Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/handle_exit.c
50902 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2012,2013 - ARM Ltd
4
* Author: Marc Zyngier <[email protected]>
5
*
6
* Derived from arch/arm/kvm/handle_exit.c:
7
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
8
* Author: Christoffer Dall <[email protected]>
9
*/
10
11
#include <linux/kvm.h>
12
#include <linux/kvm_host.h>
13
#include <linux/ubsan.h>
14
15
#include <asm/esr.h>
16
#include <asm/exception.h>
17
#include <asm/kvm_asm.h>
18
#include <asm/kvm_emulate.h>
19
#include <asm/kvm_mmu.h>
20
#include <asm/kvm_nested.h>
21
#include <asm/debug-monitors.h>
22
#include <asm/stacktrace/nvhe.h>
23
#include <asm/traps.h>
24
25
#include <kvm/arm_hypercalls.h>
26
27
#define CREATE_TRACE_POINTS
28
#include "trace_handle_exit.h"
29
30
typedef int (*exit_handle_fn)(struct kvm_vcpu *);
31
32
static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
33
{
34
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
35
kvm_inject_serror(vcpu);
36
}
37
38
static int handle_hvc(struct kvm_vcpu *vcpu)
39
{
40
trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
41
kvm_vcpu_hvc_get_imm(vcpu));
42
vcpu->stat.hvc_exit_stat++;
43
44
/* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
45
if (vcpu_has_nv(vcpu)) {
46
if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
47
kvm_inject_undefined(vcpu);
48
else
49
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
50
51
return 1;
52
}
53
54
return kvm_smccc_call_handler(vcpu);
55
}
56
57
static int handle_smc(struct kvm_vcpu *vcpu)
58
{
59
/*
60
* Forward this trapped smc instruction to the virtual EL2 if
61
* the guest has asked for it.
62
*/
63
if (forward_smc_trap(vcpu))
64
return 1;
65
66
/*
67
* "If an SMC instruction executed at Non-secure EL1 is
68
* trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
69
* Trap exception, not a Secure Monitor Call exception [...]"
70
*
71
* We need to advance the PC after the trap, as it would
72
* otherwise return to the same address. Furthermore, pre-incrementing
73
* the PC before potentially exiting to userspace maintains the same
74
* abstraction for both SMCs and HVCs.
75
*/
76
kvm_incr_pc(vcpu);
77
78
/*
79
* SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
80
* "SMC and HVC immediate value".
81
*/
82
if (kvm_vcpu_hvc_get_imm(vcpu)) {
83
vcpu_set_reg(vcpu, 0, ~0UL);
84
return 1;
85
}
86
87
/*
88
* If imm is zero then it is likely an SMCCC call.
89
*
90
* Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
91
* at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
92
* being treated as UNDEFINED.
93
*/
94
return kvm_smccc_call_handler(vcpu);
95
}
96
97
/*
98
* This handles the cases where the system does not support FP/ASIMD or when
99
* we are running nested virtualization and the guest hypervisor is trapping
100
* FP/ASIMD accesses by its guest guest.
101
*
102
* All other handling of guest vs. host FP/ASIMD register state is handled in
103
* fixup_guest_exit().
104
*/
105
static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu)
106
{
107
if (guest_hyp_fpsimd_traps_enabled(vcpu))
108
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
109
110
/* This is the case when the system doesn't support FP/ASIMD. */
111
kvm_inject_undefined(vcpu);
112
return 1;
113
}
114
115
/**
116
* kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
117
* instruction executed by a guest
118
*
119
* @vcpu: the vcpu pointer
120
*
121
* WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
122
* decides to.
123
* WFI: Simply call kvm_vcpu_halt(), which will halt execution of
124
* world-switches and schedule other host processes until there is an
125
* incoming IRQ or FIQ to the VM.
126
* WFIT: Same as WFI, with a timed wakeup implemented as a background timer
127
*
128
* WF{I,E}T can immediately return if the deadline has already expired.
