM_ARM_VCPU_INIT call.
1586
*/
1587
if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1588
init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1589
power_off = true;
1590
}
1591
1592
ret = kvm_vcpu_set_target(vcpu, init);
1593
if (ret)
1594
return ret;
1595
1596
/*
1597
* Ensure a rebooted VM will fault in RAM pages and detect if the
1598
* guest MMU is turned off and flush the caches as needed.
1599
*
1600
* S2FWB enforces all memory accesses to RAM being cacheable,
1601
* ensuring that the data side is always coherent. We still
1602
* need to invalidate the I-cache though, as FWB does *not*
1603
* imply CTR_EL0.DIC.
1604
*/
1605
if (vcpu_has_run_once(vcpu)) {
1606
if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1607
stage2_unmap_vm(vcpu->kvm);
1608
else
1609
icache_inval_all_pou();
1610
}
1611
1612
vcpu_reset_hcr(vcpu);
1613
1614
/*
1615
* Handle the "start in power-off" case.
1616
*/
1617
spin_lock(&vcpu->arch.mp_state_lock);
1618
1619
if (power_off)
1620
__kvm_arm_vcpu_power_off(vcpu);
1621
else
1622
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1623
1624
spin_unlock(&vcpu->arch.mp_state_lock);
1625
1626
return 0;
1627
}
1628
1629
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1630
struct kvm_device_attr *attr)
1631
{
1632
int ret = -ENXIO;
1633
1634
switch (attr->group) {
1635
default:
1636
ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1637
break;
1638
}
1639
1640
return ret;
1641
}
1642
1643
static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1644
struct kvm_device_attr *attr)
1645
{
1646
int ret = -ENXIO;
1647
1648
switch (attr->group) {
1649
default:
1650
ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1651
break;
1652
}
1653
1654
return ret;
1655
}
1656
1657
static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1658
struct kvm_device_attr *attr)
1659
{
1660
int ret = -ENXIO;
1661
1662
switch (attr->group) {
1663
default:
1664
ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1665
break;
1666
}
1667
1668
return ret;
1669
}
1670
1671
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1672
struct kvm_vcpu_events *events)
1673
{
1674
memset(events, 0, sizeof(*events));
1675
1676
return __kvm_arm_vcpu_get_events(vcpu, events);
1677
}
1678
1679
static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1680
struct kvm_vcpu_events *events)
1681
{
1682
int i;
1683
1684
/* check whether the reserved field is zero */
1685
for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1686
if (events->reserved[i])
1687
return -EINVAL;
1688
1689
/* check whether the pad field is zero */
1690
for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1691
if (events->exception.pad[i])
1692
return -EINVAL;
1693
1694
return __kvm_arm_vcpu_set_events(vcpu, events);
1695
}
1696
1697
long kvm_arch_vcpu_ioctl(struct file *filp,
1698
unsigned int ioctl, unsigned long arg)
1699
{
1700
struct kvm_vcpu *vcpu = filp->private_data;
1701
void __user *argp = (void __user *)arg;
1702
struct kvm_device_attr attr;
1703
long r;
1704
1705
switch (ioctl) {
1706
case KVM_ARM_VCPU_INIT: {
1707
struct kvm_vcpu_init init;
1708
1709
r = -EFAULT;
1710
if (copy_from_user(&init, argp, sizeof(init)))
1711
break;
1712
1713
r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1714
break;
1715
}
1716
case KVM_SET_ONE_REG:
1717
case KVM_GET_ONE_REG: {
1718
struct kvm_one_reg reg;
1719
1720
r = -ENOEXEC;
1721
if (unlikely(!kvm_vcpu_initialized(vcpu)))
1722
break;
1723
1724
r = -EFAULT;
1725
if (copy_from_user(&reg, argp, sizeof(reg)))
1726
break;
1727
1728
/*
1729
* We could owe a reset due to PSCI. Handle the pending reset
1730
* here to ensure userspace register accesses are ordered after
1731
* the reset.
