Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/guest.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2012,2013 - ARM Ltd
4
* Author: Marc Zyngier <[email protected]>
5
*
6
* Derived from arch/arm/kvm/guest.c:
7
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
8
* Author: Christoffer Dall <[email protected]>
9
*/
10
11
#include <linux/bits.h>
12
#include <linux/errno.h>
13
#include <linux/err.h>
14
#include <linux/nospec.h>
15
#include <linux/kvm_host.h>
16
#include <linux/module.h>
17
#include <linux/stddef.h>
18
#include <linux/string.h>
19
#include <linux/vmalloc.h>
20
#include <linux/fs.h>
21
#include <kvm/arm_hypercalls.h>
22
#include <asm/cputype.h>
23
#include <linux/uaccess.h>
24
#include <asm/fpsimd.h>
25
#include <asm/kvm.h>
26
#include <asm/kvm_emulate.h>
27
#include <asm/kvm_nested.h>
28
#include <asm/sigcontext.h>
29
30
#include "trace.h"
31
32
const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
33
KVM_GENERIC_VM_STATS()
34
};
35
36
const struct kvm_stats_header kvm_vm_stats_header = {
37
.name_size = KVM_STATS_NAME_SIZE,
38
.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
39
.id_offset = sizeof(struct kvm_stats_header),
40
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
41
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
42
sizeof(kvm_vm_stats_desc),
43
};
44
45
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
46
KVM_GENERIC_VCPU_STATS(),
47
STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
48
STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
49
STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
50
STATS_DESC_COUNTER(VCPU, mmio_exit_user),
51
STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
52
STATS_DESC_COUNTER(VCPU, signal_exits),
53
STATS_DESC_COUNTER(VCPU, exits)
54
};
55
56
const struct kvm_stats_header kvm_vcpu_stats_header = {
57
.name_size = KVM_STATS_NAME_SIZE,
58
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
59
.id_offset = sizeof(struct kvm_stats_header),
60
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
61
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
62
sizeof(kvm_vcpu_stats_desc),
63
};
64
65
static bool core_reg_offset_is_vreg(u64 off)
66
{
67
return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
68
off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
69
}
70
71
static u64 core_reg_offset_from_id(u64 id)
72
{
73
return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
74
}
75
76
static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
77
{
78
int size;
79
80
switch (off) {
81
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
82
KVM_REG_ARM_CORE_REG(regs.regs[30]):
83
case KVM_REG_ARM_CORE_REG(regs.sp):
84
case KVM_REG_ARM_CORE_REG(regs.pc):
85
case KVM_REG_ARM_CORE_REG(regs.pstate):
86
case KVM_REG_ARM_CORE_REG(sp_el1):
87
case KVM_REG_ARM_CORE_REG(elr_el1):
88
case KVM_REG_ARM_CORE_REG(spsr[0]) ...
89
KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
90
size = sizeof(__u64);
91
break;
92
93
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
94
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
95
size = sizeof(__uint128_t);
96
break;
97
98
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
99
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
100
size = sizeof(__u32);
101
break;
102
103
default:
104
return -EINVAL;
105
}
106
107
if (!IS_ALIGNED(off, size / sizeof(__u32)))
108
return -EINVAL;
109
110
/*
111
* The KVM_REG_ARM64_SVE regs must be used instead of
112
* KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
113
* SVE-enabled vcpus:
114
*/
115
if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
116
return -EINVAL;
117
118
return size;
119
}
120
121
static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
122
{
123
u64 off = core_reg_offset_from_id(reg->id);
124
int size = core_reg_size_from_offset(vcpu, off);
125
126
if (size < 0)
127
return NULL;
128
129
if (KVM_REG_SIZE(reg->id) != size)
130
return NULL;
131
132
switch (off) {
133
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
134
KVM_REG_ARM_CORE_REG(regs.regs[30]):
135
off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
136
off /= 2;
137
return &vcpu->arch.ctxt.regs.regs[off];
138
139
case KVM_REG_ARM_CORE_REG(regs.sp):
140
return &vcpu->arch.ctxt.regs.sp;
141
142
case KVM_REG_ARM_CORE_REG(regs.pc):