129
*/
130
static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
131
{
132
u64 esr = kvm_vcpu_get_esr(vcpu);
133
bool is_wfe = !!(esr & ESR_ELx_WFx_ISS_WFE);
134
135
if (guest_hyp_wfx_traps_enabled(vcpu))
136
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
137
138
if (is_wfe) {
139
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
140
vcpu->stat.wfe_exit_stat++;
141
} else {
142
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
143
vcpu->stat.wfi_exit_stat++;
144
}
145
146
if (esr & ESR_ELx_WFx_ISS_WFxT) {
147
if (esr & ESR_ELx_WFx_ISS_RV) {
148
u64 val, now;
149
150
now = kvm_phys_timer_read();
151
if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
152
now -= timer_get_offset(vcpu_hvtimer(vcpu));
153
else
154
now -= timer_get_offset(vcpu_vtimer(vcpu));
155
156
val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
157
158
if (now >= val)
159
goto out;
160
} else {
161
/* Treat WFxT as WFx if RN is invalid */
162
esr &= ~ESR_ELx_WFx_ISS_WFxT;
163
}
164
}
165
166
if (esr & ESR_ELx_WFx_ISS_WFE) {
167
kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
168
} else {
169
if (esr & ESR_ELx_WFx_ISS_WFxT)
170
vcpu_set_flag(vcpu, IN_WFIT);
171
172
kvm_vcpu_wfi(vcpu);
173
}
174
out:
175
kvm_incr_pc(vcpu);
176
177
return 1;
178
}
179
180
/**
181
* kvm_handle_guest_debug - handle a debug exception instruction
182
*
183
* @vcpu: the vcpu pointer
184
*
185
* We route all debug exceptions through the same handler. If both the
186
* guest and host are using the same debug facilities it will be up to
187
* userspace to re-inject the correct exception for guest delivery.
188
*
189
* @return: 0 (while setting vcpu->run->exit_reason)
190
*/
191
static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
192
{
193
struct kvm_run *run = vcpu->run;
194
u64 esr = kvm_vcpu_get_esr(vcpu);
195
196
if (!vcpu->guest_debug && forward_debug_exception(vcpu))
197
return 1;
198
199
run->exit_reason = KVM_EXIT_DEBUG;
200
run->debug.arch.hsr = lower_32_bits(esr);
201
run->debug.arch.hsr_high = upper_32_bits(esr);
202
run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
203
204
switch (ESR_ELx_EC(esr)) {
205
case ESR_ELx_EC_WATCHPT_LOW:
206
run->debug.arch.far = vcpu->arch.fault.far_el2;
207
break;
208
case ESR_ELx_EC_SOFTSTP_LOW:
209
*vcpu_cpsr(vcpu) |= DBG_SPSR_SS;
210
break;
211
}
212
213
return 0;
214
}
215
216
static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
217
{
218
u64 esr = kvm_vcpu_get_esr(vcpu);
219
220
kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
221
esr, esr_get_class_string(esr));
222
223
kvm_inject_undefined(vcpu);
224
return 1;
225
}
226
227
/*
228
* Guest access to SVE registers should be routed to this handler only
229
* when the system doesn't support SVE.
230
*/
231
static int handle_sve(struct kvm_vcpu *vcpu)
232
{
233
if (guest_hyp_sve_traps_enabled(vcpu))
234
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
235
236
kvm_inject_undefined(vcpu);
237
return 1;
238
}
239
240
/*
241
* Two possibilities to handle a trapping ptrauth instruction:
242
*
243
* - Guest usage of a ptrauth instruction (which the guest EL1 did not
244
* turn into a NOP). If we get here, it is because we didn't enable
245
* ptrauth for the guest. This results in an UNDEF, as it isn't
246
* supposed to use ptrauth without being told it could.
247
*
248
* - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for
249
* which we reinject the exception into L1.
250
*
251
* Anything else is an emulation bug (hence the WARN_ON + UNDEF).
252
*/
253
static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
254
{
255
if (!vcpu_has_ptrauth(vcpu)) {
256
kvm_inject_undefined(vcpu);
257
return 1;
258
}
259
260
if (is_nested_ctxt(vcpu)) {
261
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
262
return 1;
263
}
264
265
/* Really shouldn't be here! */
266
WARN_ON_ONCE(1);
267
kvm_inject_undefined(vcpu);
268
return 1;
269
}
270
271
static int kvm_handle_eret(struct kvm_vcpu *vcpu)
272
{
273
if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) &&
274
!vcpu_has_ptrauth(vcpu))
275
return kvm_handle_ptrauth(vcpu);
276
277
/*
278
* If we got here, two possibilities:
279
*
280
* - the guest is in EL2, and we need to fully emulate ERET
281
*
282
* - the guest is in EL1, and we need to reinject the
283
* exception into the L1 hypervisor.
284
*
285
* If KVM ever traps ERET for its own use, we'll have to
286
* revisit this.
287
*/
288
if (is_hyp_ctxt(vcpu))
289
kvm_emulate_nested_eret(vcpu);
290
else
291
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
292
293
return 1;
294
}
295
296
static int handle_svc(struct kvm_vcpu *vcpu)
297
{
298
/*
299
* So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
300
* 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
301
* we should only have to deal with a 64 bit exception.