1732
*/
1733
if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1734
kvm_reset_vcpu(vcpu);
1735
1736
if (ioctl == KVM_SET_ONE_REG)
1737
r = kvm_arm_set_reg(vcpu, &reg);
1738
else
1739
r = kvm_arm_get_reg(vcpu, &reg);
1740
break;
1741
}
1742
case KVM_GET_REG_LIST: {
1743
struct kvm_reg_list __user *user_list = argp;
1744
struct kvm_reg_list reg_list;
1745
unsigned n;
1746
1747
r = -ENOEXEC;
1748
if (unlikely(!kvm_vcpu_initialized(vcpu)))
1749
break;
1750
1751
r = -EPERM;
1752
if (!kvm_arm_vcpu_is_finalized(vcpu))
1753
break;
1754
1755
r = -EFAULT;
1756
if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1757
break;
1758
n = reg_list.n;
1759
reg_list.n = kvm_arm_num_regs(vcpu);
1760
if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1761
break;
1762
r = -E2BIG;
1763
if (n < reg_list.n)
1764
break;
1765
r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1766
break;
1767
}
1768
case KVM_SET_DEVICE_ATTR: {
1769
r = -EFAULT;
1770
if (copy_from_user(&attr, argp, sizeof(attr)))
1771
break;
1772
r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1773
break;
1774
}
1775
case KVM_GET_DEVICE_ATTR: {
1776
r = -EFAULT;
1777
if (copy_from_user(&attr, argp, sizeof(attr)))
1778
break;
1779
r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1780
break;
1781
}
1782
case KVM_HAS_DEVICE_ATTR: {
1783
r = -EFAULT;
1784
if (copy_from_user(&attr, argp, sizeof(attr)))
1785
break;
1786
r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1787
break;
1788
}
1789
case KVM_GET_VCPU_EVENTS: {
1790
struct kvm_vcpu_events events;
1791
1792
if (kvm_arm_vcpu_get_events(vcpu, &events))
1793
return -EINVAL;
1794
1795
if (copy_to_user(argp, &events, sizeof(events)))
1796
return -EFAULT;
1797
1798
return 0;
1799
}
1800
case KVM_SET_VCPU_EVENTS: {
1801
struct kvm_vcpu_events events;
1802
1803
if (copy_from_user(&events, argp, sizeof(events)))
1804
return -EFAULT;
1805
1806
return kvm_arm_vcpu_set_events(vcpu, &events);
1807
}
1808
case KVM_ARM_VCPU_FINALIZE: {
1809
int what;
1810
1811
if (!kvm_vcpu_initialized(vcpu))
1812
return -ENOEXEC;
1813
1814
if (get_user(what, (const int __user *)argp))
1815
return -EFAULT;
1816
1817
return kvm_arm_vcpu_finalize(vcpu, what);
1818
}
1819
default:
1820
r = -EINVAL;
1821
}
1822
1823
return r;
1824
}
1825
1826
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1827
{
1828
1829
}
1830
1831
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1832
struct kvm_arm_device_addr *dev_addr)
1833
{
1834
switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1835
case KVM_ARM_DEVICE_VGIC_V2:
1836
if (!vgic_present)
1837
return -ENXIO;
1838
return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1839
default:
1840
return -ENODEV;
1841
}
1842
}
1843
1844
static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1845
{
1846
switch (attr->group) {
1847
case KVM_ARM_VM_SMCCC_CTRL:
1848
return kvm_vm_smccc_has_attr(kvm, attr);
1849
default:
1850
return -ENXIO;
1851
}
1852
}
1853
1854
static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1855
{
1856
switch (attr->group) {
1857
case KVM_ARM_VM_SMCCC_CTRL:
1858
return kvm_vm_smccc_set_attr(kvm, attr);
1859
default:
1860
return -ENXIO;
1861
}
1862
}
1863
1864
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1865
{
1866
struct kvm *kvm = filp->private_data;
1867
void __user *argp = (void __user *)arg;
1868
struct kvm_device_attr attr;
1869
1870
switch (ioctl) {
1871
case KVM_CREATE_IRQCHIP: {
1872
int ret;
1873
if (!vgic_present)
1874
return -ENXIO;
1875
mutex_lock(&kvm->lock);
1876
ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1877
mutex_unlock(&kvm->lock);
1878
return ret;
1879
}
1880
case KVM_ARM_SET_DEVICE_ADDR: {
1881
struct kvm_arm_device_addr dev_addr;
1882
1883
if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1884
return -EFAULT;
1885
return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1886
}
1887
case KVM_ARM_PREFERRED_TARGET: {
1888
struct kvm_vcpu_init init = {
1889
.target = KVM_ARM_TARGET_GENERIC_V8,
1890
};
1891
1892
if (copy_to_user(argp, &init, sizeof(init)))
1893
return -EFAULT;
1894
1895
return 0;
1896
}
1897
case KVM_ARM_MTE_COPY_TAGS: {
1898
struct kvm_arm_copy_mte_tags copy_tags;
1899
1900
if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1901
return -EFAULT;
1902
return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1903
}
1904
case KVM_ARM_SET_COUNTER_OFFSET: {
1905
struct kvm_arm_counter_offset offset;
1906
1907
if (copy_from_user(&offset, argp, sizeof(offset)))
1908
return -EFAULT;
1909
return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1910
}
1911
case KVM_HAS_DEVICE_ATTR: {
1912
if (copy_from_user(&attr, argp, sizeof(attr)))
1913
return -EFAULT;
1914
1915
return kvm_vm_has_attr(kvm, &attr);
1916
}
1917
case KVM_SET_DEVICE_ATTR: {
1918
if (copy_from_user(&attr, argp, sizeof(attr)))
1919
return -EFAULT;
1920
1921
return kvm_vm_set_attr(kvm, &attr);
1922
}
1923
case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1924
struct reg_mask_range range;
1925
1926
if (copy_from_user(&range, argp, sizeof(range)))
1927
return -EFAULT;
1928
return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1929
}
1930
default:
1931
return -EINVAL;
1932
}
1933
}
1934
1935
static unsigned long nvhe_percpu_size(void)