143
return &vcpu->arch.ctxt.regs.pc;
144
145
case KVM_REG_ARM_CORE_REG(regs.pstate):
146
return &vcpu->arch.ctxt.regs.pstate;
147
148
case KVM_REG_ARM_CORE_REG(sp_el1):
149
return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
150
151
case KVM_REG_ARM_CORE_REG(elr_el1):
152
return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
153
154
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
155
return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
156
157
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
158
return &vcpu->arch.ctxt.spsr_abt;
159
160
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
161
return &vcpu->arch.ctxt.spsr_und;
162
163
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
164
return &vcpu->arch.ctxt.spsr_irq;
165
166
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
167
return &vcpu->arch.ctxt.spsr_fiq;
168
169
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
170
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
171
off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
172
off /= 4;
173
return &vcpu->arch.ctxt.fp_regs.vregs[off];
174
175
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
176
return &vcpu->arch.ctxt.fp_regs.fpsr;
177
178
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
179
return &vcpu->arch.ctxt.fp_regs.fpcr;
180
181
default:
182
return NULL;
183
}
184
}
185
186
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
187
{
188
/*
189
* Because the kvm_regs structure is a mix of 32, 64 and
190
* 128bit fields, we index it as if it was a 32bit
191
* array. Hence below, nr_regs is the number of entries, and
192
* off the index in the "array".
193
*/
194
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
195
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
196
void *addr;
197
u32 off;
198
199
/* Our ID is an index into the kvm_regs struct. */
200
off = core_reg_offset_from_id(reg->id);
201
if (off >= nr_regs ||
202
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
203
return -ENOENT;
204
205
addr = core_reg_addr(vcpu, reg);
206
if (!addr)
207
return -EINVAL;
208
209
if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
210
return -EFAULT;
211
212
return 0;
213
}
214
215
static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
216
{
217
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
218
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
219
__uint128_t tmp;
220
void *valp = &tmp, *addr;
221
u64 off;
222
int err = 0;
223
224
/* Our ID is an index into the kvm_regs struct. */
225
off = core_reg_offset_from_id(reg->id);
226
if (off >= nr_regs ||
227
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
228
return -ENOENT;
229
230
addr = core_reg_addr(vcpu, reg);
231
if (!addr)
232
return -EINVAL;
233
234
if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
235
return -EINVAL;
236
237
if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
238
err = -EFAULT;
239
goto out;
240
}
241
242
if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
243
u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
244
switch (mode) {
245
case PSR_AA32_MODE_USR:
246
if (!kvm_supports_32bit_el0())
247
return -EINVAL;
248
break;
249
case PSR_AA32_MODE_FIQ:
250
case PSR_AA32_MODE_IRQ:
251
case PSR_AA32_MODE_SVC:
252
case PSR_AA32_MODE_ABT:
253
case PSR_AA32_MODE_UND:
254
case PSR_AA32_MODE_SYS:
255
if (!vcpu_el1_is_32bit(vcpu))
256
return -EINVAL;
257
break;
258
case PSR_MODE_EL2h:
259
case PSR_MODE_EL2t:
260
if (!vcpu_has_nv(vcpu))
261
return -EINVAL;
262
fallthrough;
263
case PSR_MODE_EL0t:
264
case PSR_MODE_EL1t:
265
case PSR_MODE_EL1h:
266
if (vcpu_el1_is_32bit(vcpu))
267
return -EINVAL;
268
break;
269
default:
270
err = -EINVAL;
271
goto out;
272
}
273
}
274
275
memcpy(addr, valp, KVM_REG_SIZE(reg->id));
276
277
if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
278
int i, nr_reg;
279
280
switch (*vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK) {
281
/*
282
* Either we are dealing with user mode, and only the
283
* first 15 registers (+ PC) must be narrowed to 32bit.
284
* AArch32 r0-r14 conveniently map to AArch64 x0-x14.
285
*/
286
case PSR_AA32_MODE_USR:
287
case PSR_AA32_MODE_SYS:
288
nr_reg = 15;
289
break;
290
291
/*
292
* Otherwise, this is a privileged mode, and *all* the
293
* registers must be narrowed to 32bit.
