Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/guest.c
50674 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2012,2013 - ARM Ltd
4
* Author: Marc Zyngier <[email protected]>
5
*
6
* Derived from arch/arm/kvm/guest.c:
7
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
8
* Author: Christoffer Dall <[email protected]>
9
*/
10
11
#include <linux/bits.h>
12
#include <linux/errno.h>
13
#include <linux/err.h>
14
#include <linux/nospec.h>
15
#include <linux/kvm_host.h>
16
#include <linux/module.h>
17
#include <linux/stddef.h>
18
#include <linux/string.h>
19
#include <linux/vmalloc.h>
20
#include <linux/fs.h>
21
#include <kvm/arm_hypercalls.h>
22
#include <asm/cputype.h>
23
#include <linux/uaccess.h>
24
#include <asm/fpsimd.h>
25
#include <asm/kvm.h>
26
#include <asm/kvm_emulate.h>
27
#include <asm/kvm_nested.h>
28
#include <asm/sigcontext.h>
29
30
#include "trace.h"
31
32
const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
33
KVM_GENERIC_VM_STATS()
34
};
35
36
const struct kvm_stats_header kvm_vm_stats_header = {
37
.name_size = KVM_STATS_NAME_SIZE,
38
.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
39
.id_offset = sizeof(struct kvm_stats_header),
40
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
41
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
42
sizeof(kvm_vm_stats_desc),
43
};
44
45
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
46
KVM_GENERIC_VCPU_STATS(),
47
STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
48
STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
49
STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
50
STATS_DESC_COUNTER(VCPU, mmio_exit_user),
51
STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
52
STATS_DESC_COUNTER(VCPU, signal_exits),
53
STATS_DESC_COUNTER(VCPU, exits)
54
};
55
56
const struct kvm_stats_header kvm_vcpu_stats_header = {
57
.name_size = KVM_STATS_NAME_SIZE,
58
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
59
.id_offset = sizeof(struct kvm_stats_header),
60
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
61
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
62
sizeof(kvm_vcpu_stats_desc),
63
};
64
65
static bool core_reg_offset_is_vreg(u64 off)
66
{
67
return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
68
off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
69
}
70
71
static u64 core_reg_offset_from_id(u64 id)
72
{
73
return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
74
}
75
76
static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
77
{
78
int size;
79
80
switch (off) {
81
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
82
KVM_REG_ARM_CORE_REG(regs.regs[30]):
83
case KVM_REG_ARM_CORE_REG(regs.sp):
84
case KVM_REG_ARM_CORE_REG(regs.pc):
85
case KVM_REG_ARM_CORE_REG(regs.pstate):
86
case KVM_REG_ARM_CORE_REG(sp_el1):
87
case KVM_REG_ARM_CORE_REG(elr_el1):
88
case KVM_REG_ARM_CORE_REG(spsr[0]) ...
89
KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
90
size = sizeof(__u64);
91
break;
92
93
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
94
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
95
size = sizeof(__uint128_t);
96
break;
97
98
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
99
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
100
size = sizeof(__u32);
101
break;
102
103
default:
104
return -EINVAL;
105
}
106
107
if (!IS_ALIGNED(off, size / sizeof(__u32)))
108
return -EINVAL;
109
110
/*
111
* The KVM_REG_ARM64_SVE regs must be used instead of
112
* KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
113
* SVE-enabled vcpus:
114
*/
115
if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
116
return -EINVAL;
117
118
return size;
119
}
120
121
static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
122
{
123
u64 off = core_reg_offset_from_id(reg->id);
124
int size = core_reg_size_from_offset(vcpu, off);
125
126
if (size < 0)
127
return NULL;
128
129
if (KVM_REG_SIZE(reg->id) != size)
130
return NULL;
131
132
switch (off) {
133
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
134
KVM_REG_ARM_CORE_REG(regs.regs[30]):
135
off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
136
off /= 2;
137
return &vcpu->arch.ctxt.regs.regs[off];
138
139
case KVM_REG_ARM_CORE_REG(regs.sp):
140
return &vcpu->arch.ctxt.regs.sp;
141
142
case KVM_REG_ARM_CORE_REG(regs.pc):
143
return &vcpu->arch.ctxt.regs.pc;
144
145
case KVM_REG_ARM_CORE_REG(regs.pstate):
146
return &vcpu->arch.ctxt.regs.pstate;
147
148
case KVM_REG_ARM_CORE_REG(sp_el1):
149
return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
150
151
case KVM_REG_ARM_CORE_REG(elr_el1):
152
return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
153
154
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
155
return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
156
157
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
158
return &vcpu->arch.ctxt.spsr_abt;
159
160
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
161
return &vcpu->arch.ctxt.spsr_und;
162
163
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
164
return &vcpu->arch.ctxt.spsr_irq;
165
166
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
167
return &vcpu->arch.ctxt.spsr_fiq;
168
169
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
170
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
171
off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
172
off /= 4;
173
return &vcpu->arch.ctxt.fp_regs.vregs[off];
174
175
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
176
return &vcpu->arch.ctxt.fp_regs.fpsr;
177
178
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
179
return &vcpu->arch.ctxt.fp_regs.fpcr;
180
181
default:
182
return NULL;
183
}
184
}
185
186
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
187
{
188
/*
189
* Because the kvm_regs structure is a mix of 32, 64 and
190
* 128bit fields, we index it as if it was a 32bit
191
* array. Hence below, nr_regs is the number of entries, and
192
* off the index in the "array".