1936
{
1937
return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1938
(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1939
}
1940
1941
static unsigned long nvhe_percpu_order(void)
1942
{
1943
unsigned long size = nvhe_percpu_size();
1944
1945
return size ? get_order(size) : 0;
1946
}
1947
1948
static size_t pkvm_host_sve_state_order(void)
1949
{
1950
return get_order(pkvm_host_sve_state_size());
1951
}
1952
1953
/* A lookup table holding the hypervisor VA for each vector slot */
1954
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1955
1956
static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1957
{
1958
hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1959
}
1960
1961
static int kvm_init_vector_slots(void)
1962
{
1963
int err;
1964
void *base;
1965
1966
base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1967
kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1968
1969
base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1970
kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1971
1972
if (kvm_system_needs_idmapped_vectors() &&
1973
!is_protected_kvm_enabled()) {
1974
err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1975
__BP_HARDEN_HYP_VECS_SZ, &base);
1976
if (err)
1977
return err;
1978
}
1979
1980
kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1981
kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1982
return 0;
1983
}
1984
1985
static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1986
{
1987
struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1988
unsigned long tcr;
1989
1990
/*
1991
* Calculate the raw per-cpu offset without a translation from the
1992
* kernel's mapping to the linear mapping, and store it in tpidr_el2
1993
* so that we can use adr_l to access per-cpu variables in EL2.
1994
* Also drop the KASAN tag which gets in the way...
1995
*/
1996
params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1997
(unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1998
1999
params->mair_el2 = read_sysreg(mair_el1);
2000
2001
tcr = read_sysreg(tcr_el1);
2002
if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2003
tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK);
2004
tcr |= TCR_EPD1_MASK;
2005
} else {
2006
unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr);
2007
2008
tcr &= TCR_EL2_MASK;
2009
tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips);
2010
if (lpa2_is_enabled())
2011
tcr |= TCR_EL2_DS;
2012
}
2013
tcr |= TCR_T0SZ(hyp_va_bits);
2014
params->tcr_el2 = tcr;
2015
2016
params->pgd_pa = kvm_mmu_get_httbr();
2017
if (is_protected_kvm_enabled())
2018
params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2019
else
2020
params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2021
if (cpus_have_final_cap(ARM64_KVM_HVHE))
2022
params->hcr_el2 |= HCR_E2H;
2023
params->vttbr = params->vtcr = 0;
2024
2025
/*
2026
* Flush the init params from the data cache because the struct will
2027
* be read while the MMU is off.
2028
*/
2029
kvm_flush_dcache_to_poc(params, sizeof(*params));
2030
}
2031
2032
static void hyp_install_host_vector(void)
2033
{
2034
struct kvm_nvhe_init_params *params;
2035
struct arm_smccc_res res;
2036
2037
/* Switch from the HYP stub to our own HYP init vector */
2038
__hyp_set_vectors(kvm_get_idmap_vector());
2039
2040
/*
2041
* Call initialization code, and switch to the full blown HYP code.
2042
* If the cpucaps haven't been finalized yet, something has gone very
2043
* wrong, and hyp will crash and burn when it uses any
2044
* cpus_have_*_cap() wrapper.
2045
*/
2046
BUG_ON(!system_capabilities_finalized());
2047
params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2048
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2049
WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2050
}
2051
2052
static void cpu_init_hyp_mode(void)
2053
{
2054
hyp_install_host_vector();
2055
2056
/*
2057
* Disabling SSBD on a non-VHE system requires us to enable SSBS
2058
* at EL2.
2059
*/
2060
if (this_cpu_has_cap(ARM64_SSBS) &&
2061
arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2062
kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2063
}
2064
}
2065
2066
static void cpu_hyp_reset(void)
2067
{
2068
if (!is_kernel_in_hyp_mode())
2069
__hyp_reset_vectors();
2070
}
2071
2072
/*
2073
* EL2 vectors can be mapped and rerouted in a number of ways,
2074
* depending on the kernel configuration and CPU present:
2075
*
2076
* - If the CPU is affected by Spectre-v2, the hardening sequence is
2077
* placed in one of the vector slots, which is executed before jumping
2078
* to the real vectors.
2079
*
2080
* - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2081
* containing the hardening sequence is mapped next to the idmap page,
2082
* and executed before jumping to the real vectors.
2083
*
2084
* - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2085
* empty slot is selected, mapped next to the idmap page, and
2086
* executed before jumping to the real vectors.
2087
*
2088
* Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2089
* VHE, as we don't have hypervisor-specific mappings. If the system
2090
* is VHE and yet selects this capability, it will be ignored.