294
*/
295
default:
296
nr_reg = 31;
297
break;
298
}
299
300
for (i = 0; i < nr_reg; i++)
301
vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
302
303
*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
304
}
305
out:
306
return err;
307
}
308
309
#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
310
#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
311
#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
312
313
static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
314
{
315
unsigned int max_vq, vq;
316
u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
317
318
if (!vcpu_has_sve(vcpu))
319
return -ENOENT;
320
321
if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
322
return -EINVAL;
323
324
memset(vqs, 0, sizeof(vqs));
325
326
max_vq = vcpu_sve_max_vq(vcpu);
327
for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
328
if (sve_vq_available(vq))
329
vqs[vq_word(vq)] |= vq_mask(vq);
330
331
if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
332
return -EFAULT;
333
334
return 0;
335
}
336
337
static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
338
{
339
unsigned int max_vq, vq;
340
u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
341
342
if (!vcpu_has_sve(vcpu))
343
return -ENOENT;
344
345
if (kvm_arm_vcpu_sve_finalized(vcpu))
346
return -EPERM; /* too late! */
347
348
if (WARN_ON(vcpu->arch.sve_state))
349
return -EINVAL;
350
351
if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
352
return -EFAULT;
353
354
max_vq = 0;
355
for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
356
if (vq_present(vqs, vq))
357
max_vq = vq;
358
359
if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
360
return -EINVAL;
361
362
/*
363
* Vector lengths supported by the host can't currently be
364
* hidden from the guest individually: instead we can only set a
365
* maximum via ZCR_EL2.LEN. So, make sure the available vector
366
* lengths match the set requested exactly up to the requested
367
* maximum:
368
*/
369
for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
370
if (vq_present(vqs, vq) != sve_vq_available(vq))
371
return -EINVAL;
372
373
/* Can't run with no vector lengths at all: */
374
if (max_vq < SVE_VQ_MIN)
375
return -EINVAL;
376
377
/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
378
vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
379
380
return 0;
381
}
382
383
#define SVE_REG_SLICE_SHIFT 0
384
#define SVE_REG_SLICE_BITS 5
385
#define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
386
#define SVE_REG_ID_BITS 5
387
388
#define SVE_REG_SLICE_MASK \
389
GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
390
SVE_REG_SLICE_SHIFT)
391
#define SVE_REG_ID_MASK \
392
GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
393
394
#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
395
396
#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
397
#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
398
399
/*
400
* Number of register slices required to cover each whole SVE register.
401
* NOTE: Only the first slice every exists, for now.
402
* If you are tempted to modify this, you must also rework sve_reg_to_region()
403
* to match:
404
*/
405
#define vcpu_sve_slices(vcpu) 1
406
407
/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
408
struct sve_state_reg_region {
409
unsigned int koffset; /* offset into sve_state in kernel memory */
410
unsigned int klen; /* length in kernel memory */
411
unsigned int upad; /* extra trailing padding in user memory */
412
};
413
414
/*
415
* Validate SVE register ID and get sanitised bounds for user/kernel SVE
416
* register copy
417
*/
418
static int sve_reg_to_region(struct sve_state_reg_region *region,
419
struct kvm_vcpu *vcpu,
420
const struct kvm_one_reg *reg)
421
{
422
/* reg ID ranges for Z- registers */
423
const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
424
const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
425
