Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/arm.c
50360 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
4
* Author: Christoffer Dall <[email protected]>
5
*/
6
7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9
#include <linux/errno.h>
10
#include <linux/err.h>
11
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13
#include <linux/module.h>
14
#include <linux/vmalloc.h>
15
#include <linux/fs.h>
16
#include <linux/mman.h>
17
#include <linux/sched.h>
18
#include <linux/kvm.h>
19
#include <linux/kvm_irqfd.h>
20
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <linux/psci.h>
23
#include <trace/events/kvm.h>
24
25
#define CREATE_TRACE_POINTS
26
#include "trace_arm.h"
27
28
#include <linux/uaccess.h>
29
#include <asm/ptrace.h>
30
#include <asm/mman.h>
31
#include <asm/tlbflush.h>
32
#include <asm/cacheflush.h>
33
#include <asm/cpufeature.h>
34
#include <asm/virt.h>
35
#include <asm/kvm_arm.h>
36
#include <asm/kvm_asm.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_mmu.h>
39
#include <asm/kvm_nested.h>
40
#include <asm/kvm_pkvm.h>
41
#include <asm/kvm_ptrauth.h>
42
#include <asm/sections.h>
43
44
#include <kvm/arm_hypercalls.h>
45
#include <kvm/arm_pmu.h>
46
#include <kvm/arm_psci.h>
47
48
#include "sys_regs.h"
49
50
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
51
52
enum kvm_wfx_trap_policy {
53
KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
54
KVM_WFX_NOTRAP,
55
KVM_WFX_TRAP,
56
};
57
58
static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
59
static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
60
61
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
62
63
DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
64
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
65
66
DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
67
68
static bool vgic_present, kvm_arm_initialised;
69
70
static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
71
72
bool is_kvm_arm_initialised(void)
73
{
74
return kvm_arm_initialised;
75
}
76
77
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
78
{
79
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
80
}
81
82
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
83
struct kvm_enable_cap *cap)
84
{
85
int r = -EINVAL;
86
87
if (cap->flags)
88
return -EINVAL;
89
90
if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap))
91
return -EINVAL;
92
93
switch (cap->cap) {
94
case KVM_CAP_ARM_NISV_TO_USER:
95
r = 0;
96
set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
97
&kvm->arch.flags);
98
break;
99
case KVM_CAP_ARM_MTE:
100
mutex_lock(&kvm->lock);
101
if (system_supports_mte() && !kvm->created_vcpus) {
102
r = 0;
103
set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
104
}
105
mutex_unlock(&kvm->lock);
106
break;
107
case KVM_CAP_ARM_SYSTEM_SUSPEND:
108
r = 0;
109
set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
110
break;
111
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
112
mutex_lock(&kvm->slots_lock);
113
/*
114
* To keep things simple, allow changing the chunk
115
* size only when no memory slots have been created.
116
*/
117
if (kvm_are_all_memslots_empty(kvm)) {
118
u64 new_cap = cap->args[0];
119
120
if (!new_cap || kvm_is_block_size_supported(new_cap)) {
121
r = 0;
122
kvm->arch.mmu.split_page_chunk_size = new_cap;
123
}
124
}
125
mutex_unlock(&kvm->slots_lock);
126
break;
127
case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
128
mutex_lock(&kvm->lock);
129
if (!kvm->created_vcpus) {
130
r = 0;
131
set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags);
132
}
133
mutex_unlock(&kvm->lock);
134
break;
135
case KVM_CAP_ARM_SEA_TO_USER:
136
r = 0;
137
set_bit(KVM_ARCH_FLAG_EXIT_SEA, &kvm->arch.flags);
138
break;
139
default:
140
break;
141
}
142
143
return r;
144
}
145
146
static int kvm_arm_default_max_vcpus(void)
147
{
148
return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149
}
150
151
/**
152
* kvm_arch_init_vm - initializes a VM data structure
153
* @kvm: pointer to the KVM struct
154
* @type: kvm device type
155
*/
156
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
157
{
158
int ret;
159
160
mutex_init(&kvm->arch.config_lock);
161
162
#ifdef CONFIG_LOCKDEP
163
/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
164
mutex_lock(&kvm->lock);
165
mutex_lock(&kvm->arch.config_lock);
166
mutex_unlock(&kvm->arch.config_lock);
167
mutex_unlock(&kvm->lock);
168
#endif
169
170
kvm_init_nested(kvm);
171
172
ret = kvm_share_hyp(kvm, kvm + 1);
173
if (ret)
174
return ret;
175
176
if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
177
ret = -ENOMEM;
178
goto err_unshare_kvm;
179
}
180
cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
181
182
ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
183
if (ret)
184
goto err_free_cpumask;
185
186
if (is_protected_kvm_enabled()) {
187
/*
188
* If any failures occur after this is successful, make sure to
189
* call __pkvm_unreserve_vm to unreserve the VM in hyp.
190
*/
191
ret = pkvm_init_host_vm(kvm);
192
if (ret)
193
goto err_free_cpumask;
194
}
195
196
kvm_vgic_early_init(kvm);
197
198
kvm_timer_init_vm(kvm);
199
200
/* The maximum number of VCPUs is limited by the host's GIC model */
201
kvm->max_vcpus = kvm_arm_default_max_vcpus();
202
203
kvm_arm_init_hypercalls(kvm);
204
205
bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
206
207
return 0;
208
209
err_free_cpumask:
210
free_cpumask_var(kvm->arch.supported_cpus);
211
err_unshare_kvm:
212
kvm_unshare_hyp(kvm, kvm + 1);
213
return ret;
214
}
215
216
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
217
{
218
return VM_FAULT_SIGBUS;
219
}
220
221
void kvm_arch_create_vm_debugfs(struct kvm *kvm)
222
{
223
kvm_sys_regs_create_debugfs(kvm);
224
kvm_s2_ptdump_create_debugfs(kvm);
225
}
226
227
static void kvm_destroy_mpidr_data(struct kvm *kvm)
228
{
229
struct kvm_mpidr_data *data;
230
231
mutex_lock(&kvm->arch.config_lock);
232
233
data = rcu_dereference_protected(kvm->arch.mpidr_data,
234
lockdep_is_held(&kvm->arch.config_lock));
235
if (data) {
236
rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
237
synchronize_rcu();
238
kfree(data);
239
}
240
241
mutex_unlock(&kvm->arch.config_lock);
242
}
243
244
/**
245
* kvm_arch_destroy_vm - destroy the VM data structure
246
* @kvm: pointer to the KVM struct
247
*/
248
void kvm_arch_destroy_vm(struct kvm *kvm)
249
{
250
bitmap_free(kvm->arch.pmu_filter);
251
free_cpumask_var(kvm->arch.supported_cpus);
252
253
kvm_vgic_destroy(kvm);
254
255
if (is_protected_kvm_enabled())
256
pkvm_destroy_hyp_vm(kvm);
257
258
kvm_destroy_mpidr_data(kvm);
259
260
kfree(kvm->arch.sysreg_masks);
261
kvm_destroy_vcpus(kvm);
262
263
kvm_unshare_hyp(kvm, kvm + 1);
264
265
kvm_arm_teardown_hypercalls(kvm);
266
}
267
268
static bool kvm_has_full_ptr_auth(void)
269
{
270
bool apa, gpa, api, gpi, apa3, gpa3;
271
u64 isar1, isar2, val;
272
273
/*
274
* Check that:
275
*
276
* - both Address and Generic auth are implemented for a given
277
* algorithm (Q5, IMPDEF or Q3)
278
* - only a single algorithm is implemented.
279
*/
280
if (!system_has_full_ptr_auth())
281
return false;
282
283
isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
284
isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
285
286
apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
287
val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
288
gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
289
290
api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
291
val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
292
gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
293
294
apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
295
val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
296
gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
297
298
return (apa == gpa && api == gpi && apa3 == gpa3 &&
299
(apa + api + apa3) == 1);
300
}
301
302
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
303
{
304
int r;
305
306
if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext))
307
return 0;
308
309
switch (ext) {
310
case KVM_CAP_IRQCHIP:
311
r = vgic_present;
312
break;
313
case KVM_CAP_IOEVENTFD:
314
case KVM_CAP_USER_MEMORY:
315
case KVM_CAP_SYNC_MMU:
316
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
317
case KVM_CAP_ONE_REG:
318
case KVM_CAP_ARM_PSCI:
319
case KVM_CAP_ARM_PSCI_0_2:
320
case KVM_CAP_READONLY_MEM:
321
case KVM_CAP_MP_STATE:
322
case KVM_CAP_IMMEDIATE_EXIT:
323
case KVM_CAP_VCPU_EVENTS:
324
case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
325
case KVM_CAP_ARM_NISV_TO_USER:
326
case KVM_CAP_ARM_INJECT_EXT_DABT:
327
case KVM_CAP_SET_GUEST_DEBUG:
328
case KVM_CAP_VCPU_ATTRIBUTES:
329
case KVM_CAP_PTP_KVM:
330
case KVM_CAP_ARM_SYSTEM_SUSPEND:
331
case KVM_CAP_IRQFD_RESAMPLE:
332
case KVM_CAP_COUNTER_OFFSET:
333
case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
334
case KVM_CAP_ARM_SEA_TO_USER:
335
r = 1;
336
break;
337
case KVM_CAP_SET_GUEST_DEBUG2:
338
return KVM_GUESTDBG_VALID_MASK;
339
case KVM_CAP_ARM_SET_DEVICE_ADDR:
340
r = 1;
341
break;
342
case KVM_CAP_NR_VCPUS:
343
/*
344
* ARM64 treats KVM_CAP_NR_CPUS differently from all other
345
* architectures, as it does not always bound it to
346
* KVM_CAP_MAX_VCPUS. It should not matter much because
347
* this is just an advisory value.
348
*/
349
r = min_t(unsigned int, num_online_cpus(),
350
kvm_arm_default_max_vcpus());
351
break;
352
case KVM_CAP_MAX_VCPUS:
353
case KVM_CAP_MAX_VCPU_ID:
354
if (kvm)
355
r = kvm->max_vcpus;
356
else
357
r = kvm_arm_default_max_vcpus();
358
break;
359
case KVM_CAP_MSI_DEVID:
360
if (!kvm)
361
r = -EINVAL;
362
else
363
r = kvm->arch.vgic.msis_require_devid;
364
break;
365
case KVM_CAP_ARM_USER_IRQ:
366
/*
367
* 1: EL1_VTIMER, EL1_PTIMER, and PMU.