2091
*/
2092
static void cpu_set_hyp_vector(void)
2093
{
2094
struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2095
void *vector = hyp_spectre_vector_selector[data->slot];
2096
2097
if (!is_protected_kvm_enabled())
2098
*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2099
else
2100
kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2101
}
2102
2103
static void cpu_hyp_init_context(void)
2104
{
2105
kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2106
kvm_init_host_debug_data();
2107
2108
if (!is_kernel_in_hyp_mode())
2109
cpu_init_hyp_mode();
2110
}
2111
2112
static void cpu_hyp_init_features(void)
2113
{
2114
cpu_set_hyp_vector();
2115
2116
if (is_kernel_in_hyp_mode())
2117
kvm_timer_init_vhe();
2118
2119
if (vgic_present)
2120
kvm_vgic_init_cpu_hardware();
2121
}
2122
2123
static void cpu_hyp_reinit(void)
2124
{
2125
cpu_hyp_reset();
2126
cpu_hyp_init_context();
2127
cpu_hyp_init_features();
2128
}
2129
2130
static void cpu_hyp_init(void *discard)
2131
{
2132
if (!__this_cpu_read(kvm_hyp_initialized)) {
2133
cpu_hyp_reinit();
2134
__this_cpu_write(kvm_hyp_initialized, 1);
2135
}
2136
}
2137
2138
static void cpu_hyp_uninit(void *discard)
2139
{
2140
if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) {
2141
cpu_hyp_reset();
2142
__this_cpu_write(kvm_hyp_initialized, 0);
2143
}
2144
}
2145
2146
int kvm_arch_enable_virtualization_cpu(void)
2147
{
2148
/*
2149
* Most calls to this function are made with migration
2150
* disabled, but not with preemption disabled. The former is
2151
* enough to ensure correctness, but most of the helpers
2152
* expect the later and will throw a tantrum otherwise.
2153
*/
2154
preempt_disable();
2155
2156
cpu_hyp_init(NULL);
2157
2158
kvm_vgic_cpu_up();
2159
kvm_timer_cpu_up();
2160
2161
preempt_enable();
2162
2163
return 0;
2164
}
2165
2166
void kvm_arch_disable_virtualization_cpu(void)
2167
{
2168
kvm_timer_cpu_down();
2169
kvm_vgic_cpu_down();
2170
2171
if (!is_protected_kvm_enabled())
2172
cpu_hyp_uninit(NULL);
2173
}
2174
2175
#ifdef CONFIG_CPU_PM
2176
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2177
unsigned long cmd,
2178
void *v)
2179
{
2180
/*
2181
* kvm_hyp_initialized is left with its old value over
2182
* PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2183
* re-enable hyp.
2184
*/
2185
switch (cmd) {
2186
case CPU_PM_ENTER:
2187
if (__this_cpu_read(kvm_hyp_initialized))
2188
/*
2189
* don't update kvm_hyp_initialized here
2190
* so that the hyp will be re-enabled
2191
* when we resume. See below.
2192
*/
2193
cpu_hyp_reset();
2194
2195
return NOTIFY_OK;
2196
case CPU_PM_ENTER_FAILED:
2197
case CPU_PM_EXIT:
2198
if (__this_cpu_read(kvm_hyp_initialized))
2199
/* The hyp was enabled before suspend. */
2200
cpu_hyp_reinit();
2201
2202
return NOTIFY_OK;
2203
2204
default:
2205
return NOTIFY_DONE;
2206
}
2207
}
2208
2209
static struct notifier_block hyp_init_cpu_pm_nb = {
2210
.notifier_call = hyp_init_cpu_pm_notifier,
2211
};
2212
2213
static void __init hyp_cpu_pm_init(void)
2214
{
2215
if (!is_protected_kvm_enabled())
2216
cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2217
}
2218
static void __init hyp_cpu_pm_exit(void)
2219
{
2220
if (!is_protected_kvm_enabled())
2221
cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2222
}
2223
#else
2224
static inline void __init hyp_cpu_pm_init(void)
2225
{
2226
}
2227
static inline void __init hyp_cpu_pm_exit(void)
2228
{
2229
}
2230
#endif
2231
2232
static void __init init_cpu_logical_map(void)
2233
{
2234
unsigned int cpu;
2235
2236
/*
2237
* Copy the MPIDR <-> logical CPU ID mapping to hyp.
2238
* Only copy the set of online CPUs whose features have been checked
2239
* against the finalized system capabilities. The hypervisor will not
2240
* allow any other CPUs from the `possible` set to boot.
2241
*/
2242
for_each_online_cpu(cpu)
2243
hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2244
}
2245
2246
#define init_psci_0_1_impl_state(config, what) \
2247
config.psci_0_1_ ## what ## _implemented = psci_ops.what
2248
2249
static bool __init init_psci_relay(void)
2250
{
2251
/*
2252
* If PSCI has not been initialized, protected KVM cannot install
2253
* itself on newly booted CPUs.