SVE_NUM_SLICES - 1);
426
427
/* reg ID ranges for P- registers and FFR (which are contiguous) */
428
const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
429
const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
430
431
unsigned int vq;
432
unsigned int reg_num;
433
434
unsigned int reqoffset, reqlen; /* User-requested offset and length */
435
unsigned int maxlen; /* Maximum permitted length */
436
437
size_t sve_state_size;
438
439
const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
440
SVE_NUM_SLICES - 1);
441
442
/* Verify that the P-regs and FFR really do have contiguous IDs: */
443
BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
444
445
/* Verify that we match the UAPI header: */
446
BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
447
448
reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
449
450
if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
451
if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
452
return -ENOENT;
453
454
vq = vcpu_sve_max_vq(vcpu);
455
456
reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
457
SVE_SIG_REGS_OFFSET;
458
reqlen = KVM_SVE_ZREG_SIZE;
459
maxlen = SVE_SIG_ZREG_SIZE(vq);
460
} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
461
if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
462
return -ENOENT;
463
464
vq = vcpu_sve_max_vq(vcpu);
465
466
reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
467
SVE_SIG_REGS_OFFSET;
468
reqlen = KVM_SVE_PREG_SIZE;
469
maxlen = SVE_SIG_PREG_SIZE(vq);
470
} else {
471
return -EINVAL;
472
}
473
474
sve_state_size = vcpu_sve_state_size(vcpu);
475
if (WARN_ON(!sve_state_size))
476
return -EINVAL;
477
478
region->koffset = array_index_nospec(reqoffset, sve_state_size);
479
region->klen = min(maxlen, reqlen);
480
region->upad = reqlen - region->klen;
481
482
return 0;
483
}
484
485
static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
486
{
487
int ret;
488
struct sve_state_reg_region region;
489
char __user *uptr = (char __user *)reg->addr;
490
491
/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
492
if (reg->id == KVM_REG_ARM64_SVE_VLS)
493
return get_sve_vls(vcpu, reg);
494
495
/* Try to interpret reg ID as an architectural SVE register... */
496
ret = sve_reg_to_region(&region, vcpu, reg);
497
if (ret)
498
return ret;
499
500
if (!kvm_arm_vcpu_sve_finalized(vcpu))
501
return -EPERM;
502
503
if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
504
region.klen) ||
505
clear_user(uptr + region.klen, region.upad))
506
return -EFAULT;
507
508
return 0;
509
}
510
511
static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
512
{
513
int ret;
514
struct sve_state_reg_region region;
515
const char __user *uptr = (const char __user *)reg->addr;
516
517
/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
518
if (reg->id == KVM_REG_ARM64_SVE_VLS)
519
return set_sve_vls(vcpu, reg);
520
521
/* Try to interpret reg ID as an architectural SVE register... */
522
ret = sve_reg_to_region(&region, vcpu, reg);
523
if (ret)
524
return ret;
525
526
if (!kvm_arm_vcpu_sve_finalized(vcpu))
527
return -EPERM;
528
529
if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
530
region.klen))
531
return -EFAULT;
532
533
return 0;
534
}
535
536
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
537
{
538
return -EINVAL;
539
}
540
541
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
542
{
543
return -EINVAL;
544
}
545
546
static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
547
u64 __user *uindices)
548
{
549
unsigned int i;
550
int n = 0;
551
552
for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
553
u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
554
int size = core_reg_size_from_offset(vcpu, i);
555
556
if (size < 0)
557
continue;
558
559
switch (size) {
560
case sizeof(__u32):
561
reg |= KVM_REG_SIZE_U32;
562
break;
563
564
case sizeof(__u64):
565
reg |= KVM_REG_SIZE_U64;
566
break;
567
568
case sizeof(__uint128_t):