368
* (bump this number if adding more devices)
369
*/
370
r = 1;
371
break;
372
case KVM_CAP_ARM_MTE:
373
r = system_supports_mte();
374
break;
375
case KVM_CAP_STEAL_TIME:
376
r = kvm_arm_pvtime_supported();
377
break;
378
case KVM_CAP_ARM_EL1_32BIT:
379
r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
380
break;
381
case KVM_CAP_ARM_EL2:
382
r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT);
383
break;
384
case KVM_CAP_ARM_EL2_E2H0:
385
r = cpus_have_final_cap(ARM64_HAS_HCR_NV1);
386
break;
387
case KVM_CAP_GUEST_DEBUG_HW_BPS:
388
r = get_num_brps();
389
break;
390
case KVM_CAP_GUEST_DEBUG_HW_WPS:
391
r = get_num_wrps();
392
break;
393
case KVM_CAP_ARM_PMU_V3:
394
r = kvm_supports_guest_pmuv3();
395
break;
396
case KVM_CAP_ARM_INJECT_SERROR_ESR:
397
r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
398
break;
399
case KVM_CAP_ARM_VM_IPA_SIZE:
400
r = get_kvm_ipa_limit();
401
break;
402
case KVM_CAP_ARM_SVE:
403
r = system_supports_sve();
404
break;
405
case KVM_CAP_ARM_PTRAUTH_ADDRESS:
406
case KVM_CAP_ARM_PTRAUTH_GENERIC:
407
r = kvm_has_full_ptr_auth();
408
break;
409
case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
410
if (kvm)
411
r = kvm->arch.mmu.split_page_chunk_size;
412
else
413
r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
414
break;
415
case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
416
r = kvm_supported_block_sizes();
417
break;
418
case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
419
r = BIT(0);
420
break;
421
case KVM_CAP_ARM_CACHEABLE_PFNMAP_SUPPORTED:
422
if (!kvm)
423
r = -EINVAL;
424
else
425
r = kvm_supports_cacheable_pfnmap();
426
break;
427
428
default:
429
r = 0;
430
}
431
432
return r;
433
}
434
435
long kvm_arch_dev_ioctl(struct file *filp,
436
unsigned int ioctl, unsigned long arg)
437
{
438
return -EINVAL;
439
}
440
441
struct kvm *kvm_arch_alloc_vm(void)
442
{
443
size_t sz = sizeof(struct kvm);
444
445
if (!has_vhe())
446
return kzalloc(sz, GFP_KERNEL_ACCOUNT);
447
448
return kvzalloc(sz, GFP_KERNEL_ACCOUNT);
449
}
450
451
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
452
{
453
if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
454
return -EBUSY;
455
456
if (id >= kvm->max_vcpus)
457
return -EINVAL;
458
459
return 0;
460
}
461
462
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
463
{
464
int err;
465
466
spin_lock_init(&vcpu->arch.mp_state_lock);
467
468
#ifdef CONFIG_LOCKDEP
469
/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
470
mutex_lock(&vcpu->mutex);
471
mutex_lock(&vcpu->kvm->arch.config_lock);
472
mutex_unlock(&vcpu->kvm->arch.config_lock);
473
mutex_unlock(&vcpu->mutex);
474
#endif
475
476
/* Force users to call KVM_ARM_VCPU_INIT */
477
vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
478
479
vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
480
481
/* Set up the timer */
482
kvm_timer_vcpu_init(vcpu);
483
484
kvm_pmu_vcpu_init(vcpu);
485
486
kvm_arm_pvtime_vcpu_init(&vcpu->arch);
487
488
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
489
490
/*
491
* This vCPU may have been created after mpidr_data was initialized.
492
* Throw out the pre-computed mappings if that is the case which forces
493
* KVM to fall back to iteratively searching the vCPUs.
494
*/
495
kvm_destroy_mpidr_data(vcpu->kvm);
496
497
err = kvm_vgic_vcpu_init(vcpu);
498
if (err)
499
return err;
500
501
err = kvm_share_hyp(vcpu, vcpu + 1);
502
if (err)
503
kvm_vgic_vcpu_destroy(vcpu);
504
505
return err;
506
}
507
508
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
509
{
510
}
511
512
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
513
{
514
if (!is_protected_kvm_enabled())
515
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
516
else
517
free_hyp_memcache(&vcpu->arch.pkvm_memcache);
518
kvm_timer_vcpu_terminate(vcpu);
519
kvm_pmu_vcpu_destroy(vcpu);
520
kvm_vgic_vcpu_destroy(vcpu);
521
kvm_arm_vcpu_destroy(vcpu);
522
}
523
524
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
525
{
526
527
}
528
529
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
530
{
531
532
}
533
534
static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
535
{
536
if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
537
/*
538
* Either we're running an L2 guest, and the API/APK bits come
539
* from L1's HCR_EL2, or API/APK are both set.
540
*/
541
if (unlikely(is_nested_ctxt(vcpu))) {
542
u64 val;
543
544
val = __vcpu_sys_reg(vcpu, HCR_EL2);
545
val &= (HCR_API | HCR_APK);
546
vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
547
vcpu->arch.hcr_el2 |= val;
548
} else {
549
vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
550
}
551
552
/*
553
* Save the host keys if there is any chance for the guest
554
* to use pauth, as the entry code will reload the guest
555
* keys in that case.
556
*/
557
if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
558
struct kvm_cpu_context *ctxt;
559
560
ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
561
ptrauth_save_keys(ctxt);
562
}
563
}
564
}
565
566
static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
567
{
568
if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
569
return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
570
571
return single_task_running() &&
572
vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
573
(atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
574
vcpu->kvm->arch.vgic.nassgireq);
575
}
576
577
static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
578
{
579
if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
580
return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
581
582
return single_task_running();
583
}
584
585
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
586
{
587
struct kvm_s2_mmu *mmu;
588
int *last_ran;
589
590
if (is_protected_kvm_enabled())
591
goto nommu;
592
593
if (vcpu_has_nv(vcpu))
594
kvm_vcpu_load_hw_mmu(vcpu);
595
596
mmu = vcpu->arch.hw_mmu;
597
last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
598
599
/*
600
* Ensure a VMID is allocated for the MMU before programming VTTBR_EL2,
601
* which happens eagerly in VHE.
602
*
603
* Also, the VMID allocator only preserves VMIDs that are active at the
604
* time of rollover, so KVM might need to grab a new VMID for the MMU if
605
* this is called from kvm_sched_in().
606
*/
607
kvm_arm_vmid_update(&mmu->vmid);
608
609
/*
610
* We guarantee that both TLBs and I-cache are private to each
611
* vcpu. If detecting that a vcpu from the same VM has
612
* previously run on the same physical CPU, call into the
613
* hypervisor code to nuke the relevant contexts.
614
*
615
* We might get preempted before the vCPU actually runs, but
616
* over-invalidation doesn't affect correctness.
617
*/
618
if (*last_ran != vcpu->vcpu_idx) {
619
kvm_call_hyp(__kvm_flush_cpu_context, mmu);
620
*last_ran = vcpu->vcpu_idx;
621
}
622
623
nommu:
624
vcpu->cpu = cpu;
625
626
/*
627
* The timer must be loaded before the vgic to correctly set up physical
628
* interrupt deactivation in nested state (e.g. timer interrupt).
629
*/
630
kvm_timer_vcpu_load(vcpu);
631
kvm_vgic_load(vcpu);
632
kvm_vcpu_load_debug(vcpu);
633
kvm_vcpu_load_fgt(vcpu);
634
if (has_vhe())
635
kvm_vcpu_load_vhe(vcpu);
636
kvm_arch_vcpu_load_fp(vcpu);
637
kvm_vcpu_pmu_restore_guest(vcpu);
638
if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
639
kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
640
641
if (kvm_vcpu_should_clear_twe(vcpu))
642
vcpu->arch.hcr_el2 &= ~HCR_TWE;
643
else
644
vcpu->arch.hcr_el2 |= HCR_TWE;
645
646
if (kvm_vcpu_should_clear_twi(vcpu))
647
vcpu->arch.hcr_el2 &= ~HCR_TWI;
648
else
649
vcpu->arch.hcr_el2 |= HCR_TWI;
650
651
vcpu_set_pauth_traps(vcpu);
652
653
if (is_protected_kvm_enabled()) {
654
kvm_call_hyp_nvhe(__pkvm_vcpu_load,
655
vcpu->kvm->arch.pkvm.handle,
656
vcpu->vcpu_idx, vcpu->arch.hcr_el2);
657
kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
658
&vcpu->arch.vgic_cpu.vgic_v3);
659
}
660
661
if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
662
vcpu_set_on_unsupported_cpu(vcpu);
663
}
664
665
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
666
{
667
if (is_protected_kvm_enabled()) {
668
kvm_call_hyp(__vgic_v3_save_aprs, &vcpu->arch.vgic_cpu.vgic_v3);
669
kvm_call_hyp_nvhe(__pkvm_vcpu_put);
670
}
671
672
kvm_vcpu_put_debug(vcpu);
673
kvm_arch_vcpu_put_fp(vcpu);
674
if (has_vhe())
675
kvm_vcpu_put_vhe(vcpu);
676
kvm_timer_vcpu_put(vcpu);
677
kvm_vgic_put(vcpu);
678
kvm_vcpu_pmu_restore_host(vcpu);
679
if (vcpu_has_nv(vcpu))
680
kvm_vcpu_put_hw_mmu(vcpu);
681
kvm_arm_vmid_clear_active();
682
683
vcpu_clear_on_unsupported_cpu(vcpu);
684
vcpu->cpu = -1;
685
}
686
687
static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
688
{
689
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
690
kvm_make_request(KVM_REQ_SLEEP, vcpu);
691
kvm_vcpu_kick(vcpu);
692
}
693
694
void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
695
{
696
spin_lock(&vcpu->arch.mp_state_lock);
697
__kvm_arm_vcpu_power_off(vcpu);
698
spin_unlock(&vcpu->arch.mp_state_lock);
699
}
700
701
bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
702
{
703
return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
704
}
705
706
static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
707
{
708
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
709
kvm_make_request(KVM_REQ_SUSPEND, vcpu);
710
kvm_vcpu_kick(vcpu);
711
}
712
713
static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
714
{
715
return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
716
}
717
718
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
719
struct kvm_mp_state *mp_state)
720
{
721
*mp_state = READ_ONCE(vcpu->arch.mp_state);
722
723
return 0;
724
}
725
726
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
727
struct kvm_mp_state *mp_state)
728
{
729
int ret = 0;
730
731
spin_lock(&vcpu->arch.mp_state_lock);
732
733
switch (mp_state->mp_state) {
734
case KVM_MP_STATE_RUNNABLE:
735
WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
736
break;
737
case KVM_MP_STATE_STOPPED:
738
__kvm_arm_vcpu_power_off(vcpu);
739
break;
740
case KVM_MP_STATE_SUSPENDED:
741
kvm_arm_vcpu_suspend(vcpu);
742
break;
743
default:
744
ret = -EINVAL;
745
}
746
747
spin_unlock(&vcpu->arch.mp_state_lock);
748
749
return ret;
750
}
751
752
/**
753
* kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
754
* @v: The VCPU pointer
755
*
756
* If the guest CPU is not waiting for interrupts or an interrupt line is
757
* asserted, the CPU is by definition runnable.