193
*/
194
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
195
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
196
void *addr;
197
u32 off;
198
199
/* Our ID is an index into the kvm_regs struct. */
200
off = core_reg_offset_from_id(reg->id);
201
if (off >= nr_regs ||
202
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
203
return -ENOENT;
204
205
addr = core_reg_addr(vcpu, reg);
206
if (!addr)
207
return -EINVAL;
208
209
if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
210
return -EFAULT;
211
212
return 0;
213
}
214
215
static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
216
{
217
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
218
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
219
__uint128_t tmp;
220
void *valp = &tmp, *addr;
221
u64 off;
222
int err = 0;
223
224
/* Our ID is an index into the kvm_regs struct. */
225
off = core_reg_offset_from_id(reg->id);
226
if (off >= nr_regs ||
227
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
228
return -ENOENT;
229
230
addr = core_reg_addr(vcpu, reg);
231
if (!addr)
232
return -EINVAL;
233
234
if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
235
return -EINVAL;
236
237
if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
238
err = -EFAULT;
239
goto out;
240
}
241
242
if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
243
u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
244
switch (mode) {
245
case PSR_AA32_MODE_USR:
246
if (!kvm_supports_32bit_el0())
247
return -EINVAL;
248
break;
249
case PSR_AA32_MODE_FIQ:
250
case PSR_AA32_MODE_IRQ:
251
case PSR_AA32_MODE_SVC:
252
case PSR_AA32_MODE_ABT:
253
case PSR_AA32_MODE_UND:
254
case PSR_AA32_MODE_SYS:
255
if (!vcpu_el1_is_32bit(vcpu))
256
return -EINVAL;
257
break;
258
case PSR_MODE_EL2h:
259
case PSR_MODE_EL2t:
260
if (!vcpu_has_nv(vcpu))
261
return -EINVAL;
262
fallthrough;
263
case PSR_MODE_EL0t:
264
case PSR_MODE_EL1t:
265
case PSR_MODE_EL1h:
266
if (vcpu_el1_is_32bit(vcpu))
267
return -EINVAL;
268
break;
269
default:
270
err = -EINVAL;
271
goto out;
272
}
273
}
274
275
memcpy(addr, valp, KVM_REG_SIZE(reg->id));
276
277
if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
278
int i, nr_reg;
279
280
switch (*vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK) {
281
/*
282
* Either we are dealing with user mode, and only the
283
* first 15 registers (+ PC) must be narrowed to 32bit.
284
* AArch32 r0-r14 conveniently map to AArch64 x0-x14.
285
*/
286
case PSR_AA32_MODE_USR:
287
case PSR_AA32_MODE_SYS:
288
nr_reg = 15;
289
break;
290
291
/*
292
* Otherwise, this is a privileged mode, and *all* the
293
* registers must be narrowed to 32bit.