569
reg |= KVM_REG_SIZE_U128;
570
break;
571
572
default:
573
WARN_ON(1);
574
continue;
575
}
576
577
if (uindices) {
578
if (put_user(reg, uindices))
579
return -EFAULT;
580
uindices++;
581
}
582
583
n++;
584
}
585
586
return n;
587
}
588
589
static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
590
{
591
return copy_core_reg_indices(vcpu, NULL);
592
}
593
594
static const u64 timer_reg_list[] = {
595
KVM_REG_ARM_TIMER_CTL,
596
KVM_REG_ARM_TIMER_CNT,
597
KVM_REG_ARM_TIMER_CVAL,
598
KVM_REG_ARM_PTIMER_CTL,
599
KVM_REG_ARM_PTIMER_CNT,
600
KVM_REG_ARM_PTIMER_CVAL,
601
};
602
603
#define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
604
605
static bool is_timer_reg(u64 index)
606
{
607
switch (index) {
608
case KVM_REG_ARM_TIMER_CTL:
609
case KVM_REG_ARM_TIMER_CNT:
610
case KVM_REG_ARM_TIMER_CVAL:
611
case KVM_REG_ARM_PTIMER_CTL:
612
case KVM_REG_ARM_PTIMER_CNT:
613
case KVM_REG_ARM_PTIMER_CVAL:
614
return true;
615
}
616
return false;
617
}
618
619
static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
620
{
621
for (int i = 0; i < NUM_TIMER_REGS; i++) {
622
if (put_user(timer_reg_list[i], uindices))
623
return -EFAULT;
624
uindices++;
625
}
626
627
return 0;
628
}
629
630
static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
631
{
632
void __user *uaddr = (void __user *)(long)reg->addr;
633
u64 val;
634
int ret;
635
636
ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
637
if (ret != 0)
638
return -EFAULT;
639
640
return kvm_arm_timer_set_reg(vcpu, reg->id, val);
641
}
642
643
static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
644
{
645
void __user *uaddr = (void __user *)(long)reg->addr;
646
u64 val;
647
648
val = kvm_arm_timer_get_reg(vcpu, reg->id);
649
return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
650
}
651
652
static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
653
{
654
const unsigned int slices = vcpu_sve_slices(vcpu);
655
656
if (!vcpu_has_sve(vcpu))
657
return 0;
658
659
/* Policed by KVM_GET_REG_LIST: */
660
WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
661
662
return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
663
+ 1; /* KVM_REG_ARM64_SVE_VLS */
664
}
665
666
static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
667
u64 __user *uindices)
668
{
669
const unsigned int slices = vcpu_sve_slices(vcpu);
670
u64 reg;
671
unsigned int i, n;
672
int num_regs = 0;
673
674
if (!vcpu_has_sve(vcpu))
675
return 0;
676
677
/* Policed by KVM_GET_REG_LIST: */
678
WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
679
680
/*
681
* Enumerate this first, so that userspace can save/restore in
682
* the order reported by KVM_GET_REG_LIST:
683
*/
684
reg = KVM_REG_ARM64_SVE_VLS;
685
if (put_user(reg, uindices++))
686
return -EFAULT;
687
++num_regs;
688
689
for (i = 0; i < slices; i++) {
690
for (n = 0; n < SVE_NUM_ZREGS; n++) {
691
reg = KVM_REG_ARM64_SVE_ZREG(n, i);
692
if (put_user(reg, uindices++))
693
return -EFAULT;
694
num_regs++;
695
}
696
697
for (n = 0; n < SVE_NUM_PREGS; n++) {
698
reg = KVM_REG_ARM64_SVE_PREG(n, i);
699
if (put_user(reg, uindices++))
700
return -EFAULT;
701
num_regs++;
702
}
703
704
reg = KVM_REG_ARM64_SVE_FFR(i);
705
if (put_user(reg, uindices++))
706
return -EFAULT;
707
num_regs++;
708
}
709
710
return num_regs;
711
}
712
713
/**
714
* kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
715
* @vcpu: the vCPU pointer
716
*
717
* This is for all registers.
718
*/
719
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
720
{
721
unsigned long res = 0;
722
723
res += num_core_regs(vcpu);
724
res += num_sve_regs(vcpu);
725
res += kvm_arm_num_sys_reg_descs(vcpu);
726
res += kvm_arm_get_fw_num_regs(vcpu);
727
res += NUM_TIMER_REGS;
728
729
return res;
730
}
731
732
/**
733
* kvm_arm_copy_reg_indices - get indices of all registers.
734
* @vcpu: the vCPU pointer
735
* @uindices: register list to copy
736
*
737
* We do core registers right here, then we append system regs.