758
*/
759
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
760
{
761
bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE);
762
763
return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
764
&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
765
}
766
767
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
768
{
769
return vcpu_mode_priv(vcpu);
770
}
771
772
#ifdef CONFIG_GUEST_PERF_EVENTS
773
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
774
{
775
return *vcpu_pc(vcpu);
776
}
777
#endif
778
779
static void kvm_init_mpidr_data(struct kvm *kvm)
780
{
781
struct kvm_mpidr_data *data = NULL;
782
unsigned long c, mask, nr_entries;
783
u64 aff_set = 0, aff_clr = ~0UL;
784
struct kvm_vcpu *vcpu;
785
786
mutex_lock(&kvm->arch.config_lock);
787
788
if (rcu_access_pointer(kvm->arch.mpidr_data) ||
789
atomic_read(&kvm->online_vcpus) == 1)
790
goto out;
791
792
kvm_for_each_vcpu(c, vcpu, kvm) {
793
u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
794
aff_set |= aff;
795
aff_clr &= aff;
796
}
797
798
/*
799
* A significant bit can be either 0 or 1, and will only appear in
800
* aff_set. Use aff_clr to weed out the useless stuff.
801
*/
802
mask = aff_set ^ aff_clr;
803
nr_entries = BIT_ULL(hweight_long(mask));
804
805
/*
806
* Don't let userspace fool us. If we need more than a single page
807
* to describe the compressed MPIDR array, just fall back to the
808
* iterative method. Single vcpu VMs do not need this either.
809
*/
810
if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
811
data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
812
GFP_KERNEL_ACCOUNT);
813
814
if (!data)
815
goto out;
816
817
data->mpidr_mask = mask;
818
819
kvm_for_each_vcpu(c, vcpu, kvm) {
820
u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
821
u16 index = kvm_mpidr_index(data, aff);
822
823
data->cmpidr_to_idx[index] = c;
824
}
825
826
rcu_assign_pointer(kvm->arch.mpidr_data, data);
827
out:
828
mutex_unlock(&kvm->arch.config_lock);
829
}
830
831
/*
832
* Handle both the initialisation that is being done when the vcpu is
833
* run for the first time, as well as the updates that must be
834
* performed each time we get a new thread dealing with this vcpu.
835
*/
836
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
837
{
838
struct kvm *kvm = vcpu->kvm;
839
int ret;
840
841
if (!kvm_vcpu_initialized(vcpu))
842
return -ENOEXEC;
843
844
if (!kvm_arm_vcpu_is_finalized(vcpu))
845
return -EPERM;
846
847
if (likely(vcpu_has_run_once(vcpu)))
848
return 0;
849
850
kvm_init_mpidr_data(kvm);
851
852
if (likely(irqchip_in_kernel(kvm))) {
853
/*
854
* Map the VGIC hardware resources before running a vcpu the
855
* first time on this VM.
856
*/
857
ret = kvm_vgic_map_resources(kvm);
858
if (ret)
859
return ret;
860
}
861
862
ret = kvm_finalize_sys_regs(vcpu);
863
if (ret)
864
return ret;
865
866
if (vcpu_has_nv(vcpu)) {
867
ret = kvm_vcpu_allocate_vncr_tlb(vcpu);
868
if (ret)
869
return ret;
870
871
ret = kvm_vgic_vcpu_nv_init(vcpu);
872
if (ret)
873
return ret;
874
}
875
876
/*
877
* This needs to happen after any restriction has been applied
878
* to the feature set.
879
*/
880
kvm_calculate_traps(vcpu);
881
882
ret = kvm_timer_enable(vcpu);
883
if (ret)
884
return ret;
885
886
if (kvm_vcpu_has_pmu(vcpu)) {
887
ret = kvm_arm_pmu_v3_enable(vcpu);
888
if (ret)
889
return ret;
890
}
891
892
if (is_protected_kvm_enabled()) {
893
ret = pkvm_create_hyp_vm(kvm);
894
if (ret)
895
return ret;
896
897
ret = pkvm_create_hyp_vcpu(vcpu);
898
if (ret)
899
return ret;
900
}
901
902
mutex_lock(&kvm->arch.config_lock);
903
set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
904
mutex_unlock(&kvm->arch.config_lock);
905
906
return ret;
907
}
908
909
bool kvm_arch_intc_initialized(struct kvm *kvm)
910
{
911
return vgic_initialized(kvm);
912
}
913
914
void kvm_arm_halt_guest(struct kvm *kvm)
915
{
916
unsigned long i;
917
struct kvm_vcpu *vcpu;
918
919
kvm_for_each_vcpu(i, vcpu, kvm)
920
vcpu->arch.pause = true;
921
kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
922
}
923
924
void kvm_arm_resume_guest(struct kvm *kvm)
925
{
926
unsigned long i;
927
struct kvm_vcpu *vcpu;
928
929
kvm_for_each_vcpu(i, vcpu, kvm) {
930
vcpu->arch.pause = false;
931
__kvm_vcpu_wake_up(vcpu);
932
}
933
}
934
935
static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
936
{
937
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
938
939
rcuwait_wait_event(wait,
940
(!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
941
TASK_INTERRUPTIBLE);
942
943
if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
944
/* Awaken to handle a signal, request we sleep again later. */
945
kvm_make_request(KVM_REQ_SLEEP, vcpu);
946
}
947
948
/*
949
* Make sure we will observe a potential reset request if we've
950
* observed a change to the power state. Pairs with the smp_wmb() in
951
* kvm_psci_vcpu_on().
952
*/
953
smp_rmb();
954
}
955
956
/**
957
* kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
958
* @vcpu: The VCPU pointer
959
*
960
* Suspend execution of a vCPU until a valid wake event is detected, i.e. until
961
* the vCPU is runnable. The vCPU may or may not be scheduled out, depending
962
* on when a wake event arrives, e.g. there may already be a pending wake event.
963
*/
964
void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
965
{
966
/*
967
* Sync back the state of the GIC CPU interface so that we have
968
* the latest PMR and group enables. This ensures that
969
* kvm_arch_vcpu_runnable has up-to-date data to decide whether
970
* we have pending interrupts, e.g. when determining if the
971
* vCPU should block.
972
*
973
* For the same reason, we want to tell GICv4 that we need
974
* doorbells to be signalled, should an interrupt become pending.
975
*/
976
preempt_disable();
977
vcpu_set_flag(vcpu, IN_WFI);
978
kvm_vgic_put(vcpu);
979
preempt_enable();
980
981
kvm_vcpu_halt(vcpu);
982
vcpu_clear_flag(vcpu, IN_WFIT);
983
984
preempt_disable();
985
vcpu_clear_flag(vcpu, IN_WFI);
986
kvm_vgic_load(vcpu);
987
preempt_enable();
988
}
989
990
static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
991
{
992
if (!kvm_arm_vcpu_suspended(vcpu))
993
return 1;
994
995
kvm_vcpu_wfi(vcpu);
996
997
/*
998
* The suspend state is sticky; we do not leave it until userspace
999
* explicitly marks the vCPU as runnable. Request that we suspend again
1000
* later.
1001
*/
1002
kvm_make_request(KVM_REQ_SUSPEND, vcpu);
1003
1004
/*
1005
* Check to make sure the vCPU is actually runnable. If so, exit to
1006
* userspace informing it of the wakeup condition.
1007
*/
1008
if (kvm_arch_vcpu_runnable(vcpu)) {
1009
memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
1010
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
1011
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1012
return 0;
1013
}
1014
1015
/*
1016
* Otherwise, we were unblocked to process a different event, such as a
1017
* pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
1018
* process the event.
1019
*/
1020
return 1;
1021
}
1022
1023
/**
1024
* check_vcpu_requests - check and handle pending vCPU requests
1025
* @vcpu: the VCPU pointer
1026
*
1027
* Return: 1 if we should enter the guest
1028
* 0 if we should exit to userspace
1029
* < 0 if we should exit to userspace, where the return value indicates
1030
* an error
1031
*/
1032
static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1033
{
1034
if (kvm_request_pending(vcpu)) {
1035
if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1036
return -EIO;
1037
1038
if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1039
kvm_vcpu_sleep(vcpu);
1040
1041
if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1042
kvm_reset_vcpu(vcpu);
1043
1044
/*
1045
* Clear IRQ_PENDING requests that were made to guarantee
1046
* that a VCPU sees new virtual interrupts.
1047
*/
1048
kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1049
1050
/* Process interrupts deactivated through a trap */
1051
if (kvm_check_request(KVM_REQ_VGIC_PROCESS_UPDATE, vcpu))
1052
kvm_vgic_process_async_update(vcpu);
1053
1054
if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1055
kvm_update_stolen_time(vcpu);
1056
1057
if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1058
/* The distributor enable bits were changed */
1059
preempt_disable();
1060
vgic_v4_put(vcpu);
1061
vgic_v4_load(vcpu);
1062
preempt_enable();
1063
}
1064
1065
if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1066
kvm_vcpu_reload_pmu(vcpu);
1067
1068
if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1069
kvm_vcpu_pmu_restore_guest(vcpu);
1070
1071
if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1072
return kvm_vcpu_suspend(vcpu);
1073
1074
if (kvm_dirty_ring_check_request(vcpu))
1075
return 0;
1076
1077
check_nested_vcpu_requests(vcpu);
1078
}
1079
1080
return 1;
1081
}
1082
1083
static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1084
{
1085
if (likely(!vcpu_mode_is_32bit(vcpu)))
1086
return false;
1087
1088
if (vcpu_has_nv(vcpu))
1089
return true;
1090
1091
return !kvm_supports_32bit_el0();
1092
}
1093
1094
/**
1095
* kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1096
* @vcpu: The VCPU pointer
1097
* @ret: Pointer to write optional return code
1098
*
1099
* Returns: true if the VCPU needs to return to a preemptible + interruptible
1100
* and skip guest entry.
1101
*
1102
* This function disambiguates between two different types of exits: exits to a
1103
* preemptible + interruptible kernel context and exits to userspace. For an
1104
* exit to userspace, this function will write the return code to ret and return
1105
* true. For an exit to preemptible + interruptible kernel context (i.e. check
1106
* for pending work and re-enter), return true without writing to ret.
