Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/hyp/nvhe/mem_protect.c
26516 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2020 Google LLC
4
* Author: Quentin Perret <[email protected]>
5
*/
6
7
#include <linux/kvm_host.h>
8
#include <asm/kvm_emulate.h>
9
#include <asm/kvm_hyp.h>
10
#include <asm/kvm_mmu.h>
11
#include <asm/kvm_pgtable.h>
12
#include <asm/kvm_pkvm.h>
13
#include <asm/stage2_pgtable.h>
14
15
#include <hyp/fault.h>
16
17
#include <nvhe/gfp.h>
18
#include <nvhe/memory.h>
19
#include <nvhe/mem_protect.h>
20
#include <nvhe/mm.h>
21
22
#define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23
24
struct host_mmu host_mmu;
25
26
static struct hyp_pool host_s2_pool;
27
28
static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
29
#define current_vm (*this_cpu_ptr(&__current_vm))
30
31
static void guest_lock_component(struct pkvm_hyp_vm *vm)
32
{
33
hyp_spin_lock(&vm->lock);
34
current_vm = vm;
35
}
36
37
static void guest_unlock_component(struct pkvm_hyp_vm *vm)
38
{
39
current_vm = NULL;
40
hyp_spin_unlock(&vm->lock);
41
}
42
43
static void host_lock_component(void)
44
{
45
hyp_spin_lock(&host_mmu.lock);
46
}
47
48
static void host_unlock_component(void)
49
{
50
hyp_spin_unlock(&host_mmu.lock);
51
}
52
53
static void hyp_lock_component(void)
54
{
55
hyp_spin_lock(&pkvm_pgd_lock);
56
}
57
58
static void hyp_unlock_component(void)
59
{
60
hyp_spin_unlock(&pkvm_pgd_lock);
61
}
62
63
#define for_each_hyp_page(__p, __st, __sz) \
64
for (struct hyp_page *__p = hyp_phys_to_page(__st), \
65
*__e = __p + ((__sz) >> PAGE_SHIFT); \
66
__p < __e; __p++)
67
68
static void *host_s2_zalloc_pages_exact(size_t size)
69
{
70
void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
71
72
hyp_split_page(hyp_virt_to_page(addr));
73
74
/*
75
* The size of concatenated PGDs is always a power of two of PAGE_SIZE,
76
* so there should be no need to free any of the tail pages to make the
77
* allocation exact.
78
*/
79
WARN_ON(size != (PAGE_SIZE << get_order(size)));
80
81
return addr;
82
}
83
84
static void *host_s2_zalloc_page(void *pool)
85
{
86
return hyp_alloc_pages(pool, 0);
87
}
88
89
static void host_s2_get_page(void *addr)
90
{
91
hyp_get_page(&host_s2_pool, addr);
92
}
93
94
static void host_s2_put_page(void *addr)
95
{
96
hyp_put_page(&host_s2_pool, addr);
97
}
98
99
static void host_s2_free_unlinked_table(void *addr, s8 level)
100
{
101
kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level);
102
}
103
104
static int prepare_s2_pool(void *pgt_pool_base)
105
{
106
unsigned long nr_pages, pfn;
107
int ret;
108
109
pfn = hyp_virt_to_pfn(pgt_pool_base);
110
nr_pages = host_s2_pgtable_pages();
111
ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
112
if (ret)
113
return ret;
114
115
host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
116
.zalloc_pages_exact = host_s2_zalloc_pages_exact,
117
.zalloc_page = host_s2_zalloc_page,
118
.free_unlinked_table = host_s2_free_unlinked_table,
119
.phys_to_virt = hyp_phys_to_virt,
120
.virt_to_phys = hyp_virt_to_phys,
121
.page_count = hyp_page_count,
122
.get_page = host_s2_get_page,
123
.put_page = host_s2_put_page,
124
};
125
126
return 0;
127
}
128
129
static void prepare_host_vtcr(void)
130
{
131
u32 parange, phys_shift;
132
133
/* The host stage 2 is id-mapped, so use parange for T0SZ */
134
parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
135
phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
136
137
host_mmu.arch.mmu.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
138
id_aa64mmfr1_el1_sys_val, phys_shift);
139
}
140
141
static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
142
143
int kvm_host_prepare_stage2(void *pgt_pool_base)
144
{
145
struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
146
int ret;
147
148
prepare_host_vtcr();
149
hyp_spin_lock_init(&host_mmu.lock);
150
mmu->arch = &host_mmu.arch;
151
152
ret = prepare_s2_pool(pgt_pool_base);
153
if (ret)
154
return ret;
155
156
ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
157
&host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
158
host_stage2_force_pte_cb);
159
if (ret)
160
return ret;
161
162
mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
163