302
*/
303
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
304
return 1;
305
}
306
307
static int kvm_handle_gcs(struct kvm_vcpu *vcpu)
308
{
309
/* We don't expect GCS, so treat it with contempt */
310
if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, GCS, IMP))
311
WARN_ON_ONCE(1);
312
313
kvm_inject_undefined(vcpu);
314
return 1;
315
}
316
317
static int handle_other(struct kvm_vcpu *vcpu)
318
{
319
bool allowed, fwd = is_nested_ctxt(vcpu);
320
u64 hcrx = __vcpu_sys_reg(vcpu, HCRX_EL2);
321
u64 esr = kvm_vcpu_get_esr(vcpu);
322
u64 iss = ESR_ELx_ISS(esr);
323
struct kvm *kvm = vcpu->kvm;
324
325
/*
326
* We only trap for two reasons:
327
*
328
* - the feature is disabled, and the only outcome is to
329
* generate an UNDEF.
330
*
331
* - the feature is enabled, but a NV guest wants to trap the
332
* feature used by its L2 guest. We forward the exception in
333
* this case.
334
*
335
* What we don't expect is to end-up here if the guest is
336
* expected be be able to directly use the feature, hence the
337
* WARN_ON below.
338
*/
339
switch (iss) {
340
case ESR_ELx_ISS_OTHER_ST64BV:
341
allowed = kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V);
342
fwd &= !(hcrx & HCRX_EL2_EnASR);
343
break;
344
case ESR_ELx_ISS_OTHER_ST64BV0:
345
allowed = kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA);
346
fwd &= !(hcrx & HCRX_EL2_EnAS0);
347
break;
348
case ESR_ELx_ISS_OTHER_LDST64B:
349
allowed = kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64);
350
fwd &= !(hcrx & HCRX_EL2_EnALS);
351
break;
352
case ESR_ELx_ISS_OTHER_TSBCSYNC:
353
allowed = kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, TRBE_V1P1);
354
fwd &= (__vcpu_sys_reg(vcpu, HFGITR2_EL2) & HFGITR2_EL2_TSBCSYNC);
355
break;
356
case ESR_ELx_ISS_OTHER_PSBCSYNC:
357
allowed = kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P5);
358
fwd &= (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_PSBCSYNC);
359
break;
360
default:
361
/* Clearly, we're missing something. */
362
WARN_ON_ONCE(1);
363
allowed = false;
364
}
365
366
WARN_ON_ONCE(allowed && !fwd);
367
368
if (allowed && fwd)
369
kvm_inject_nested_sync(vcpu, esr);
370
else
371
kvm_inject_undefined(vcpu);
372
373
return 1;
374
}
375
376
static exit_handle_fn arm_exit_handlers[] = {
377
[0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec,
378
[ESR_ELx_EC_WFx] = kvm_handle_wfx,
379
[ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32,
380
[ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64,
381
[ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32,
382
[ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store,
383
[ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id,
384
[ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64,
385
[ESR_ELx_EC_OTHER] = handle_other,
386
[ESR_ELx_EC_HVC32] = handle_hvc,
387
[ESR_ELx_EC_SMC32] = handle_smc,
388
[ESR_ELx_EC_HVC64] = handle_hvc,
389
[ESR_ELx_EC_SMC64] = handle_smc,
390
[ESR_ELx_EC_SVC64] = handle_svc,
391
[ESR_ELx_EC_SYS64] = kvm_handle_sys_reg,
392
[ESR_ELx_EC_SVE] = handle_sve,
393
[ESR_ELx_EC_ERET] = kvm_handle_eret,
394
[ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort,
395
[ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort,
396
[ESR_ELx_EC_DABT_CUR] = kvm_handle_vncr_abort,
397
[ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
398
[ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
399
[ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
400
[ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug,
401
[ESR_ELx_EC_BRK64] = kvm_handle_guest_debug,
402
[ESR_ELx_EC_FP_ASIMD] = kvm_handle_fpasimd,
403
[ESR_ELx_EC_PAC] = kvm_handle_ptrauth,
404
[ESR_ELx_EC_GCS] = kvm_handle_gcs,
405
};
406
407
static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
408
{
409
u64 esr = kvm_vcpu_get_esr(vcpu);
410
u8 esr_ec = ESR_ELx_EC(esr);
411
412
return arm_exit_handlers[esr_ec];
413
}
414
415
/*
416
* We may be single-stepping an emulated instruction. If the emulation
417
* has been completed in the kernel, we can return to userspace with a
418
* KVM_EXIT_DEBUG, otherwise userspace needs to complete its
419
* emulation first.
420
*/
421
static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
422
{
423
int handled;
424
425
/*
426
* See ARM ARM B1.14.1: "Hyp traps on instructions
427
* that fail their condition code check"
428
*/
429
if (!kvm_condition_valid(vcpu)) {
430
kvm_incr_pc(vcpu);
431
handled = 1;
432
} else {
433
exit_handle_fn exit_handler;
434
435
exit_handler = kvm_get_exit_handler(vcpu);
436
handled = exit_handler(vcpu);
437
}
438
439
return handled;
440
}
441
442
/*
443
* Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
444
* proper exit to userspace.