1107
*/
1108
static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1109
{
1110
struct kvm_run *run = vcpu->run;
1111
1112
/*
1113
* If we're using a userspace irqchip, then check if we need
1114
* to tell a userspace irqchip about timer or PMU level
1115
* changes and if so, exit to userspace (the actual level
1116
* state gets updated in kvm_timer_update_run and
1117
* kvm_pmu_update_run below).
1118
*/
1119
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1120
if (kvm_timer_should_notify_user(vcpu) ||
1121
kvm_pmu_should_notify_user(vcpu)) {
1122
*ret = -EINTR;
1123
run->exit_reason = KVM_EXIT_INTR;
1124
return true;
1125
}
1126
}
1127
1128
if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1129
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1130
run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1131
run->fail_entry.cpu = smp_processor_id();
1132
*ret = 0;
1133
return true;
1134
}
1135
1136
return kvm_request_pending(vcpu) ||
1137
xfer_to_guest_mode_work_pending();
1138
}
1139
1140
/*
1141
* Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1142
* the vCPU is running.
1143
*
1144
* This must be noinstr as instrumentation may make use of RCU, and this is not
1145
* safe during the EQS.
1146
*/
1147
static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1148
{
1149
int ret;
1150
1151
guest_state_enter_irqoff();
1152
ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1153
guest_state_exit_irqoff();
1154
1155
return ret;
1156
}
1157
1158
/**
1159
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1160
* @vcpu: The VCPU pointer
1161
*
1162
* This function is called through the VCPU_RUN ioctl called from user space. It
1163
* will execute VM code in a loop until the time slice for the process is used
1164
* or some emulation is needed from user space in which case the function will
1165
* return with return value 0 and with the kvm_run structure filled in with the
1166
* required data for the requested emulation.
1167
*/
1168
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1169
{
1170
struct kvm_run *run = vcpu->run;
1171
int ret;
1172
1173
if (run->exit_reason == KVM_EXIT_MMIO) {
1174
ret = kvm_handle_mmio_return(vcpu);
1175
if (ret <= 0)
1176
return ret;
1177
}
1178
1179
vcpu_load(vcpu);
1180
1181
if (!vcpu->wants_to_run) {
1182
ret = -EINTR;
1183
goto out;
1184
}
1185
1186
kvm_sigset_activate(vcpu);
1187
1188
ret = 1;
1189
run->exit_reason = KVM_EXIT_UNKNOWN;
1190
run->flags = 0;
1191
while (ret > 0) {
1192
/*
1193
* Check conditions before entering the guest
1194
*/
1195
ret = kvm_xfer_to_guest_mode_handle_work(vcpu);
1196
if (!ret)
1197
ret = 1;
1198
1199
if (ret > 0)
1200
ret = check_vcpu_requests(vcpu);
1201
1202
/*
1203
* Preparing the interrupts to be injected also
1204
* involves poking the GIC, which must be done in a
1205
* non-preemptible context.
1206
*/
1207
preempt_disable();
1208
1209
kvm_nested_flush_hwstate(vcpu);
1210
1211
if (kvm_vcpu_has_pmu(vcpu))
1212
kvm_pmu_flush_hwstate(vcpu);
1213
1214
local_irq_disable();
1215
1216
kvm_vgic_flush_hwstate(vcpu);
1217
1218
kvm_pmu_update_vcpu_events(vcpu);
1219
1220
/*
1221
* Ensure we set mode to IN_GUEST_MODE after we disable
1222
* interrupts and before the final VCPU requests check.
1223
* See the comment in kvm_vcpu_exiting_guest_mode() and
1224
* Documentation/virt/kvm/vcpu-requests.rst
1225
*/
1226
smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1227
1228
if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1229
vcpu->mode = OUTSIDE_GUEST_MODE;
1230
isb(); /* Ensure work in x_flush_hwstate is committed */
1231
if (kvm_vcpu_has_pmu(vcpu))
1232
kvm_pmu_sync_hwstate(vcpu);
1233
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1234
kvm_timer_sync_user(vcpu);
1235
kvm_vgic_sync_hwstate(vcpu);
1236
local_irq_enable();
1237
preempt_enable();
1238
continue;
1239
}
1240
1241
kvm_arch_vcpu_ctxflush_fp(vcpu);
1242
1243
/**************************************************************
1244
* Enter the guest
1245
*/
1246
trace_kvm_entry(*vcpu_pc(vcpu));
1247
guest_timing_enter_irqoff();
1248
1249
ret = kvm_arm_vcpu_enter_exit(vcpu);
1250
1251
vcpu->mode = OUTSIDE_GUEST_MODE;
1252
vcpu->stat.exits++;
1253
/*
1254
* Back from guest
1255
*************************************************************/
1256
1257
/*
1258
* We must sync the PMU state before the vgic state so
1259
* that the vgic can properly sample the updated state of the
1260
* interrupt line.
1261
*/
1262
if (kvm_vcpu_has_pmu(vcpu))
1263
kvm_pmu_sync_hwstate(vcpu);
1264
1265
/*
1266
* Sync the vgic state before syncing the timer state because
1267
* the timer code needs to know if the virtual timer
1268
* interrupts are active.
1269
*/
1270
kvm_vgic_sync_hwstate(vcpu);
1271
1272
/*
1273
* Sync the timer hardware state before enabling interrupts as
1274
* we don't want vtimer interrupts to race with syncing the
1275
* timer virtual interrupt state.
1276
*/
1277
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1278
kvm_timer_sync_user(vcpu);
1279
1280
if (is_hyp_ctxt(vcpu))
1281
kvm_timer_sync_nested(vcpu);
1282
1283
kvm_arch_vcpu_ctxsync_fp(vcpu);
1284
1285
/*
1286
* We must ensure that any pending interrupts are taken before
1287
* we exit guest timing so that timer ticks are accounted as
1288
* guest time. Transiently unmask interrupts so that any
1289
* pending interrupts are taken.
1290
*
1291
* Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1292
* context synchronization event) is necessary to ensure that
1293
* pending interrupts are taken.
1294
*/
1295
if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1296
local_irq_enable();
1297
isb();
1298
local_irq_disable();
1299
}
1300
1301
guest_timing_exit_irqoff();
1302
1303
local_irq_enable();
1304
1305
trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1306
1307
/* Exit types that need handling before we can be preempted */
1308
handle_exit_early(vcpu, ret);
1309
1310
kvm_nested_sync_hwstate(vcpu);
1311
1312
preempt_enable();
1313
1314
/*
1315
* The ARMv8 architecture doesn't give the hypervisor
1316
* a mechanism to prevent a guest from dropping to AArch32 EL0
1317
* if implemented by the CPU. If we spot the guest in such
1318
* state and that we decided it wasn't supposed to do so (like
1319
* with the asymmetric AArch32 case), return to userspace with
1320
* a fatal error.
1321
*/
1322
if (vcpu_mode_is_bad_32bit(vcpu)) {
1323
/*
1324
* As we have caught the guest red-handed, decide that
1325
* it isn't fit for purpose anymore by making the vcpu
1326
* invalid. The VMM can try and fix it by issuing a
1327
* KVM_ARM_VCPU_INIT if it really wants to.
1328
*/
1329
vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1330
ret = ARM_EXCEPTION_IL;
1331
}
1332
1333
ret = handle_exit(vcpu, ret);
1334
}
1335
1336
/* Tell userspace about in-kernel device output levels */
1337
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1338
kvm_timer_update_run(vcpu);
1339
kvm_pmu_update_run(vcpu);
1340
}
1341
1342
kvm_sigset_deactivate(vcpu);
1343
1344
out:
1345
/*
1346
* In the unlikely event that we are returning to userspace
1347
* with pending exceptions or PC adjustment, commit these
1348
* adjustments in order to give userspace a consistent view of
1349
* the vcpu state. Note that this relies on __kvm_adjust_pc()
1350
* being preempt-safe on VHE.
1351
*/
1352
if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1353
vcpu_get_flag(vcpu, INCREMENT_PC)))
1354
kvm_call_hyp(__kvm_adjust_pc, vcpu);
1355
1356
vcpu_put(vcpu);
1357
return ret;
1358
}
1359
1360
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1361
{
1362
int bit_index;
1363
bool set;
1364
unsigned long *hcr;
1365
1366
if (number == KVM_ARM_IRQ_CPU_IRQ)
1367
bit_index = __ffs(HCR_VI);
1368
else /* KVM_ARM_IRQ_CPU_FIQ */
1369
bit_index = __ffs(HCR_VF);
1370
1371
hcr = vcpu_hcr(vcpu);
1372
if (level)
1373
set = test_and_set_bit(bit_index, hcr);
1374
else
1375
set = test_and_clear_bit(bit_index, hcr);
1376
1377
/*
1378
* If we didn't change anything, no need to wake up or kick other CPUs
1379
*/
1380
if (set == level)
1381
return 0;
1382
1383
/*
1384
* The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1385
* trigger a world-switch round on the running physical CPU to set the
1386
* virtual IRQ/FIQ fields in the HCR appropriately.
1387
*/
1388
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1389
kvm_vcpu_kick(vcpu);
1390
1391
return 0;
1392
}
1393
1394
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1395
bool line_status)
1396
{
1397
u32 irq = irq_level->irq;
1398
unsigned int irq_type, vcpu_id, irq_num;
1399
struct kvm_vcpu *vcpu = NULL;
1400
bool level = irq_level->level;
1401
1402
irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1403
vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1404
vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1405
irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1406
1407
trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1408
1409
switch (irq_type) {
1410
case KVM_ARM_IRQ_TYPE_CPU:
1411
if (irqchip_in_kernel(kvm))
1412
return -ENXIO;
1413
1414
vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1415
if (!vcpu)
1416
return -EINVAL;
1417
1418
if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1419
return -EINVAL;
1420
1421
return vcpu_interrupt_line(vcpu, irq_num, level);
1422
case KVM_ARM_IRQ_TYPE_PPI:
1423
if (!irqchip_in_kernel(kvm))
1424
return -ENXIO;
1425
1426
vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1427
if (!vcpu)
1428
return -EINVAL;
1429
1430
if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1431
return -EINVAL;
1432
1433
return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1434
case KVM_ARM_IRQ_TYPE_SPI:
1435
if (!irqchip_in_kernel(kvm))
1436
return -ENXIO;
1437
1438
if (irq_num < VGIC_NR_PRIVATE_IRQS)
1439
return -EINVAL;
1440
1441
return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1442
}
1443
1444
return -EINVAL;
1445
}
1446
1447
static unsigned long system_supported_vcpu_features(void)
1448
{
1449
unsigned long features = KVM_VCPU_VALID_FEATURES;
1450
1451
if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1452
clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1453
1454
if (!kvm_supports_guest_pmuv3())
1455
clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1456
1457
if (!system_supports_sve())
1458
clear_bit(KVM_ARM_VCPU_SVE, &features);
1459
1460
if (!kvm_has_full_ptr_auth()) {
1461
clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1462
clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1463
}
1464
1465
if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1466
clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1467
1468
return features;
1469
}
1470
1471
static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1472
const struct kvm_vcpu_init *init)
1473
{
1474
unsigned long features = init->features[0];
1475
int i;
1476
1477
if (features & ~KVM_VCPU_VALID_FEATURES)
1478
return -ENOENT;
1479
1480
for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1481
if (init->features[i])
1482
return -ENOENT;
1483
}
1484
1485
if (features & ~system_supported_vcpu_features())
1486
return -EINVAL;
1487
1488
/*
1489
* For now make sure that both address/generic pointer authentication
1490
* features are requested by the userspace together.