738
*/
739
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
740
{
741
int ret;
742
743
ret = copy_core_reg_indices(vcpu, uindices);
744
if (ret < 0)
745
return ret;
746
uindices += ret;
747
748
ret = copy_sve_reg_indices(vcpu, uindices);
749
if (ret < 0)
750
return ret;
751
uindices += ret;
752
753
ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
754
if (ret < 0)
755
return ret;
756
uindices += kvm_arm_get_fw_num_regs(vcpu);
757
758
ret = copy_timer_indices(vcpu, uindices);
759
if (ret < 0)
760
return ret;
761
uindices += NUM_TIMER_REGS;
762
763
return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
764
}
765
766
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
767
{
768
/* We currently use nothing arch-specific in upper 32 bits */
769
if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
770
return -EINVAL;
771
772
switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
773
case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
774
case KVM_REG_ARM_FW:
775
case KVM_REG_ARM_FW_FEAT_BMAP:
776
return kvm_arm_get_fw_reg(vcpu, reg);
777
case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
778
}
779
780
if (is_timer_reg(reg->id))
781
return get_timer_reg(vcpu, reg);
782
783
return kvm_arm_sys_reg_get_reg(vcpu, reg);
784
}
785
786
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
787
{
788
/* We currently use nothing arch-specific in upper 32 bits */
789
if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
790
return -EINVAL;
791
792
switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
793
case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
794
case KVM_REG_ARM_FW:
795
case KVM_REG_ARM_FW_FEAT_BMAP:
796
return kvm_arm_set_fw_reg(vcpu, reg);
797
case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
798
}
799
800
if (is_timer_reg(reg->id))
801
return set_timer_reg(vcpu, reg);
802
803
return kvm_arm_sys_reg_set_reg(vcpu, reg);
804
}
805
806
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
807
struct kvm_sregs *sregs)
808
{
809
return -EINVAL;
810
}
811
812
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
813
struct kvm_sregs *sregs)
814
{
815
return -EINVAL;
816
}
817
818
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
819
struct kvm_vcpu_events *events)
820
{
821
events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
822
events->exception.serror_pending = (vcpu->arch.hcr_el2 & HCR_VSE) ||
823
vcpu_get_flag(vcpu, NESTED_SERROR_PENDING);
824
825
if (events->exception.serror_pending && events->exception.serror_has_esr)
826
events->exception.serror_esr = vcpu_get_vsesr(vcpu);
827
828
/*
829
* We never return a pending ext_dabt here because we deliver it to
830
* the virtual CPU directly when setting the event and it's no longer
831
* 'pending' at this point.
832
*/
833
834
return 0;
835
}
836
837
static void commit_pending_events(struct kvm_vcpu *vcpu)
838
{
839
if (!vcpu_get_flag(vcpu, PENDING_EXCEPTION))
840
return;
841
842
/*
843
* Reset the MMIO emulation state to avoid stepping PC after emulating
844
* the exception entry.
845
*/
846
vcpu->mmio_needed = false;
847
kvm_call_hyp(__kvm_adjust_pc, vcpu);
848
}
849
850
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
851
struct kvm_vcpu_events *events)
852
{
853
bool serror_pending = events->exception.serror_pending;
854
bool has_esr = events->exception.serror_has_esr;
855
bool ext_dabt_pending = events->exception.ext_dabt_pending;
856
u64 esr = events->exception.serror_esr;
857
int ret = 0;
858
859
/*
860
* Immediately commit the pending SEA to the vCPU's architectural
861
* state which is necessary since we do not return a pending SEA
862
* to userspace via KVM_GET_VCPU_EVENTS.
863
*/
864
if (ext_dabt_pending) {
865
ret = kvm_inject_sea_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
866
commit_pending_events(vcpu);
867
}
868
869
if (ret < 0)
870
return ret;
871
872
if (!serror_pending)
873
return 0;
874
875
if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && has_esr)
876
return -EINVAL;
877
878
if (has_esr && (esr & ~ESR_ELx_ISS_MASK))
879
return -EINVAL;
880
881
if (has_esr)
882
ret = kvm_inject_serror_esr(vcpu, esr);
883
else
884
ret = kvm_inject_serror(vcpu);
885
886
/*
887
* We could've decided that the SError is due for immediate software
888
* injection; commit the exception in case userspace decides it wants
889
* to inject more exceptions for some strange reason.