294
*/
295
default:
296
nr_reg = 31;
297
break;
298
}
299
300
for (i = 0; i < nr_reg; i++)
301
vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
302
303
*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
304
}
305
out:
306
return err;
307
}
308
309
#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
310
#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
311
#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
312
313
static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
314
{
315
unsigned int max_vq, vq;
316
u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
317
318
if (!vcpu_has_sve(vcpu))
319
return -ENOENT;
320
321
if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
322
return -EINVAL;
323
324
memset(vqs, 0, sizeof(vqs));
325
326
max_vq = vcpu_sve_max_vq(vcpu);
327
for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
328
if (sve_vq_available(vq))
329
vqs[vq_word(vq)] |= vq_mask(vq);
330
331
if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
332
return -EFAULT;
333
334
return 0;
335
}
336
337
static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
338
{
339
unsigned int max_vq, vq;
340
u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
341
342
if (!vcpu_has_sve(vcpu))
343
return -ENOENT;
344
345
if (kvm_arm_vcpu_sve_finalized(vcpu))
346
return -EPERM; /* too late! */
347
348
if (WARN_ON(vcpu->arch.sve_state))
349
return -EINVAL;
350
351
if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
352
return -EFAULT;
353
354
max_vq = 0;
355
for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
356
if (vq_present(vqs, vq))
357
max_vq = vq;
358
359
if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
360
return -EINVAL;
361
362
/*
363
* Vector lengths supported by the host can't currently be
364
* hidden from the guest individually: instead we can only set a
365
* maximum via ZCR_EL2.LEN. So, make sure the available vector
366
* lengths match the set requested exactly up to the requested
367
* maximum:
368
*/
369
for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
370
if (vq_present(vqs, vq) != sve_vq_available(vq))
371
return -EINVAL;
372
373
/* Can't run with no vector lengths at all: */
374
if (max_vq < SVE_VQ_MIN)
375
return -EINVAL;
376
377
/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
378
vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
379
380
return 0;
381
}
382
383
#define SVE_REG_SLICE_SHIFT 0
384
#define SVE_REG_SLICE_BITS 5
385
#define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
386
#define SVE_REG_ID_BITS 5
387
388
#define SVE_REG_SLICE_MASK \
389
GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
390
SVE_REG_SLICE_SHIFT)
391
#define SVE_REG_ID_MASK \
392
GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
393
394
#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
395
396
#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
397
#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
398
399
/*
400
* Number of register slices required to cover each whole SVE register.
401
* NOTE: Only the first slice every exists, for now.
402
* If you are tempted to modify this, you must also rework sve_reg_to_region()
403
* to match:
404
*/
405
#define vcpu_sve_slices(vcpu) 1
406
407
/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
408
struct sve_state_reg_region {
409
unsigned int koffset; /* offset into sve_state in kernel memory */
410
unsigned int klen; /* length in kernel memory */
411
unsigned int upad; /* extra trailing padding in user memory */
412
};
413
414
/*
415
* Validate SVE register ID and get sanitised bounds for user/kernel SVE
416
* register copy
417
*/
418
static int sve_reg_to_region(struct sve_state_reg_region *region,
419
struct kvm_vcpu *vcpu,
420
const struct kvm_one_reg *reg)
421
{
422
/* reg ID ranges for Z- registers */
423
const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
424
const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
425
SVE_NUM_SLICES - 1);
426
427
/* reg ID ranges for P- registers and FFR (which are contiguous) */
428
const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
429
const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
430
431
unsigned int vq;
432
unsigned int reg_num;
433
434
unsigned int reqoffset, reqlen; /* User-requested offset and length */
435
unsigned int maxlen; /* Maximum permitted length */
436
437
size_t sve_state_size;
438
439
const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
440
SVE_NUM_SLICES - 1);
441
442
/* Verify that the P-regs and FFR really do have contiguous IDs: */
443
BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
444
445
/* Verify that we match the UAPI header: */
446
BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
447
448
reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
449
450
if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
451
if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
452
return -ENOENT;
453
454