1491
*/
1492
if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1493
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1494
return -EINVAL;
1495
1496
if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1497
return 0;
1498
1499
/* MTE is incompatible with AArch32 */
1500
if (kvm_has_mte(vcpu->kvm))
1501
return -EINVAL;
1502
1503
/* NV is incompatible with AArch32 */
1504
if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1505
return -EINVAL;
1506
1507
return 0;
1508
}
1509
1510
static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1511
const struct kvm_vcpu_init *init)
1512
{
1513
unsigned long features = init->features[0];
1514
1515
return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1516
KVM_VCPU_MAX_FEATURES);
1517
}
1518
1519
static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1520
{
1521
struct kvm *kvm = vcpu->kvm;
1522
int ret = 0;
1523
1524
/*
1525
* When the vCPU has a PMU, but no PMU is set for the guest
1526
* yet, set the default one.
1527
*/
1528
if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1529
ret = kvm_arm_set_default_pmu(kvm);
1530
1531
/* Prepare for nested if required */
1532
if (!ret && vcpu_has_nv(vcpu))
1533
ret = kvm_vcpu_init_nested(vcpu);
1534
1535
return ret;
1536
}
1537
1538
static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1539
const struct kvm_vcpu_init *init)
1540
{
1541
unsigned long features = init->features[0];
1542
struct kvm *kvm = vcpu->kvm;
1543
int ret = -EINVAL;
1544
1545
mutex_lock(&kvm->arch.config_lock);
1546
1547
if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1548
kvm_vcpu_init_changed(vcpu, init))
1549
goto out_unlock;
1550
1551
bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1552
1553
ret = kvm_setup_vcpu(vcpu);
1554
if (ret)
1555
goto out_unlock;
1556
1557
/* Now we know what it is, we can reset it. */
1558
kvm_reset_vcpu(vcpu);
1559
1560
set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1561
vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1562
ret = 0;
1563
out_unlock:
1564
mutex_unlock(&kvm->arch.config_lock);
1565
return ret;
1566
}
1567
1568
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1569
const struct kvm_vcpu_init *init)
1570
{
1571
int ret;
1572
1573
if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1574
init->target != kvm_target_cpu())
1575
return -EINVAL;
1576
1577
ret = kvm_vcpu_init_check_features(vcpu, init);
1578
if (ret)
1579
return ret;
1580
1581
if (!kvm_vcpu_initialized(vcpu))
1582
return __kvm_vcpu_set_target(vcpu, init);
1583
1584
if (kvm_vcpu_init_changed(vcpu, init))
1585
return -EINVAL;
1586
1587
kvm_reset_vcpu(vcpu);
1588
return 0;
1589
}
1590
1591
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1592
struct kvm_vcpu_init *init)
1593
{
1594
bool power_off = false;
1595
int ret;
1596
1597
/*
1598
* Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1599
* reflecting it in the finalized feature set, thus limiting its scope
1600
* to a single KVM_ARM_VCPU_INIT call.
1601
*/
1602
if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1603
init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1604
power_off = true;
1605
}
1606
1607
ret = kvm_vcpu_set_target(vcpu, init);
1608
if (ret)
1609
return ret;
1610
1611
/*
1612
* Ensure a rebooted VM will fault in RAM pages and detect if the
1613
* guest MMU is turned off and flush the caches as needed.
1614
*
1615
* S2FWB enforces all memory accesses to RAM being cacheable,
1616
* ensuring that the data side is always coherent. We still
1617
* need to invalidate the I-cache though, as FWB does *not*
1618
* imply CTR_EL0.DIC.
1619
*/
1620
if (vcpu_has_run_once(vcpu)) {
1621
if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1622
stage2_unmap_vm(vcpu->kvm);
1623
else
1624
icache_inval_all_pou();
1625
}
1626
1627
vcpu_reset_hcr(vcpu);
1628
1629
/*
1630
* Handle the "start in power-off" case.
1631
*/
1632
spin_lock(&vcpu->arch.mp_state_lock);
1633
1634
if (power_off)
1635
__kvm_arm_vcpu_power_off(vcpu);
1636
else
1637
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1638
1639
spin_unlock(&vcpu->arch.mp_state_lock);
1640
1641
return 0;
1642
}
1643
1644
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1645
struct kvm_device_attr *attr)
1646
{
1647
int ret = -ENXIO;
1648
1649
switch (attr->group) {
1650
default:
1651
ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1652
break;
1653
}
1654
1655
return ret;
1656
}
1657
1658
static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1659
struct kvm_device_attr *attr)
1660
{
1661
int ret = -ENXIO;
1662
1663
switch (attr->group) {
1664
default:
1665
ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1666
break;
1667
}
1668
1669
return ret;
1670
}
1671
1672
static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1673
struct kvm_device_attr *attr)
1674
{
1675
int ret = -ENXIO;
1676
1677
switch (attr->group) {
1678
default:
1679
ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1680
break;
1681
}
1682
1683
return ret;
1684
}
1685
1686
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1687
struct kvm_vcpu_events *events)
1688
{
1689
memset(events, 0, sizeof(*events));
1690
1691
return __kvm_arm_vcpu_get_events(vcpu, events);
1692
}
1693
1694
static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1695
struct kvm_vcpu_events *events)
1696
{
1697
int i;
1698
1699
/* check whether the reserved field is zero */
1700
for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1701
if (events->reserved[i])
1702
return -EINVAL;
1703
1704
/* check whether the pad field is zero */
1705
for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1706
if (events->exception.pad[i])
1707
return -EINVAL;
1708
1709
return __kvm_arm_vcpu_set_events(vcpu, events);
1710
}
1711
1712
long kvm_arch_vcpu_ioctl(struct file *filp,
1713
unsigned int ioctl, unsigned long arg)
1714
{
1715
struct kvm_vcpu *vcpu = filp->private_data;
1716
void __user *argp = (void __user *)arg;
1717
struct kvm_device_attr attr;
1718
long r;
1719
1720
switch (ioctl) {
1721
case KVM_ARM_VCPU_INIT: {
1722
struct kvm_vcpu_init init;
1723
1724
r = -EFAULT;
1725
if (copy_from_user(&init, argp, sizeof(init)))
1726
break;
1727
1728
r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1729
break;
1730
}
1731
case KVM_SET_ONE_REG:
1732
case KVM_GET_ONE_REG: {
1733
struct kvm_one_reg reg;
1734
1735
r = -ENOEXEC;
1736
if (unlikely(!kvm_vcpu_initialized(vcpu)))
1737
break;
1738
1739
r = -EFAULT;
1740
if (copy_from_user(&reg, argp, sizeof(reg)))
1741
break;
1742
1743
/*
1744
* We could owe a reset due to PSCI. Handle the pending reset
1745
* here to ensure userspace register accesses are ordered after
1746
* the reset.