2254
*/
2255
if (!psci_ops.get_version) {
2256
kvm_err("Cannot initialize protected mode without PSCI\n");
2257
return false;
2258
}
2259
2260
kvm_host_psci_config.version = psci_ops.get_version();
2261
kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2262
2263
if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2264
kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2265
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2266
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2267
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2268
init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2269
}
2270
return true;
2271
}
2272
2273
static int __init init_subsystems(void)
2274
{
2275
int err = 0;
2276
2277
/*
2278
* Enable hardware so that subsystem initialisation can access EL2.
2279
*/
2280
on_each_cpu(cpu_hyp_init, NULL, 1);
2281
2282
/*
2283
* Register CPU lower-power notifier
2284
*/
2285
hyp_cpu_pm_init();
2286
2287
/*
2288
* Init HYP view of VGIC
2289
*/
2290
err = kvm_vgic_hyp_init();
2291
switch (err) {
2292
case 0:
2293
vgic_present = true;
2294
break;
2295
case -ENODEV:
2296
case -ENXIO:
2297
/*
2298
* No VGIC? No pKVM for you.
2299
*
2300
* Protected mode assumes that VGICv3 is present, so no point
2301
* in trying to hobble along if vgic initialization fails.
2302
*/
2303
if (is_protected_kvm_enabled())
2304
goto out;
2305
2306
/*
2307
* Otherwise, userspace could choose to implement a GIC for its
2308
* guest on non-cooperative hardware.
2309
*/
2310
vgic_present = false;
2311
err = 0;
2312
break;
2313
default:
2314
goto out;
2315
}
2316
2317
if (kvm_mode == KVM_MODE_NV &&
2318
!(vgic_present && kvm_vgic_global_state.type == VGIC_V3)) {
2319
kvm_err("NV support requires GICv3, giving up\n");
2320
err = -EINVAL;
2321
goto out;
2322
}
2323
2324
/*
2325
* Init HYP architected timer support
2326
*/
2327
err = kvm_timer_hyp_init(vgic_present);
2328
if (err)
2329
goto out;
2330
2331
kvm_register_perf_callbacks(NULL);
2332
2333
out:
2334
if (err)
2335
hyp_cpu_pm_exit();
2336
2337
if (err || !is_protected_kvm_enabled())
2338
on_each_cpu(cpu_hyp_uninit, NULL, 1);
2339
2340
return err;
2341
}
2342
2343
static void __init teardown_subsystems(void)
2344
{
2345
kvm_unregister_perf_callbacks();
2346
hyp_cpu_pm_exit();
2347
}
2348
2349
static void __init teardown_hyp_mode(void)
2350
{
2351
bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2352
int cpu;
2353
2354
free_hyp_pgds();
2355
for_each_possible_cpu(cpu) {
2356
if (per_cpu(kvm_hyp_initialized, cpu))
2357
continue;
2358
2359
free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2360
2361
if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu])
2362
continue;
2363
2364
if (free_sve) {
2365
struct cpu_sve_state *sve_state;
2366
2367
sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2368
free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2369
}
2370
2371
free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2372
2373
}
2374
}
2375
2376
static int __init do_pkvm_init(u32 hyp_va_bits)
2377
{
2378
void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2379
int ret;
2380
2381
preempt_disable();
2382
cpu_hyp_init_context();
2383
ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2384
num_possible_cpus(), kern_hyp_va(per_cpu_base),
2385
hyp_va_bits);
2386
cpu_hyp_init_features();
2387
2388
/*
2389
* The stub hypercalls are now disabled, so set our local flag to
2390
* prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2391
*/
2392
__this_cpu_write(kvm_hyp_initialized, 1);
2393
preempt_enable();
2394
2395
return ret;
2396
}
2397
2398
static u64 get_hyp_id_aa64pfr0_el1(void)
2399
{
2400
/*
2401
* Track whether the system isn't affected by spectre/meltdown in the
2402
* hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2403
* Although this is per-CPU, we make it global for simplicity, e.g., not
2404
* to have to worry about vcpu migration.
2405
*
2406
* Unlike for non-protected VMs, userspace cannot override this for
2407
* protected VMs.
2408
*/
2409
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2410
2411
val &= ~(ID_AA64PFR0_EL1_CSV2 |
2412
ID_AA64PFR0_EL1_CSV3);
2413
2414
val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV2,
2415
arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2416
val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV3,
2417
arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2418
2419
return val;
2420
}
2421
2422
static void kvm_hyp_init_symbols(void)
2423
{
2424
kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2425
kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2426
kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2427
kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2428
kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2429
kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2430
kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2431
kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2432
kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2433
kvm_nvhe_sym(__icache_flags) = __icache_flags;
2434
kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2435
2436
/* Propagate the FGT state to the the nVHE side */
2437
kvm_nvhe_sym(hfgrtr_masks) = hfgrtr_masks;
2438
kvm_nvhe_sym(hfgwtr_masks) = hfgwtr_masks;
2439
kvm_nvhe_sym(hfgitr_masks) = hfgitr_masks;
2440
kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks;
2441
kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks;
2442
kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks;
2443
kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks;
2444
kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks;
2445
kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks;
2446
kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks;
2447
kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks;
2448
2449
/*
2450
* Flush entire BSS since part of its data containing init symbols is read
2451
* while the MMU is off.