vq = vcpu_sve_max_vq(vcpu);
455
456
reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
457
SVE_SIG_REGS_OFFSET;
458
reqlen = KVM_SVE_ZREG_SIZE;
459
maxlen = SVE_SIG_ZREG_SIZE(vq);
460
} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
461
if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
462
return -ENOENT;
463
464
vq = vcpu_sve_max_vq(vcpu);
465
466
reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
467
SVE_SIG_REGS_OFFSET;
468
reqlen = KVM_SVE_PREG_SIZE;
469
maxlen = SVE_SIG_PREG_SIZE(vq);
470
} else {
471
return -EINVAL;
472
}
473
474
sve_state_size = vcpu_sve_state_size(vcpu);
475
if (WARN_ON(!sve_state_size))
476
return -EINVAL;
477
478
region->koffset = array_index_nospec(reqoffset, sve_state_size);
479
region->klen = min(maxlen, reqlen);
480
region->upad = reqlen - region->klen;
481
482
return 0;
483
}
484
485
static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
486
{
487
int ret;
488
struct sve_state_reg_region region;
489
char __user *uptr = (char __user *)reg->addr;
490
491
/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
492
if (reg->id == KVM_REG_ARM64_SVE_VLS)
493
return get_sve_vls(vcpu, reg);
494
495
/* Try to interpret reg ID as an architectural SVE register... */
496
ret = sve_reg_to_region(&region, vcpu, reg);
497
if (ret)
498
return ret;
499
500
if (!kvm_arm_vcpu_sve_finalized(vcpu))
501
return -EPERM;
502
503
if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
504
region.klen) ||
505
clear_user(uptr + region.klen, region.upad))
506
return -EFAULT;
507
508
return 0;
509
}
510
511
static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
512
{
513
int ret;
514
struct sve_state_reg_region region;
515
const char __user *uptr = (const char __user *)reg->addr;
516
517
/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
518
if (reg->id == KVM_REG_ARM64_SVE_VLS)
519
return set_sve_vls(vcpu, reg);
520
521
/* Try to interpret reg ID as an architectural SVE register... */
522
ret = sve_reg_to_region(&region, vcpu, reg);
523
if (ret)
524
return ret;
525
526
if (!kvm_arm_vcpu_sve_finalized(vcpu))
527
return -EPERM;
528
529
if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
530
region.klen))
531
return -EFAULT;
532
533
return 0;
534
}
535
536
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
537
{
538
return -EINVAL;
539
}
540
541
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
542
{
543
return -EINVAL;
544
}
545
546
static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
547
u64 __user *uindices)
548
{
549
unsigned int i;
550
int n = 0;
551
552
for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
553
u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
554
int size = core_reg_size_from_offset(vcpu, i);
555
556
if (size < 0)
557
continue;
558
559
switch (size) {
560
case sizeof(__u32):
561
reg |= KVM_REG_SIZE_U32;
562
break;
563
564
case sizeof(__u64):
565
reg |= KVM_REG_SIZE_U64;
566
break;
567
568
case sizeof(__uint128_t):
569
reg |= KVM_REG_SIZE_U128;
570
break;
571
572
default:
573
WARN_ON(1);
574
continue;
575
}
576
577
if (uindices) {
578
if (put_user(reg, uindices))
579
return -EFAULT;
580
uindices++;
581
}
582
583
n++;
584
}
585
586
return n;
587
}
588
589
static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
590
{
591
return copy_core_reg_indices(vcpu, NULL);
592
}
593
594
static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
595
{
596
const unsigned int slices = vcpu_sve_slices(vcpu);
597
598
if (!vcpu_has_sve(vcpu))
599
return 0;
600
601
/* Policed by KVM_GET_REG_LIST: */
602
WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
603
604
return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
605
+ 1; /* KVM_REG_ARM64_SVE_VLS */
606
}
607
608
static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
609
u64 __user *uindices)
610
{
611
const unsigned int slices = vcpu_sve_slices(vcpu);
612
u64 reg;
613
unsigned int i, n;
614
int num_regs = 0;
615
616
if (!vcpu_has_sve(vcpu))
617
return 0;
618
619
/* Policed by KVM_GET_REG_LIST: */
620
WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
621
622
/*
623
* Enumerate this first, so that userspace can save/restore in
624
* the order reported by KVM_GET_REG_LIST:
625
*/
626
reg = KVM_REG_ARM64_SVE_VLS;
627
if (put_user(reg, uindices++))
628
return -EFAULT;
629
++num_regs;
630
631
for (i = 0; i < slices; i++) {
632
for (n = 0; n < SVE_NUM_ZREGS; n++) {
633
reg = KVM_REG_ARM64_SVE_ZREG(n, i);
634
if (put_user(reg, uindices++))
635
return -EFAULT;
636
num_regs++;
637
}
638
639
for (n = 0; n < SVE_NUM_PREGS; n++) {
640
reg = KVM_REG_ARM64_SVE_PREG(n, i);
641
if (put_user(reg, uindices++))
642
return -EFAULT;
643
num_regs++;
644
}
645
646
reg = KVM_REG_ARM64_SVE_FFR(i);
647
if (put_user(reg, uindices++))
648
return -EFAULT;
649
num_regs++;
650
}
651
652
return num_regs;
653
}
654
655
/**
656
* kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
657
* @vcpu: the vCPU pointer
658
*
659
* This is for all registers.