1747
*/
1748
if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1749
kvm_reset_vcpu(vcpu);
1750
1751
if (ioctl == KVM_SET_ONE_REG)
1752
r = kvm_arm_set_reg(vcpu, &reg);
1753
else
1754
r = kvm_arm_get_reg(vcpu, &reg);
1755
break;
1756
}
1757
case KVM_GET_REG_LIST: {
1758
struct kvm_reg_list __user *user_list = argp;
1759
struct kvm_reg_list reg_list;
1760
unsigned n;
1761
1762
r = -ENOEXEC;
1763
if (unlikely(!kvm_vcpu_initialized(vcpu)))
1764
break;
1765
1766
r = -EPERM;
1767
if (!kvm_arm_vcpu_is_finalized(vcpu))
1768
break;
1769
1770
r = -EFAULT;
1771
if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1772
break;
1773
n = reg_list.n;
1774
reg_list.n = kvm_arm_num_regs(vcpu);
1775
if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1776
break;
1777
r = -E2BIG;
1778
if (n < reg_list.n)
1779
break;
1780
r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1781
break;
1782
}
1783
case KVM_SET_DEVICE_ATTR: {
1784
r = -EFAULT;
1785
if (copy_from_user(&attr, argp, sizeof(attr)))
1786
break;
1787
r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1788
break;
1789
}
1790
case KVM_GET_DEVICE_ATTR: {
1791
r = -EFAULT;
1792
if (copy_from_user(&attr, argp, sizeof(attr)))
1793
break;
1794
r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1795
break;
1796
}
1797
case KVM_HAS_DEVICE_ATTR: {
1798
r = -EFAULT;
1799
if (copy_from_user(&attr, argp, sizeof(attr)))
1800
break;
1801
r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1802
break;
1803
}
1804
case KVM_GET_VCPU_EVENTS: {
1805
struct kvm_vcpu_events events;
1806
1807
if (!kvm_vcpu_initialized(vcpu))
1808
return -ENOEXEC;
1809
1810
if (kvm_arm_vcpu_get_events(vcpu, &events))
1811
return -EINVAL;
1812
1813
if (copy_to_user(argp, &events, sizeof(events)))
1814
return -EFAULT;
1815
1816
return 0;
1817
}
1818
case KVM_SET_VCPU_EVENTS: {
1819
struct kvm_vcpu_events events;
1820
1821
if (!kvm_vcpu_initialized(vcpu))
1822
return -ENOEXEC;
1823
1824
if (copy_from_user(&events, argp, sizeof(events)))
1825
return -EFAULT;
1826
1827
return kvm_arm_vcpu_set_events(vcpu, &events);
1828
}
1829
case KVM_ARM_VCPU_FINALIZE: {
1830
int what;
1831
1832
if (!kvm_vcpu_initialized(vcpu))
1833
return -ENOEXEC;
1834
1835
if (get_user(what, (const int __user *)argp))
1836
return -EFAULT;
1837
1838
return kvm_arm_vcpu_finalize(vcpu, what);
1839
}
1840
default:
1841
r = -EINVAL;
1842
}
1843
1844
return r;
1845
}
1846
1847
long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl,
1848
unsigned long arg)
1849
{
1850
return -ENOIOCTLCMD;
1851
}
1852
1853
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1854
{
1855
1856
}
1857
1858
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1859
struct kvm_arm_device_addr *dev_addr)
1860
{
1861
switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1862
case KVM_ARM_DEVICE_VGIC_V2:
1863
if (!vgic_present)
1864
return -ENXIO;
1865
return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1866
default:
1867
return -ENODEV;
1868
}
1869
}
1870
1871
static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1872
{
1873
switch (attr->group) {
1874
case KVM_ARM_VM_SMCCC_CTRL:
1875
return kvm_vm_smccc_has_attr(kvm, attr);
1876
default:
1877
return -ENXIO;
1878
}
1879
}
1880
1881
static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1882
{
1883
switch (attr->group) {
1884
case KVM_ARM_VM_SMCCC_CTRL:
1885
return kvm_vm_smccc_set_attr(kvm, attr);
1886
default:
1887
return -ENXIO;
1888
}
1889
}
1890
1891
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1892
{
1893
struct kvm *kvm = filp->private_data;
1894
void __user *argp = (void __user *)arg;
1895
struct kvm_device_attr attr;
1896
1897
switch (ioctl) {
1898
case KVM_CREATE_IRQCHIP: {
1899
int ret;
1900
if (!vgic_present)
1901
return -ENXIO;
1902
mutex_lock(&kvm->lock);
1903
ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1904
mutex_unlock(&kvm->lock);
1905
return ret;
1906
}
1907
case KVM_ARM_SET_DEVICE_ADDR: {
1908
struct kvm_arm_device_addr dev_addr;
1909
1910
if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1911
return -EFAULT;
1912
return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1913
}
1914
case KVM_ARM_PREFERRED_TARGET: {
1915
struct kvm_vcpu_init init = {
1916
.target = KVM_ARM_TARGET_GENERIC_V8,
1917
};
1918
1919
if (copy_to_user(argp, &init, sizeof(init)))
1920
return -EFAULT;
1921
1922
return 0;
1923
}
1924
case KVM_ARM_MTE_COPY_TAGS: {
1925
struct kvm_arm_copy_mte_tags copy_tags;
1926
1927
if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1928
return -EFAULT;
1929
return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1930
}
1931
case KVM_ARM_SET_COUNTER_OFFSET: {
1932
struct kvm_arm_counter_offset offset;
1933
1934
if (copy_from_user(&offset, argp, sizeof(offset)))
1935
return -EFAULT;
1936
return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1937
}
1938
case KVM_HAS_DEVICE_ATTR: {
1939
if (copy_from_user(&attr, argp, sizeof(attr)))
1940
return -EFAULT;
1941
1942
return kvm_vm_has_attr(kvm, &attr);
1943
}
1944
case KVM_SET_DEVICE_ATTR: {
1945
if (copy_from_user(&attr, argp, sizeof(attr)))
1946
return -EFAULT;
1947
1948
return kvm_vm_set_attr(kvm, &attr);
1949
}
1950
case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1951
struct reg_mask_range range;
1952
1953
if (copy_from_user(&range, argp, sizeof(range)))
1954
return -EFAULT;
1955
return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1956
}
1957
default:
1958
return -EINVAL;
1959
}
1960
}
1961
1962
static unsigned long nvhe_percpu_size(void)
1963
{
1964
return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1965
(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1966
}
1967
1968
static unsigned long nvhe_percpu_order(void)
1969
{
1970
unsigned long size = nvhe_percpu_size();
1971
1972
return size ? get_order(size) : 0;
1973
}
1974
1975
static size_t pkvm_host_sve_state_order(void)
1976
{
1977
return get_order(pkvm_host_sve_state_size());
1978
}
1979
1980
/* A lookup table holding the hypervisor VA for each vector slot */
1981
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1982
1983
static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1984
{
1985
hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1986
}
1987
1988
static int kvm_init_vector_slots(void)
1989
{
1990
int err;
1991
void *base;
1992
1993
base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1994
kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1995
1996
base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1997
kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1998
1999
if (kvm_system_needs_idmapped_vectors() &&
2000
!is_protected_kvm_enabled()) {
2001
err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
2002
__BP_HARDEN_HYP_VECS_SZ, &base);
2003
if (err)
2004
return err;
2005
}
2006
2007
kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
2008
kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
2009
return 0;
2010
}
2011
2012
static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
2013
{
2014
struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2015
unsigned long tcr;
2016
2017
/*
2018
* Calculate the raw per-cpu offset without a translation from the
2019
* kernel's mapping to the linear mapping, and store it in tpidr_el2
2020
* so that we can use adr_l to access per-cpu variables in EL2.
2021
* Also drop the KASAN tag which gets in the way...
2022
*/
2023
params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
2024
(unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
2025
2026
params->mair_el2 = read_sysreg(mair_el1);
2027
2028
tcr = read_sysreg(tcr_el1);
2029
if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2030
tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK);
2031
tcr |= TCR_EPD1_MASK;
2032
} else {
2033
unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr);
2034
2035
tcr &= TCR_EL2_MASK;
2036
tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips);
2037
if (lpa2_is_enabled())
2038
tcr |= TCR_EL2_DS;
2039
}
2040
tcr |= TCR_T0SZ(hyp_va_bits);
2041
params->tcr_el2 = tcr;
2042
2043
params->pgd_pa = kvm_mmu_get_httbr();
2044
if (is_protected_kvm_enabled())
2045
params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2046
else
2047
params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2048
if (cpus_have_final_cap(ARM64_KVM_HVHE))
2049
params->hcr_el2 |= HCR_E2H;
2050
params->vttbr = params->vtcr = 0;
2051
2052
/*
2053
* Flush the init params from the data cache because the struct will
2054
* be read while the MMU is off.
2055
*/
2056
kvm_flush_dcache_to_poc(params, sizeof(*params));
2057
}
2058
2059
static void hyp_install_host_vector(void)
2060
{
2061
struct kvm_nvhe_init_params *params;
2062
struct arm_smccc_res res;
2063
2064
/* Switch from the HYP stub to our own HYP init vector */
2065
__hyp_set_vectors(kvm_get_idmap_vector());
2066
2067
/*
2068
* Call initialization code, and switch to the full blown HYP code.
2069
* If the cpucaps haven't been finalized yet, something has gone very
2070
* wrong, and hyp will crash and burn when it uses any
2071
* cpus_have_*_cap() wrapper.
2072
*/
2073
BUG_ON(!system_capabilities_finalized());
2074
params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2075
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2076
WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2077
}
2078
2079
static void cpu_init_hyp_mode(void)
2080
{
2081
hyp_install_host_vector();
2082
2083
/*
2084
* Disabling SSBD on a non-VHE system requires us to enable SSBS
2085
* at EL2.
2086
*/
2087
if (this_cpu_has_cap(ARM64_SSBS) &&
2088
arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2089
kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2090
}
2091
}
2092
2093
static void cpu_hyp_reset(void)
2094
{
2095
if (!is_kernel_in_hyp_mode())
2096
__hyp_reset_vectors();
2097
}
2098
2099
/*
2100
* EL2 vectors can be mapped and rerouted in a number of ways,
2101
* depending on the kernel configuration and CPU present:
2102
*
2103
* - If the CPU is affected by Spectre-v2, the hardening sequence is
2104
* placed in one of the vector slots, which is executed before jumping
2105
* to the real vectors.
2106
*
2107
* - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2108
* containing the hardening sequence is mapped next to the idmap page,
2109
* and executed before jumping to the real vectors.
2110
*
2111
* - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2112
* empty slot is selected, mapped next to the idmap page, and
2113
* executed before jumping to the real vectors.
2114
*
2115
* Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2116
* VHE, as we don't have hypervisor-specific mappings. If the system
2117
* is VHE and yet selects this capability, it will be ignored.
2118
*/
2119
static void cpu_set_hyp_vector(void)
2120
{
2121
struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2122
void *vector = hyp_spectre_vector_selector[data->slot];
2123
2124
if (!is_protected_kvm_enabled())
2125
*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2126
else
2127
kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2128
}
2129
2130
static void cpu_hyp_init_context(void)
2131
{
2132
kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2133
kvm_init_host_debug_data();
2134
2135
if (!is_kernel_in_hyp_mode())
2136
cpu_init_hyp_mode();
2137
}
2138
2139
static void cpu_hyp_init_features(void)
2140
{
2141
cpu_set_hyp_vector();
2142
2143
if (is_kernel_in_hyp_mode()) {
2144
kvm_timer_init_vhe();
2145
kvm_debug_init_vhe();
2146
}
2147
2148
if (vgic_present)
2149
kvm_vgic_init_cpu_hardware();
2150
}
2151
2152
static void cpu_hyp_reinit(void)
2153
{
2154
cpu_hyp_reset();
2155
cpu_hyp_init_context();
2156
cpu_hyp_init_features();
2157
}
2158
2159
static void cpu_hyp_init(void *discard)
2160
{
2161
if (!__this_cpu_read(kvm_hyp_initialized)) {
2162
cpu_hyp_reinit();
2163
__this_cpu_write(kvm_hyp_initialized, 1);
2164
}
2165
}
2166
2167
static void cpu_hyp_uninit(void *discard)
2168
{
2169
if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) {
2170
cpu_hyp_reset();
2171
__this_cpu_write(kvm_hyp_initialized, 0);
2172
}
2173
}
2174
2175
int kvm_arch_enable_virtualization_cpu(void)
2176
{
2177
/*
2178
* Most calls to this function are made with migration
2179
* disabled, but not with preemption disabled. The former is
2180
* enough to ensure correctness, but most of the helpers
2181
* expect the later and will throw a tantrum otherwise.
2182
*/
2183
preempt_disable();
2184
2185
cpu_hyp_init(NULL);
2186
2187
kvm_vgic_cpu_up();
2188
kvm_timer_cpu_up();
2189
2190
preempt_enable();
2191
2192
return 0;
2193
}
2194
2195
void kvm_arch_disable_virtualization_cpu(void)
2196
{
2197
kvm_timer_cpu_down();
2198
kvm_vgic_cpu_down();
2199
2200
if (!is_protected_kvm_enabled())
2201
cpu_hyp_uninit(NULL);
2202
}
2203
2204
#ifdef CONFIG_CPU_PM
2205
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2206
unsigned long cmd,
2207
void *v)
2208
{
2209
/*
2210
* kvm_hyp_initialized is left with its old value over
2211
* PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2212
* re-enable hyp.