2452
*/
2453
kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start),
2454
kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start));
2455
}
2456
2457
static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2458
{
2459
void *addr = phys_to_virt(hyp_mem_base);
2460
int ret;
2461
2462
ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2463
if (ret)
2464
return ret;
2465
2466
ret = do_pkvm_init(hyp_va_bits);
2467
if (ret)
2468
return ret;
2469
2470
free_hyp_pgds();
2471
2472
return 0;
2473
}
2474
2475
static int init_pkvm_host_sve_state(void)
2476
{
2477
int cpu;
2478
2479
if (!system_supports_sve())
2480
return 0;
2481
2482
/* Allocate pages for host sve state in protected mode. */
2483
for_each_possible_cpu(cpu) {
2484
struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2485
2486
if (!page)
2487
return -ENOMEM;
2488
2489
per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2490
}
2491
2492
/*
2493
* Don't map the pages in hyp since these are only used in protected
2494
* mode, which will (re)create its own mapping when initialized.
2495
*/
2496
2497
return 0;
2498
}
2499
2500
/*
2501
* Finalizes the initialization of hyp mode, once everything else is initialized
2502
* and the initialziation process cannot fail.
2503
*/
2504
static void finalize_init_hyp_mode(void)
2505
{
2506
int cpu;
2507
2508
if (system_supports_sve() && is_protected_kvm_enabled()) {
2509
for_each_possible_cpu(cpu) {
2510
struct cpu_sve_state *sve_state;
2511
2512
sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2513
per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2514
kern_hyp_va(sve_state);
2515
}
2516
}
2517
}
2518
2519
static void pkvm_hyp_init_ptrauth(void)
2520
{
2521
struct kvm_cpu_context *hyp_ctxt;
2522
int cpu;
2523
2524
for_each_possible_cpu(cpu) {
2525
hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2526
hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2527
hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2528
hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2529
hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2530
hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2531
hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2532
hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2533
hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2534
hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2535
hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2536
}
2537
}
2538
2539
/* Inits Hyp-mode on all online CPUs */
2540
static int __init init_hyp_mode(void)
2541
{
2542
u32 hyp_va_bits;
2543
int cpu;
2544
int err = -ENOMEM;
2545
2546
/*
2547
* The protected Hyp-mode cannot be initialized if the memory pool
2548
* allocation has failed.
2549
*/
2550
if (is_protected_kvm_enabled() && !hyp_mem_base)
2551
goto out_err;
2552
2553
/*
2554
* Allocate Hyp PGD and setup Hyp identity mapping
2555
*/
2556
err = kvm_mmu_init(&hyp_va_bits);
2557
if (err)
2558
goto out_err;
2559
2560
/*
2561
* Allocate stack pages for Hypervisor-mode
2562
*/
2563
for_each_possible_cpu(cpu) {
2564
unsigned long stack_base;
2565
2566
stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2567
if (!stack_base) {
2568
err = -ENOMEM;
2569
goto out_err;
2570
}
2571
2572
per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2573
}
2574
2575
/*
2576
* Allocate and initialize pages for Hypervisor-mode percpu regions.
2577
*/
2578
for_each_possible_cpu(cpu) {
2579
struct page *page;
2580
void *page_addr;
2581
2582
page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2583
if (!page) {
2584
err = -ENOMEM;
2585
goto out_err;
2586
}
2587
2588
page_addr = page_address(page);
2589
memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2590
kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2591
}
2592
2593
/*
2594
* Map the Hyp-code called directly from the host
2595
*/
2596
err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2597
kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2598
if (err) {
2599
kvm_err("Cannot map world-switch code\n");
2600
goto out_err;
2601
}
2602
2603
err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2604
kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2605
if (err) {
2606
kvm_err("Cannot map .hyp.data section\n");
2607
goto out_err;
2608
}
2609
2610
err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2611
kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2612
if (err) {
2613
kvm_err("Cannot map .hyp.rodata section\n");
2614
goto out_err;
2615
}
2616
2617
err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2618
kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2619
if (err) {
2620
kvm_err("Cannot map rodata section\n");
2621
goto out_err;
2622
}
2623
2624
/*
2625
* .hyp.bss is guaranteed to be placed at the beginning of the .bss
2626
* section thanks to an assertion in the linker script. Map it RW and
2627
* the rest of .bss RO.