445
*/
446
int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
447
{
448
struct kvm_run *run = vcpu->run;
449
450
if (ARM_SERROR_PENDING(exception_index)) {
451
/*
452
* The SError is handled by handle_exit_early(). If the guest
453
* survives it will re-execute the original instruction.
454
*/
455
return 1;
456
}
457
458
exception_index = ARM_EXCEPTION_CODE(exception_index);
459
460
switch (exception_index) {
461
case ARM_EXCEPTION_IRQ:
462
return 1;
463
case ARM_EXCEPTION_EL1_SERROR:
464
return 1;
465
case ARM_EXCEPTION_TRAP:
466
return handle_trap_exceptions(vcpu);
467
case ARM_EXCEPTION_HYP_GONE:
468
/*
469
* EL2 has been reset to the hyp-stub. This happens when a guest
470
* is pre-emptied by kvm_reboot()'s shutdown call.
471
*/
472
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
473
return 0;
474
case ARM_EXCEPTION_IL:
475
/*
476
* We attempted an illegal exception return. Guest state must
477
* have been corrupted somehow. Give up.
478
*/
479
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
480
return -EINVAL;
481
default:
482
kvm_pr_unimpl("Unsupported exception type: %d",
483
exception_index);
484
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
485
return 0;
486
}
487
}
488
489
/* For exit types that need handling before we can be preempted */
490
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
491
{
492
if (ARM_SERROR_PENDING(exception_index)) {
493
if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
494
u64 disr = kvm_vcpu_get_disr(vcpu);
495
496
kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
497
} else {
498
kvm_inject_serror(vcpu);
499
}
500
501
return;
502
}
503
504
exception_index = ARM_EXCEPTION_CODE(exception_index);
505
506
if (exception_index == ARM_EXCEPTION_EL1_SERROR)
507
kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
508
}
509
510
static void print_nvhe_hyp_panic(const char *name, u64 panic_addr)
511
{
512
kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr,
513
(void *)(panic_addr + kaslr_offset()));
514
}
515
516
static void kvm_nvhe_report_cfi_failure(u64 panic_addr)
517
{
518
print_nvhe_hyp_panic("CFI failure", panic_addr);
519
520
if (IS_ENABLED(CONFIG_CFI_PERMISSIVE))
521
kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n");
522
}
523
524
void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
525
u64 elr_virt, u64 elr_phys,
526
u64 par, uintptr_t vcpu,
527
u64 far, u64 hpfar) {
528
u64 elr_in_kimg = __phys_to_kimg(elr_phys);
529
u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
530
u64 mode = spsr & PSR_MODE_MASK;
531
u64 panic_addr = elr_virt + hyp_offset;
532
533
if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
534
kvm_err("Invalid host exception to nVHE hyp!\n");
535
} else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
536
esr_brk_comment(esr) == BUG_BRK_IMM) {
537
const char *file = NULL;
538
unsigned int line = 0;
539
540
/* All hyp bugs, including warnings, are treated as fatal. */
541
if (!is_protected_kvm_enabled() ||
542
IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
543
struct bug_entry *bug = find_bug(elr_in_kimg);
544
545
if (bug)
546
bug_get_file_line(bug, &file, &line);
547
}
548
549
if (file)
550
kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
551
else
552
print_nvhe_hyp_panic("BUG", panic_addr);
553
} else if (IS_ENABLED(CONFIG_CFI) && esr_is_cfi_brk(esr)) {
554
kvm_nvhe_report_cfi_failure(panic_addr);
555
} else if (IS_ENABLED(CONFIG_UBSAN_KVM_EL2) &&
556
ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
557
esr_is_ubsan_brk(esr)) {
558
print_nvhe_hyp_panic(report_ubsan_failure(esr & UBSAN_BRK_MASK),
559
panic_addr);
560
} else {
561
print_nvhe_hyp_panic("panic", panic_addr);
562
}
563
564
/* Dump the nVHE hypervisor backtrace */
565
kvm_nvhe_dump_backtrace(hyp_offset);
566
567
/* Dump the faulting instruction */
568
dump_kernel_instr(panic_addr + kaslr_offset());
569
570
/*
571
* Hyp has panicked and we're going to handle that by panicking the
572
* kernel. The kernel offset will be revealed in the panic so we're
573
* also safe to reveal the hyp offset as a debugging aid for translating
574
* hyp VAs to vmlinux addresses.
575
*/
576
kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
577
578
panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
579
spsr, elr_virt, esr, far, hpfar, par, vcpu);
580
}
581
582