2213
*/
2214
switch (cmd) {
2215
case CPU_PM_ENTER:
2216
if (__this_cpu_read(kvm_hyp_initialized))
2217
/*
2218
* don't update kvm_hyp_initialized here
2219
* so that the hyp will be re-enabled
2220
* when we resume. See below.
2221
*/
2222
cpu_hyp_reset();
2223
2224
return NOTIFY_OK;
2225
case CPU_PM_ENTER_FAILED:
2226
case CPU_PM_EXIT:
2227
if (__this_cpu_read(kvm_hyp_initialized))
2228
/* The hyp was enabled before suspend. */
2229
cpu_hyp_reinit();
2230
2231
return NOTIFY_OK;
2232
2233
default:
2234
return NOTIFY_DONE;
2235
}
2236
}
2237
2238
static struct notifier_block hyp_init_cpu_pm_nb = {
2239
.notifier_call = hyp_init_cpu_pm_notifier,
2240
};
2241
2242
static void __init hyp_cpu_pm_init(void)
2243
{
2244
if (!is_protected_kvm_enabled())
2245
cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2246
}
2247
static void __init hyp_cpu_pm_exit(void)
2248
{
2249
if (!is_protected_kvm_enabled())
2250
cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2251
}
2252
#else
2253
static inline void __init hyp_cpu_pm_init(void)
2254
{
2255
}
2256
static inline void __init hyp_cpu_pm_exit(void)
2257
{
2258
}
2259
#endif
2260
2261
static void __init init_cpu_logical_map(void)
2262
{
2263
unsigned int cpu;
2264
2265
/*
2266
* Copy the MPIDR <-> logical CPU ID mapping to hyp.
2267
* Only copy the set of online CPUs whose features have been checked
2268
* against the finalized system capabilities. The hypervisor will not
2269
* allow any other CPUs from the `possible` set to boot.
2270
*/
2271
for_each_online_cpu(cpu)
2272
hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2273
}
2274
2275
#define init_psci_0_1_impl_state(config, what) \
2276
config.psci_0_1_ ## what ## _implemented = psci_ops.what
2277
2278
static bool __init init_psci_relay(void)
2279
{
2280
/*
2281
* If PSCI has not been initialized, protected KVM cannot install
2282
* itself on newly booted CPUs.
2283
*/
2284
if (!psci_ops.get_version) {
2285
kvm_err("Cannot initialize protected mode without PSCI\n");
2286
return false;
2287
}
2288
2289
kvm_host_psci_config.version = psci_ops.get_version();
2290
kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2291
2292
if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2293
kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2294
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2295
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2296
init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2297
init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2298
}
2299
return true;
2300
}
2301
2302
static int __init init_subsystems(void)
2303
{
2304
int err = 0;
2305
2306
/*
2307
* Enable hardware so that subsystem initialisation can access EL2.
2308
*/
2309
on_each_cpu(cpu_hyp_init, NULL, 1);
2310
2311
/*
2312
* Register CPU lower-power notifier
2313
*/
2314
hyp_cpu_pm_init();
2315
2316
/*
2317
* Init HYP view of VGIC
2318
*/
2319
err = kvm_vgic_hyp_init();
2320
switch (err) {
2321
case 0:
2322
vgic_present = true;
2323
break;
2324
case -ENODEV:
2325
case -ENXIO:
2326
/*
2327
* No VGIC? No pKVM for you.
2328
*
2329
* Protected mode assumes that VGICv3 is present, so no point
2330
* in trying to hobble along if vgic initialization fails.
2331
*/
2332
if (is_protected_kvm_enabled())
2333
goto out;
2334
2335
/*
2336
* Otherwise, userspace could choose to implement a GIC for its
2337
* guest on non-cooperative hardware.
2338
*/
2339
vgic_present = false;
2340
err = 0;
2341
break;
2342
default:
2343
goto out;
2344
}
2345
2346
if (kvm_mode == KVM_MODE_NV &&
2347
!(vgic_present && (kvm_vgic_global_state.type == VGIC_V3 ||
2348
kvm_vgic_global_state.has_gcie_v3_compat))) {
2349
kvm_err("NV support requires GICv3 or GICv5 with legacy support, giving up\n");
2350
err = -EINVAL;
2351
goto out;
2352
}
2353
2354
/*
2355
* Init HYP architected timer support
2356
*/
2357
err = kvm_timer_hyp_init(vgic_present);
2358
if (err)
2359
goto out;
2360
2361
kvm_register_perf_callbacks(NULL);
2362
2363
out:
2364
if (err)
2365
hyp_cpu_pm_exit();
2366
2367
if (err || !is_protected_kvm_enabled())
2368
on_each_cpu(cpu_hyp_uninit, NULL, 1);
2369
2370
return err;
2371
}
2372
2373
static void __init teardown_subsystems(void)
2374
{
2375
kvm_unregister_perf_callbacks();
2376
hyp_cpu_pm_exit();
2377
}
2378
2379
static void __init teardown_hyp_mode(void)
2380
{
2381
bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2382
int cpu;
2383
2384
free_hyp_pgds();
2385
for_each_possible_cpu(cpu) {
2386
if (per_cpu(kvm_hyp_initialized, cpu))
2387
continue;
2388
2389
free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2390
2391
if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu])
2392
continue;
2393
2394
if (free_sve) {
2395
struct cpu_sve_state *sve_state;
2396
2397
sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2398
free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2399
}
2400
2401
free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2402
2403
}
2404
}
2405
2406
static int __init do_pkvm_init(u32 hyp_va_bits)
2407
{
2408
void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2409
int ret;
2410
2411
preempt_disable();
2412
cpu_hyp_init_context();
2413
ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2414
num_possible_cpus(), kern_hyp_va(per_cpu_base),
2415
hyp_va_bits);
2416
cpu_hyp_init_features();
2417
2418
/*
2419
* The stub hypercalls are now disabled, so set our local flag to
2420
* prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2421
*/
2422
__this_cpu_write(kvm_hyp_initialized, 1);
2423
preempt_enable();
2424
2425
return ret;
2426
}
2427
2428
static u64 get_hyp_id_aa64pfr0_el1(void)
2429
{
2430
/*
2431
* Track whether the system isn't affected by spectre/meltdown in the
2432
* hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2433
* Although this is per-CPU, we make it global for simplicity, e.g., not
2434
* to have to worry about vcpu migration.
2435
*
2436
* Unlike for non-protected VMs, userspace cannot override this for
2437
* protected VMs.
2438
*/
2439
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2440
2441
val &= ~(ID_AA64PFR0_EL1_CSV2 |
2442
ID_AA64PFR0_EL1_CSV3);
2443
2444
val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV2,
2445
arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2446
val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV3,
2447
arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2448
2449
return val;
2450
}
2451
2452
static void kvm_hyp_init_symbols(void)
2453
{
2454
kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2455
kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2456
kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2457
kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2458
kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2459
kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2460
kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2461
kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2462
kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2463
kvm_nvhe_sym(__icache_flags) = __icache_flags;
2464
kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2465
2466
/* Propagate the FGT state to the nVHE side */
2467
kvm_nvhe_sym(hfgrtr_masks) = hfgrtr_masks;
2468
kvm_nvhe_sym(hfgwtr_masks) = hfgwtr_masks;
2469
kvm_nvhe_sym(hfgitr_masks) = hfgitr_masks;
2470
kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks;
2471
kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks;
2472
kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks;
2473
kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks;
2474
kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks;
2475
kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks;
2476
kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks;
2477
kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks;
2478
2479
/*
2480
* Flush entire BSS since part of its data containing init symbols is read
2481
* while the MMU is off.
2482
*/
2483
kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start),
2484
kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start));
2485
}
2486
2487
static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2488
{
2489
void *addr = phys_to_virt(hyp_mem_base);
2490
int ret;
2491
2492
ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2493
if (ret)
2494
return ret;
2495
2496
ret = do_pkvm_init(hyp_va_bits);
2497
if (ret)
2498
return ret;
2499
2500
free_hyp_pgds();
2501
2502
return 0;
2503
}
2504
2505
static int init_pkvm_host_sve_state(void)
2506
{
2507
int cpu;
2508
2509
if (!system_supports_sve())
2510
return 0;
2511
2512
/* Allocate pages for host sve state in protected mode. */
2513
for_each_possible_cpu(cpu) {
2514
struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2515
2516
if (!page)
2517
return -ENOMEM;
2518
2519
per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2520
}
2521
2522
/*
2523
* Don't map the pages in hyp since these are only used in protected
2524
* mode, which will (re)create its own mapping when initialized.
2525
*/
2526
2527
return 0;
2528
}
2529
2530
/*
2531
* Finalizes the initialization of hyp mode, once everything else is initialized
2532
* and the initialziation process cannot fail.
2533
*/
2534
static void finalize_init_hyp_mode(void)
2535
{
2536
int cpu;
2537
2538
if (system_supports_sve() && is_protected_kvm_enabled()) {
2539
for_each_possible_cpu(cpu) {
2540
struct cpu_sve_state *sve_state;
2541
2542
sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2543
per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2544
kern_hyp_va(sve_state);
2545
}
2546
}
2547
}
2548
2549
static void pkvm_hyp_init_ptrauth(void)
2550
{
2551
struct kvm_cpu_context *hyp_ctxt;
2552
int cpu;
2553
2554
for_each_possible_cpu(cpu) {
2555
hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2556
hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2557
hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2558
hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2559
hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2560
hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2561
hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2562
hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2563
hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2564
hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2565
hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2566
}
2567
}
2568
2569
/* Inits Hyp-mode on all online CPUs */
2570
static int __init init_hyp_mode(void)
2571
{
2572
u32 hyp_va_bits;
2573
int cpu;
2574
int err = -ENOMEM;
2575
2576
/*
2577
* The protected Hyp-mode cannot be initialized if the memory pool
2578
* allocation has failed.
2579
*/
2580
if (is_protected_kvm_enabled() && !hyp_mem_base)
2581
goto out_err;
2582
2583
/*
2584
* Allocate Hyp PGD and setup Hyp identity mapping
2585
*/
2586
err = kvm_mmu_init(&hyp_va_bits);
2587
if (err)
2588
goto out_err;
2589
2590
/*
2591
* Allocate stack pages for Hypervisor-mode
2592
*/
2593
for_each_possible_cpu(cpu) {
2594
unsigned long stack_base;
2595
2596
stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2597
if (!stack_base) {
2598
err = -ENOMEM;
2599
goto out_err;
2600
}
2601
2602
per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2603
}
2604
2605
/*
2606
* Allocate and initialize pages for Hypervisor-mode percpu regions.