2628
*/
2629
err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2630
kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2631
if (err) {
2632
kvm_err("Cannot map hyp bss section: %d\n", err);
2633
goto out_err;
2634
}
2635
2636
err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2637
kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2638
if (err) {
2639
kvm_err("Cannot map bss section\n");
2640
goto out_err;
2641
}
2642
2643
/*
2644
* Map the Hyp stack pages
2645
*/
2646
for_each_possible_cpu(cpu) {
2647
struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2648
char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2649
2650
err = create_hyp_stack(__pa(stack_base), &params->stack_hyp_va);
2651
if (err) {
2652
kvm_err("Cannot map hyp stack\n");
2653
goto out_err;
2654
}
2655
2656
/*
2657
* Save the stack PA in nvhe_init_params. This will be needed
2658
* to recreate the stack mapping in protected nVHE mode.
2659
* __hyp_pa() won't do the right thing there, since the stack
2660
* has been mapped in the flexible private VA space.
2661
*/
2662
params->stack_pa = __pa(stack_base);
2663
}
2664
2665
for_each_possible_cpu(cpu) {
2666
char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2667
char *percpu_end = percpu_begin + nvhe_percpu_size();
2668
2669
/* Map Hyp percpu pages */
2670
err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2671
if (err) {
2672
kvm_err("Cannot map hyp percpu region\n");
2673
goto out_err;
2674
}
2675
2676
/* Prepare the CPU initialization parameters */
2677
cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2678
}
2679
2680
kvm_hyp_init_symbols();
2681
2682
if (is_protected_kvm_enabled()) {
2683
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2684
cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2685
pkvm_hyp_init_ptrauth();
2686
2687
init_cpu_logical_map();
2688
2689
if (!init_psci_relay()) {
2690
err = -ENODEV;
2691
goto out_err;
2692
}
2693
2694
err = init_pkvm_host_sve_state();
2695
if (err)
2696
goto out_err;
2697
2698
err = kvm_hyp_init_protection(hyp_va_bits);
2699
if (err) {
2700
kvm_err("Failed to init hyp memory protection\n");
2701
goto out_err;
2702
}
2703
}
2704
2705
return 0;
2706
2707
out_err:
2708
teardown_hyp_mode();
2709
kvm_err("error initializing Hyp mode: %d\n", err);
2710
return err;
2711
}
2712
2713
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2714
{
2715
struct kvm_vcpu *vcpu = NULL;
2716
struct kvm_mpidr_data *data;
2717
unsigned long i;
2718
2719
mpidr &= MPIDR_HWID_BITMASK;
2720
2721
rcu_read_lock();
2722
data = rcu_dereference(kvm->arch.mpidr_data);
2723
2724
if (data) {
2725
u16 idx = kvm_mpidr_index(data, mpidr);
2726
2727
vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2728
if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2729
vcpu = NULL;
2730
}
2731
2732
rcu_read_unlock();
2733
2734
if (vcpu)
2735
return vcpu;
2736
2737
kvm_for_each_vcpu(i, vcpu, kvm) {
2738
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2739
return vcpu;
2740
}
2741
return NULL;
2742
}
2743
2744
bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2745
{
2746
return irqchip_in_kernel(kvm);
2747
}
2748
2749
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2750
struct irq_bypass_producer *prod)
2751
{
2752
struct kvm_kernel_irqfd *irqfd =
2753
container_of(cons, struct kvm_kernel_irqfd, consumer);
2754
struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2755
2756
/*
2757
* The only thing we have a chance of directly-injecting is LPIs. Maybe
2758
* one day...
2759
*/
2760
if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2761
return 0;
2762
2763
return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2764
&irqfd->irq_entry);
2765
}
2766
2767
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2768
struct irq_bypass_producer *prod)
2769
{
2770
struct kvm_kernel_irqfd *irqfd =
2771
container_of(cons, struct kvm_kernel_irqfd, consumer);
2772
struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2773
2774
if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2775
return;
2776
2777
kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq);
2778
}
2779
2780
void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2781
struct kvm_kernel_irq_routing_entry *old,
2782
struct kvm_kernel_irq_routing_entry *new)
2783
{
2784
if (old->type == KVM_IRQ_ROUTING_MSI &&
2785
new->type == KVM_IRQ_ROUTING_MSI &&
2786
!memcmp(&old->msi, &new->msi, sizeof(new->msi)))
2787
return;
2788
2789
/*
2790
* Remapping the vLPI requires taking the its_lock mutex to resolve
2791
* the new translation. We're in spinlock land at this point, so no
2792
* chance of resolving the translation.
2793
*
2794
* Unmap the vLPI and fall back to software LPI injection.