890
*/
891
commit_pending_events(vcpu);
892
return (ret < 0) ? ret : 0;
893
}
894
895
u32 __attribute_const__ kvm_target_cpu(void)
896
{
897
unsigned long implementor = read_cpuid_implementor();
898
unsigned long part_number = read_cpuid_part_number();
899
900
switch (implementor) {
901
case ARM_CPU_IMP_ARM:
902
switch (part_number) {
903
case ARM_CPU_PART_AEM_V8:
904
return KVM_ARM_TARGET_AEM_V8;
905
case ARM_CPU_PART_FOUNDATION:
906
return KVM_ARM_TARGET_FOUNDATION_V8;
907
case ARM_CPU_PART_CORTEX_A53:
908
return KVM_ARM_TARGET_CORTEX_A53;
909
case ARM_CPU_PART_CORTEX_A57:
910
return KVM_ARM_TARGET_CORTEX_A57;
911
}
912
break;
913
case ARM_CPU_IMP_APM:
914
switch (part_number) {
915
case APM_CPU_PART_XGENE:
916
return KVM_ARM_TARGET_XGENE_POTENZA;
917
}
918
break;
919
}
920
921
/* Return a default generic target */
922
return KVM_ARM_TARGET_GENERIC_V8;
923
}
924
925
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
926
{
927
return -EINVAL;
928
}
929
930
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
931
{
932
return -EINVAL;
933
}
934
935
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
936
struct kvm_translation *tr)
937
{
938
return -EINVAL;
939
}
940
941
/**
942
* kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
943
* @vcpu: the vCPU pointer
944
* @dbg: the ioctl data buffer
945
*
946
* This sets up and enables the VM for guest debugging. Userspace
947
* passes in a control flag to enable different debug types and
948
* potentially other architecture specific information in the rest of
949
* the structure.
950
*/
951
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
952
struct kvm_guest_debug *dbg)
953
{
954
trace_kvm_set_guest_debug(vcpu, dbg->control);
955
956
if (dbg->control & ~KVM_GUESTDBG_VALID_MASK)
957
return -EINVAL;
958
959
if (!(dbg->control & KVM_GUESTDBG_ENABLE)) {
960
vcpu->guest_debug = 0;
961
vcpu_clear_flag(vcpu, HOST_SS_ACTIVE_PENDING);
962
return 0;
963
}
964
965
vcpu->guest_debug = dbg->control;
966
967
/* Hardware assisted Break and Watch points */
968
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW)
969
vcpu->arch.external_debug_state = dbg->arch;
970
971
return 0;
972
}
973
974
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
975
struct kvm_device_attr *attr)
976
{
977
int ret;
978
979
switch (attr->group) {
980
case KVM_ARM_VCPU_PMU_V3_CTRL:
981
mutex_lock(&vcpu->kvm->arch.config_lock);
982
ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
983
mutex_unlock(&vcpu->kvm->arch.config_lock);
984
break;
985
case KVM_ARM_VCPU_TIMER_CTRL:
986
ret = kvm_arm_timer_set_attr(vcpu, attr);
987
break;
988
case KVM_ARM_VCPU_PVTIME_CTRL:
989
ret = kvm_arm_pvtime_set_attr(vcpu, attr);
990
break;
991
default:
992
ret = -ENXIO;
993
break;
994
}
995
996
return ret;
997
}
998
999
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1000
struct kvm_device_attr *attr)
1001
{
1002
int ret;
1003
1004
switch (attr->group) {
1005
case KVM_ARM_VCPU_PMU_V3_CTRL:
1006
ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
1007
break;
1008
case KVM_ARM_VCPU_TIMER_CTRL:
1009
ret = kvm_arm_timer_get_attr(vcpu, attr);
1010
break;
1011
case KVM_ARM_VCPU_PVTIME_CTRL:
1012
ret = kvm_arm_pvtime_get_attr(vcpu, attr);
1013
break;
1014
default:
1015
ret = -ENXIO;
1016
break;
1017
}
1018
1019
return ret;
1020
}
1021
1022
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1023