660
*/
661
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
662
{
663
unsigned long res = 0;
664
665
res += num_core_regs(vcpu);
666
res += num_sve_regs(vcpu);
667
res += kvm_arm_num_sys_reg_descs(vcpu);
668
res += kvm_arm_get_fw_num_regs(vcpu);
669
670
return res;
671
}
672
673
/**
674
* kvm_arm_copy_reg_indices - get indices of all registers.
675
* @vcpu: the vCPU pointer
676
* @uindices: register list to copy
677
*
678
* We do core registers right here, then we append system regs.
679
*/
680
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
681
{
682
int ret;
683
684
ret = copy_core_reg_indices(vcpu, uindices);
685
if (ret < 0)
686
return ret;
687
uindices += ret;
688
689
ret = copy_sve_reg_indices(vcpu, uindices);
690
if (ret < 0)
691
return ret;
692
uindices += ret;
693
694
ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
695
if (ret < 0)
696
return ret;
697
uindices += kvm_arm_get_fw_num_regs(vcpu);
698
699
return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
700
}
701
702
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
703
{
704
/* We currently use nothing arch-specific in upper 32 bits */
705
if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
706
return -EINVAL;
707
708
switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
709
case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
710
case KVM_REG_ARM_FW:
711
case KVM_REG_ARM_FW_FEAT_BMAP:
712
return kvm_arm_get_fw_reg(vcpu, reg);
713
case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
714
}
715
716
return kvm_arm_sys_reg_get_reg(vcpu, reg);
717
}
718
719
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
720
{
721
/* We currently use nothing arch-specific in upper 32 bits */
722
if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
723
return -EINVAL;
724
725
switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
726
case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
727
case KVM_REG_ARM_FW:
728
case KVM_REG_ARM_FW_FEAT_BMAP:
729
return kvm_arm_set_fw_reg(vcpu, reg);
730
case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
731
}
732
733
return kvm_arm_sys_reg_set_reg(vcpu, reg);
734
}
735
736
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
737
struct kvm_sregs *sregs)
738
{
739
return -EINVAL;
740
}
741
742
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
743
struct kvm_sregs *sregs)
744
{
745
return -EINVAL;
746
}
747
748
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
749
struct kvm_vcpu_events *events)
750
{
751
events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
752
events->exception.serror_pending = (vcpu->arch.hcr_el2 & HCR_VSE) ||
753
vcpu_get_flag(vcpu, NESTED_SERROR_PENDING);
754
755
if (events->exception.serror_pending && events->exception.serror_has_esr)
756
events->exception.serror_esr = vcpu_get_vsesr(vcpu);
757
758
/*
759
* We never return a pending ext_dabt here because we deliver it to
760
* the virtual CPU directly when setting the event and it's no longer
761
* 'pending' at this point.
762
*/
763
764
return 0;
765
}
766
767
static void commit_pending_events(struct kvm_vcpu *vcpu)
768
{
769
if (!vcpu_get_flag(vcpu, PENDING_EXCEPTION))
770
return;
771
772
/*
773
* Reset the MMIO emulation state to avoid stepping PC after emulating
774
* the exception entry.
775
*/
776
vcpu->mmio_needed = false;
777
kvm_call_hyp(__kvm_adjust_pc, vcpu);
778
}
779
780
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
781
struct kvm_vcpu_events *events)
782
{
783
bool serror_pending = events->exception.serror_pending;
784
bool has_esr = events->exception.serror_has_esr;
785
bool ext_dabt_pending = events->exception.ext_dabt_pending;
786
u64 esr = events->exception.serror_esr;
787
int ret = 0;
788
789
/*
790
* Immediately commit the pending SEA to the vCPU's architectural
791
* state which is necessary since we do not return a pending SEA
792
* to userspace via KVM_GET_VCPU_EVENTS.