2795
*/
2796
return kvm_vgic_v4_unset_forwarding(irqfd->kvm, irqfd->producer->irq);
2797
}
2798
2799
void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2800
{
2801
struct kvm_kernel_irqfd *irqfd =
2802
container_of(cons, struct kvm_kernel_irqfd, consumer);
2803
2804
kvm_arm_halt_guest(irqfd->kvm);
2805
}
2806
2807
void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2808
{
2809
struct kvm_kernel_irqfd *irqfd =
2810
container_of(cons, struct kvm_kernel_irqfd, consumer);
2811
2812
kvm_arm_resume_guest(irqfd->kvm);
2813
}
2814
2815
/* Initialize Hyp-mode and memory mappings on all CPUs */
2816
static __init int kvm_arm_init(void)
2817
{
2818
int err;
2819
bool in_hyp_mode;
2820
2821
if (!is_hyp_mode_available()) {
2822
kvm_info("HYP mode not available\n");
2823
return -ENODEV;
2824
}
2825
2826
if (kvm_get_mode() == KVM_MODE_NONE) {
2827
kvm_info("KVM disabled from command line\n");
2828
return -ENODEV;
2829
}
2830
2831
err = kvm_sys_reg_table_init();
2832
if (err) {
2833
kvm_info("Error initializing system register tables");
2834
return err;
2835
}
2836
2837
in_hyp_mode = is_kernel_in_hyp_mode();
2838
2839
if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2840
cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2841
kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2842
"Only trusted guests should be used on this system.\n");
2843
2844
err = kvm_set_ipa_limit();
2845
if (err)
2846
return err;
2847
2848
err = kvm_arm_init_sve();
2849
if (err)
2850
return err;
2851
2852
err = kvm_arm_vmid_alloc_init();
2853
if (err) {
2854
kvm_err("Failed to initialize VMID allocator.\n");
2855
return err;
2856
}
2857
2858
if (!in_hyp_mode) {
2859
err = init_hyp_mode();
2860
if (err)
2861
goto out_err;
2862
}
2863
2864
err = kvm_init_vector_slots();
2865
if (err) {
2866
kvm_err("Cannot initialise vector slots\n");
2867
goto out_hyp;
2868
}
2869
2870
err = init_subsystems();
2871
if (err)
2872
goto out_hyp;
2873
2874
kvm_info("%s%sVHE%s mode initialized successfully\n",
2875
in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2876
"Protected " : "Hyp "),
2877
in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2878
"h" : "n"),
2879
cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": "");
2880
2881
/*
2882
* FIXME: Do something reasonable if kvm_init() fails after pKVM
2883
* hypervisor protection is finalized.
2884
*/
2885
err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2886
if (err)
2887
goto out_subs;
2888
2889
/*
2890
* This should be called after initialization is done and failure isn't
2891
* possible anymore.
2892
*/
2893
if (!in_hyp_mode)
2894
finalize_init_hyp_mode();
2895
2896
kvm_arm_initialised = true;
2897
2898
return 0;
2899
2900
out_subs:
2901
teardown_subsystems();
2902
out_hyp:
2903
if (!in_hyp_mode)
2904
teardown_hyp_mode();
2905
out_err:
2906
kvm_arm_vmid_alloc_free();
2907
return err;
2908
}
2909
2910
static int __init early_kvm_mode_cfg(char *arg)
2911
{
2912
if (!arg)
2913
return -EINVAL;
2914
2915
if (strcmp(arg, "none") == 0) {
2916
kvm_mode = KVM_MODE_NONE;
2917
return 0;
2918
}
2919
2920
if (!is_hyp_mode_available()) {
2921
pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2922
return 0;
2923
}
2924
2925
if (strcmp(arg, "protected") == 0) {
2926
if (!is_kernel_in_hyp_mode())
2927
kvm_mode = KVM_MODE_PROTECTED;
2928
else
2929
pr_warn_once("Protected KVM not available with VHE\n");
2930
2931
return 0;
2932
}
2933
2934
if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2935
kvm_mode = KVM_MODE_DEFAULT;
2936
return 0;
2937
}
2938
2939
if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2940
kvm_mode = KVM_MODE_NV;
2941
return 0;
2942
}
2943
2944
return -EINVAL;
2945
}
2946
early_param("kvm-arm.mode", early_kvm_mode_cfg);
2947
2948
static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2949
{
2950
if (!arg)
2951
return -EINVAL;
2952
2953
if (strcmp(arg, "trap") == 0) {
2954
*p = KVM_WFX_TRAP;
2955
return 0;
2956
}
2957
2958
if (strcmp(arg, "notrap") == 0) {
2959
*p = KVM_WFX_NOTRAP;
2960
return 0;
2961
}
2962
2963
return -EINVAL;
2964
}
2965
2966
static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2967
{
2968
return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2969
}
2970
early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
2971
2972
static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
2973
{
2974
return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
2975
}
2976
early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
2977
2978
enum kvm_mode kvm_get_mode(void)
2979
{
2980
return kvm_mode;
2981
}
2982
2983
module_init(kvm_arm_init);
2984
2985