struct kvm_device_attr *attr)
1024
{
1025
int ret;
1026
1027
switch (attr->group) {
1028
case KVM_ARM_VCPU_PMU_V3_CTRL:
1029
ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1030
break;
1031
case KVM_ARM_VCPU_TIMER_CTRL:
1032
ret = kvm_arm_timer_has_attr(vcpu, attr);
1033
break;
1034
case KVM_ARM_VCPU_PVTIME_CTRL:
1035
ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1036
break;
1037
default:
1038
ret = -ENXIO;
1039
break;
1040
}
1041
1042
return ret;
1043
}
1044
1045
int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1046
struct kvm_arm_copy_mte_tags *copy_tags)
1047
{
1048
gpa_t guest_ipa = copy_tags->guest_ipa;
1049
size_t length = copy_tags->length;
1050
void __user *tags = copy_tags->addr;
1051
gpa_t gfn;
1052
bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1053
int ret = 0;
1054
1055
if (!kvm_has_mte(kvm))
1056
return -EINVAL;
1057
1058
if (copy_tags->reserved[0] || copy_tags->reserved[1])
1059
return -EINVAL;
1060
1061
if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1062
return -EINVAL;
1063
1064
if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1065
return -EINVAL;
1066
1067
/* Lengths above INT_MAX cannot be represented in the return value */
1068
if (length > INT_MAX)
1069
return -EINVAL;
1070
1071
gfn = gpa_to_gfn(guest_ipa);
1072
1073
mutex_lock(&kvm->slots_lock);
1074
1075
if (write && atomic_read(&kvm->nr_memslots_dirty_logging)) {
1076
ret = -EBUSY;
1077
goto out;
1078
}
1079
1080
while (length > 0) {
1081
struct page *page = __gfn_to_page(kvm, gfn, write);
1082
void *maddr;
1083
unsigned long num_tags;
1084
struct folio *folio;
1085
1086
if (!page) {
1087
ret = -EFAULT;
1088
goto out;
1089
}
1090
1091
if (!pfn_to_online_page(page_to_pfn(page))) {
1092
/* Reject ZONE_DEVICE memory */
1093
kvm_release_page_unused(page);
1094
ret = -EFAULT;
1095
goto out;
1096
}
1097
folio = page_folio(page);
1098
maddr = page_address(page);
1099
1100
if (!write) {
1101
if ((folio_test_hugetlb(folio) &&
1102
folio_test_hugetlb_mte_tagged(folio)) ||
1103
page_mte_tagged(page))
1104
num_tags = mte_copy_tags_to_user(tags, maddr,
1105
MTE_GRANULES_PER_PAGE);
1106
else
1107
/* No tags in memory, so write zeros */
1108
num_tags = MTE_GRANULES_PER_PAGE -
1109
clear_user(tags, MTE_GRANULES_PER_PAGE);
1110
kvm_release_page_clean(page);
1111
} else {
1112
/*
1113
* Only locking to serialise with a concurrent
1114
* __set_ptes() in the VMM but still overriding the
1115
* tags, hence ignoring the return value.
1116
*/
1117
if (folio_test_hugetlb(folio))
1118
folio_try_hugetlb_mte_tagging(folio);
1119
else
1120
try_page_mte_tagging(page);
1121
num_tags = mte_copy_tags_from_user(maddr, tags,
1122
MTE_GRANULES_PER_PAGE);
1123
1124
/* uaccess failed, don't leave stale tags */
1125
if (num_tags != MTE_GRANULES_PER_PAGE)
1126
mte_clear_page_tags(maddr);
1127
if (folio_test_hugetlb(folio))
1128
folio_set_hugetlb_mte_tagged(folio);
1129
else
1130
set_page_mte_tagged(page);
1131
1132
kvm_release_page_dirty(page);
1133
}
1134
1135
if (num_tags != MTE_GRANULES_PER_PAGE) {
1136
ret = -EFAULT;
1137
goto out;
1138
}
1139
1140
gfn++;
1141
tags += num_tags;
1142
length -= PAGE_SIZE;
1143
}
1144
1145
out:
1146
mutex_unlock(&kvm->slots_lock);
1147
/* If some data has been copied report the number of bytes copied */
1148
if (length != copy_tags->length)
1149
return copy_tags->length - length;
1150
return ret;
1151
}
1152
1153