793
*/
794
if (ext_dabt_pending) {
795
ret = kvm_inject_sea_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
796
commit_pending_events(vcpu);
797
}
798
799
if (ret < 0)
800
return ret;
801
802
if (!serror_pending)
803
return 0;
804
805
if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && has_esr)
806
return -EINVAL;
807
808
if (has_esr && (esr & ~ESR_ELx_ISS_MASK))
809
return -EINVAL;
810
811
if (has_esr)
812
ret = kvm_inject_serror_esr(vcpu, esr);
813
else
814
ret = kvm_inject_serror(vcpu);
815
816
/*
817
* We could've decided that the SError is due for immediate software
818
* injection; commit the exception in case userspace decides it wants
819
* to inject more exceptions for some strange reason.
820
*/
821
commit_pending_events(vcpu);
822
return (ret < 0) ? ret : 0;
823
}
824
825
u32 __attribute_const__ kvm_target_cpu(void)
826
{
827
unsigned long implementor = read_cpuid_implementor();
828
unsigned long part_number = read_cpuid_part_number();
829
830
switch (implementor) {
831
case ARM_CPU_IMP_ARM:
832
switch (part_number) {
833
case ARM_CPU_PART_AEM_V8:
834
return KVM_ARM_TARGET_AEM_V8;
835
case ARM_CPU_PART_FOUNDATION:
836
return KVM_ARM_TARGET_FOUNDATION_V8;
837
case ARM_CPU_PART_CORTEX_A53:
838
return KVM_ARM_TARGET_CORTEX_A53;
839
case ARM_CPU_PART_CORTEX_A57:
840
return KVM_ARM_TARGET_CORTEX_A57;
841
}
842
break;
843
case ARM_CPU_IMP_APM:
844
switch (part_number) {
845
case APM_CPU_PART_XGENE:
846
return KVM_ARM_TARGET_XGENE_POTENZA;
847
}
848
break;
849
}
850
851
/* Return a default generic target */
852
return KVM_ARM_TARGET_GENERIC_V8;
853
}
854
855
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
856
{
857
return -EINVAL;
858
}
859
860
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
861
{
862
return -EINVAL;
863
}
864
865
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
866
struct kvm_translation *tr)
867
{
868
return -EINVAL;
869
}
870
871
/**
872
* kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
873
* @vcpu: the vCPU pointer
874
* @dbg: the ioctl data buffer
875
*
876
* This sets up and enables the VM for guest debugging. Userspace
877
* passes in a control flag to enable different debug types and
878
* potentially other architecture specific information in the rest of
879
* the structure.
880
*/
881
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
882
struct kvm_guest_debug *dbg)
883
{
884
trace_kvm_set_guest_debug(vcpu, dbg->control);
885
886
if (dbg->control & ~KVM_GUESTDBG_VALID_MASK)
887
return -EINVAL;
888
889
if (!(dbg->control & KVM_GUESTDBG_ENABLE)) {
890
vcpu->guest_debug = 0;
891
vcpu_clear_flag(vcpu, HOST_SS_ACTIVE_PENDING);
892
return 0;
893
}
894
895
vcpu->guest_debug = dbg->control;
896
897
/* Hardware assisted Break and Watch points */
898
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW)
899
vcpu->arch.external_debug_state = dbg->arch;
900
901
return 0;
902
}
903
904
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
905
struct kvm_device_attr *attr)
906
{
907
int ret;
908
909
switch (attr->group) {
910
case KVM_ARM_VCPU_PMU_V3_CTRL:
911
mutex_lock(&vcpu->kvm->arch.config_lock);
912
ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
913
mutex_unlock(&vcpu->kvm->arch.config_lock);
914
break;
915
case KVM_ARM_VCPU_TIMER_CTRL:
916
ret = kvm_arm_timer_set_attr(vcpu, attr);
917
break;
918
case KVM_ARM_VCPU_PVTIME_CTRL:
919
ret = kvm_arm_pvtime_set_attr(vcpu, attr);
920
break;
921
default:
922
ret = -ENXIO;
923
break;
924
}
925
926
return ret;
927
}
928
929
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
930
struct kvm_device_attr *attr)
931
{
932
int ret;
933
934
switch (attr->group) {
935
case KVM_ARM_VCPU_PMU_V3_CTRL:
936
ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
937
break;
938
case KVM_ARM_VCPU_TIMER_CTRL:
939
ret = kvm_arm_timer_get_attr(vcpu, attr);
940
break;
941
case KVM_ARM_VCPU_PVTIME_CTRL:
942
ret = kvm_arm_pvtime_get_attr(vcpu, attr);
943
break;
944
default:
945
ret = -ENXIO;
946
break;
947
}
948
949
return ret;
950
}
951
952
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
953
struct kvm_device_attr *attr)
954
{
955
int ret;
956
957
switch (attr->group) {
958
case KVM_ARM_VCPU_PMU_V3_CTRL:
959
ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
960
break;
961
case KVM_ARM_VCPU_TIMER_CTRL:
962
ret = kvm_arm_timer_has_attr(vcpu, attr);
963
break;
964
case KVM_ARM_VCPU_PVTIME_CTRL:
965
ret = kvm_arm_pvtime_has_attr(vcpu, attr);
966
break;
967
default:
968
ret = -ENXIO;
969
break;
970
}
971
972
return ret;
973
}
974
975
int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
976
struct kvm_arm_copy_mte_tags *copy_tags)
977
{
978
gpa_t guest_ipa = copy_tags->guest_ipa;
979
size_t length = copy_tags->length;
980
void __user *tags = copy_tags->addr;
981
gpa_t gfn;
982
bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
983
int ret = 0;
984
985
if (!kvm_has_mte(kvm))
986
return -EINVAL;
987
988
if (copy_tags->reserved[0] || copy_tags->reserved[1])
989
return -EINVAL;
990
991
if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
992
return -EINVAL;
993
994
if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
995
return -EINVAL;
996
997
/* Lengths above INT_MAX cannot be represented in the return value */
998
if (length > INT_MAX)
999
return -EINVAL;
1000
1001
gfn = gpa_to_gfn(guest_ipa);
1002
1003
mutex_lock(&kvm->slots_lock);
1004
1005
if (write && atomic_read(&kvm->nr_memslots_dirty_logging)) {
1006
ret = -EBUSY;
1007
goto out;
1008
}
1009
1010
while (length > 0) {
1011
struct page *page = __gfn_to_page(kvm, gfn, write);
1012
void *maddr;
1013
unsigned long num_tags;
1014
struct folio *folio;
1015
1016
if (!page) {
1017
ret = -EFAULT;
1018
goto out;
1019
}
1020
1021
if (!pfn_to_online_page(page_to_pfn(page))) {
1022
/* Reject ZONE_DEVICE memory */
1023
kvm_release_page_unused(page);
1024
ret = -EFAULT;
1025
goto out;
1026
}
1027
folio = page_folio(page);
1028
maddr = page_address(page);
1029
1030
if (!write) {
1031
if ((folio_test_hugetlb(folio) &&
1032
folio_test_hugetlb_mte_tagged(folio)) ||
1033
page_mte_tagged(page))
1034
num_tags = mte_copy_tags_to_user(tags, maddr,
1035
MTE_GRANULES_PER_PAGE);
1036
else
1037
/* No tags in memory, so write zeros */
1038
num_tags = MTE_GRANULES_PER_PAGE -
1039
clear_user(tags, MTE_GRANULES_PER_PAGE);
1040
kvm_release_page_clean(page);
1041
} else {
1042
/*
1043
* Only locking to serialise with a concurrent
1044
* __set_ptes() in the VMM but still overriding the
1045
* tags, hence ignoring the return value.
1046
*/
1047
if (folio_test_hugetlb(folio))
1048
folio_try_hugetlb_mte_tagging(folio);
1049
else
1050
try_page_mte_tagging(page);
1051
num_tags = mte_copy_tags_from_user(maddr, tags,
1052
MTE_GRANULES_PER_PAGE);
1053
1054
/* uaccess failed, don't leave stale tags */
1055
if (num_tags != MTE_GRANULES_PER_PAGE)
1056
mte_clear_page_tags(maddr);
1057
if (folio_test_hugetlb(folio))
1058
folio_set_hugetlb_mte_tagged(folio);
1059
else
1060
set_page_mte_tagged(page);
1061
1062
kvm_release_page_dirty(page);
1063
}
1064
1065
if (num_tags != MTE_GRANULES_PER_PAGE) {
1066
ret = -EFAULT;
1067
goto out;
1068
}
1069
1070
gfn++;
1071
tags += num_tags;
1072
length -= PAGE_SIZE;
1073
}
1074
1075
out:
1076
mutex_unlock(&kvm->slots_lock);
1077
/* If some data has been copied report the number of bytes copied */
1078
if (length != copy_tags->length)
1079
return copy_tags->length - length;
1080
return ret;
1081
}
1082
1083