2607
*/
2608
for_each_possible_cpu(cpu) {
2609
struct page *page;
2610
void *page_addr;
2611
2612
page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2613
if (!page) {
2614
err = -ENOMEM;
2615
goto out_err;
2616
}
2617
2618
page_addr = page_address(page);
2619
memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2620
kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2621
}
2622
2623
/*
2624
* Map the Hyp-code called directly from the host
2625
*/
2626
err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2627
kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2628
if (err) {
2629
kvm_err("Cannot map world-switch code\n");
2630
goto out_err;
2631
}
2632
2633
err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2634
kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2635
if (err) {
2636
kvm_err("Cannot map .hyp.data section\n");
2637
goto out_err;
2638
}
2639
2640
err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2641
kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2642
if (err) {
2643
kvm_err("Cannot map .hyp.rodata section\n");
2644
goto out_err;
2645
}
2646
2647
err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2648
kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2649
if (err) {
2650
kvm_err("Cannot map rodata section\n");
2651
goto out_err;
2652
}
2653
2654
/*
2655
* .hyp.bss is guaranteed to be placed at the beginning of the .bss
2656
* section thanks to an assertion in the linker script. Map it RW and
2657
* the rest of .bss RO.
2658
*/
2659
err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2660
kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2661
if (err) {
2662
kvm_err("Cannot map hyp bss section: %d\n", err);
2663
goto out_err;
2664
}
2665
2666
err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2667
kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2668
if (err) {
2669
kvm_err("Cannot map bss section\n");
2670
goto out_err;
2671
}
2672
2673
/*
2674
* Map the Hyp stack pages
2675
*/
2676
for_each_possible_cpu(cpu) {
2677
struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2678
char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2679
2680
err = create_hyp_stack(__pa(stack_base), &params->stack_hyp_va);
2681
if (err) {
2682
kvm_err("Cannot map hyp stack\n");
2683
goto out_err;
2684
}
2685
2686
/*
2687
* Save the stack PA in nvhe_init_params. This will be needed
2688
* to recreate the stack mapping in protected nVHE mode.
2689
* __hyp_pa() won't do the right thing there, since the stack
2690
* has been mapped in the flexible private VA space.
2691
*/
2692
params->stack_pa = __pa(stack_base);
2693
}
2694
2695
for_each_possible_cpu(cpu) {
2696
char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2697
char *percpu_end = percpu_begin + nvhe_percpu_size();
2698
2699
/* Map Hyp percpu pages */
2700
err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2701
if (err) {
2702
kvm_err("Cannot map hyp percpu region\n");
2703
goto out_err;
2704
}
2705
2706
/* Prepare the CPU initialization parameters */
2707
cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2708
}
2709
2710
kvm_hyp_init_symbols();
2711
2712
if (is_protected_kvm_enabled()) {
2713
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2714
cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2715
pkvm_hyp_init_ptrauth();
2716
2717
init_cpu_logical_map();
2718
2719
if (!init_psci_relay()) {
2720
err = -ENODEV;
2721
goto out_err;
2722
}
2723
2724
err = init_pkvm_host_sve_state();
2725
if (err)
2726
goto out_err;
2727
2728
err = kvm_hyp_init_protection(hyp_va_bits);
2729
if (err) {
2730
kvm_err("Failed to init hyp memory protection\n");
2731
goto out_err;
2732
}
2733
}
2734
2735
return 0;
2736
2737
out_err:
2738
teardown_hyp_mode();
2739
kvm_err("error initializing Hyp mode: %d\n", err);
2740
return err;
2741
}
2742
2743
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2744
{
2745
struct kvm_vcpu *vcpu = NULL;
2746
struct kvm_mpidr_data *data;
2747
unsigned long i;
2748
2749
mpidr &= MPIDR_HWID_BITMASK;
2750
2751
rcu_read_lock();
2752
data = rcu_dereference(kvm->arch.mpidr_data);
2753
2754
if (data) {
2755
u16 idx = kvm_mpidr_index(data, mpidr);
2756
2757
vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2758
if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2759
vcpu = NULL;
2760
}
2761
2762
rcu_read_unlock();
2763
2764
if (vcpu)
2765
return vcpu;
2766
2767
kvm_for_each_vcpu(i, vcpu, kvm) {
2768
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2769
return vcpu;
2770
}
2771
return NULL;
2772
}
2773
2774
bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2775
{
2776
return irqchip_in_kernel(kvm);
2777
}
2778
2779
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2780
struct irq_bypass_producer *prod)
2781
{
2782
struct kvm_kernel_irqfd *irqfd =
2783
container_of(cons, struct kvm_kernel_irqfd, consumer);
2784
struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2785
2786
/*
2787
* The only thing we have a chance of directly-injecting is LPIs. Maybe
2788
* one day...
2789
*/
2790
if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2791
return 0;
2792
2793
return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2794
&irqfd->irq_entry);
2795
}
2796
2797
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2798
struct irq_bypass_producer *prod)
2799
{
2800
struct kvm_kernel_irqfd *irqfd =
2801
container_of(cons, struct kvm_kernel_irqfd, consumer);
2802
struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2803
2804
if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2805
return;
2806
2807
kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq);
2808
}
2809
2810
void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2811
struct kvm_kernel_irq_routing_entry *old,
2812
struct kvm_kernel_irq_routing_entry *new)
2813
{
2814
if (old->type == KVM_IRQ_ROUTING_MSI &&
2815
new->type == KVM_IRQ_ROUTING_MSI &&
2816
!memcmp(&old->msi, &new->msi, sizeof(new->msi)))
2817
return;
2818
2819
/*
2820
* Remapping the vLPI requires taking the its_lock mutex to resolve
2821
* the new translation. We're in spinlock land at this point, so no
2822
* chance of resolving the translation.
2823
*
2824
* Unmap the vLPI and fall back to software LPI injection.
2825
*/
2826
return kvm_vgic_v4_unset_forwarding(irqfd->kvm, irqfd->producer->irq);
2827
}
2828
2829
void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2830
{
2831
struct kvm_kernel_irqfd *irqfd =
2832
container_of(cons, struct kvm_kernel_irqfd, consumer);
2833
2834
kvm_arm_halt_guest(irqfd->kvm);
2835
}
2836
2837
void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2838
{
2839
struct kvm_kernel_irqfd *irqfd =
2840
container_of(cons, struct kvm_kernel_irqfd, consumer);
2841
2842
kvm_arm_resume_guest(irqfd->kvm);
2843
}
2844
2845
/* Initialize Hyp-mode and memory mappings on all CPUs */
2846
static __init int kvm_arm_init(void)
2847
{
2848
int err;
2849
bool in_hyp_mode;
2850
2851
if (!is_hyp_mode_available()) {
2852
kvm_info("HYP mode not available\n");
2853
return -ENODEV;
2854
}
2855
2856
if (kvm_get_mode() == KVM_MODE_NONE) {
2857
kvm_info("KVM disabled from command line\n");
2858
return -ENODEV;
2859
}
2860
2861
err = kvm_sys_reg_table_init();
2862
if (err) {
2863
kvm_info("Error initializing system register tables");
2864
return err;
2865
}
2866
2867
in_hyp_mode = is_kernel_in_hyp_mode();
2868
2869
if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2870
cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2871
kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2872
"Only trusted guests should be used on this system.\n");
2873
2874
err = kvm_set_ipa_limit();
2875
if (err)
2876
return err;
2877
2878
err = kvm_arm_init_sve();
2879
if (err)
2880
return err;
2881
2882
err = kvm_arm_vmid_alloc_init();
2883
if (err) {
2884
kvm_err("Failed to initialize VMID allocator.\n");
2885
return err;
2886
}
2887
2888
if (!in_hyp_mode) {
2889
err = init_hyp_mode();
2890
if (err)
2891
goto out_err;
2892
}
2893
2894
err = kvm_init_vector_slots();
2895
if (err) {
2896
kvm_err("Cannot initialise vector slots\n");
2897
goto out_hyp;
2898
}
2899
2900
err = init_subsystems();
2901
if (err)
2902
goto out_hyp;
2903
2904
kvm_info("%s%sVHE%s mode initialized successfully\n",
2905
in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2906
"Protected " : "Hyp "),
2907
in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2908
"h" : "n"),
2909
cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": "");
2910
2911
/*
2912
* FIXME: Do something reasonable if kvm_init() fails after pKVM
2913
* hypervisor protection is finalized.
2914
*/
2915
err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2916
if (err)
2917
goto out_subs;
2918
2919
/*
2920
* This should be called after initialization is done and failure isn't
2921
* possible anymore.
2922
*/
2923
if (!in_hyp_mode)
2924
finalize_init_hyp_mode();
2925
2926
kvm_arm_initialised = true;
2927
2928
return 0;
2929
2930
out_subs:
2931
teardown_subsystems();
2932
out_hyp:
2933
if (!in_hyp_mode)
2934
teardown_hyp_mode();
2935
out_err:
2936
kvm_arm_vmid_alloc_free();
2937
return err;
2938
}
2939
2940
static int __init early_kvm_mode_cfg(char *arg)
2941
{
2942
if (!arg)
2943
return -EINVAL;
2944
2945
if (strcmp(arg, "none") == 0) {
2946
kvm_mode = KVM_MODE_NONE;
2947
return 0;
2948
}
2949
2950
if (!is_hyp_mode_available()) {
2951
pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2952
return 0;
2953
}
2954
2955
if (strcmp(arg, "protected") == 0) {
2956
if (!is_kernel_in_hyp_mode())
2957
kvm_mode = KVM_MODE_PROTECTED;
2958
else
2959
pr_warn_once("Protected KVM not available with VHE\n");
2960
2961
return 0;
2962
}
2963
2964
if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2965
kvm_mode = KVM_MODE_DEFAULT;
2966
return 0;
2967
}
2968
2969
if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2970
kvm_mode = KVM_MODE_NV;
2971
return 0;
2972
}
2973
2974
return -EINVAL;
2975
}
2976
early_param("kvm-arm.mode", early_kvm_mode_cfg);
2977
2978
static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2979
{
2980
if (!arg)
2981
return -EINVAL;
2982
2983
if (strcmp(arg, "trap") == 0) {
2984
*p = KVM_WFX_TRAP;
2985
return 0;
2986
}
2987
2988
if (strcmp(arg, "notrap") == 0) {
2989
*p = KVM_WFX_NOTRAP;
2990
return 0;
2991
}
2992
2993
return -EINVAL;
2994
}
2995
2996
static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2997
{
2998
return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2999
}
3000
early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
3001
3002
static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
3003
{
3004
return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
3005
}
3006
early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
3007
3008
enum kvm_mode kvm_get_mode(void)
3009
{
3010
return kvm_mode;
3011
}
3012
3013
module_init(kvm_arm_init);
3014
3015