mmu->pgt = &host_mmu.pgt;
164
atomic64_set(&mmu->vmid.id, 0);
165
166
return 0;
167
}
168
169
static void *guest_s2_zalloc_pages_exact(size_t size)
170
{
171
void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
172
173
WARN_ON(size != (PAGE_SIZE << get_order(size)));
174
hyp_split_page(hyp_virt_to_page(addr));
175
176
return addr;
177
}
178
179
static void guest_s2_free_pages_exact(void *addr, unsigned long size)
180
{
181
u8 order = get_order(size);
182
unsigned int i;
183
184
for (i = 0; i < (1 << order); i++)
185
hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
186
}
187
188
static void *guest_s2_zalloc_page(void *mc)
189
{
190
struct hyp_page *p;
191
void *addr;
192
193
addr = hyp_alloc_pages(&current_vm->pool, 0);
194
if (addr)
195
return addr;
196
197
addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
198
if (!addr)
199
return addr;
200
201
memset(addr, 0, PAGE_SIZE);
202
p = hyp_virt_to_page(addr);
203
p->refcount = 1;
204
p->order = 0;
205
206
return addr;
207
}
208
209
static void guest_s2_get_page(void *addr)
210
{
211
hyp_get_page(&current_vm->pool, addr);
212
}
213
214
static void guest_s2_put_page(void *addr)
215
{
216
hyp_put_page(&current_vm->pool, addr);
217
}
218
219
static void __apply_guest_page(void *va, size_t size,
220
void (*func)(void *addr, size_t size))
221
{
222
size += va - PTR_ALIGN_DOWN(va, PAGE_SIZE);
223
va = PTR_ALIGN_DOWN(va, PAGE_SIZE);
224
size = PAGE_ALIGN(size);
225
226
while (size) {
227
size_t map_size = PAGE_SIZE;
228
void *map;
229
230
if (IS_ALIGNED((unsigned long)va, PMD_SIZE) && size >= PMD_SIZE)
231
map = hyp_fixblock_map(__hyp_pa(va), &map_size);
232
else
233
map = hyp_fixmap_map(__hyp_pa(va));
234
235
func(map, map_size);
236
237
if (map_size == PMD_SIZE)
238
hyp_fixblock_unmap();
239
else
240
hyp_fixmap_unmap();
241
242
size -= map_size;
243
va += map_size;
244
}
245
}
246
247
static void clean_dcache_guest_page(void *va, size_t size)
248
{
249
__apply_guest_page(va, size, __clean_dcache_guest_page);
250
}
251
252
static void invalidate_icache_guest_page(void *va, size_t size)
253
{
254
__apply_guest_page(va, size, __invalidate_icache_guest_page);
255
}
256
257
int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
258
{
259
struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
260
unsigned long nr_pages;
261
int ret;
262
263
nr_pages = kvm_pgtable_stage2_pgd_size(mmu->vtcr) >> PAGE_SHIFT;
264
ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
265
if (ret)
266
return ret;
267
268
hyp_spin_lock_init(&vm->lock);
269
vm->mm_ops = (struct kvm_pgtable_mm_ops) {
270
.zalloc_pages_exact = guest_s2_zalloc_pages_exact,
271
.free_pages_exact = guest_s2_free_pages_exact,
272
.zalloc_page = guest_s2_zalloc_page,
273
.phys_to_virt = hyp_phys_to_virt,
274
.virt_to_phys = hyp_virt_to_phys,
275
.page_count = hyp_page_count,
276
.get_page = guest_s2_get_page,
277
.put_page = guest_s2_put_page,
278
.dcache_clean_inval_poc = clean_dcache_guest_page,
279
.icache_inval_pou = invalidate_icache_guest_page,
280
};
281
282
guest_lock_component(vm);
283
ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, NULL);
284
guest_unlock_component(vm);
285
if (ret)
286
return ret;
287
288
vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
289
290
return 0;
291
}
292
293
void reclaim_pgtable_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
294
{
295
struct hyp_page *page;
296
void *addr;
297
298
/* Dump all pgtable pages in the hyp_pool */
299
guest_lock_component(vm);
300
kvm_pgtable_stage2_destroy(&vm->pgt);
301
vm->kvm.arch.mmu.pgd_phys = 0ULL;
302
guest_unlock_component(vm);
303
304
/* Drain the hyp_pool into the memcache */
305
addr = hyp_alloc_pages(&vm->pool, 0);
306
while (addr) {
307
page = hyp_virt_to_page(addr);
308
page->refcount = 0;
309
page->order = 0;
310
push_hyp_memcache(mc, addr, hyp_virt_to_phys);
311
WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
312
addr = hyp_alloc_pages(&vm->pool, 0);
313
}
314
}
315
316
int __pkvm_prot_finalize(void)
317
{
318
struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
319
struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
320
321
if (params->hcr_el2 & HCR_VM)
322
return -EPERM;
323
324
params->vttbr = kvm_get_vttbr(mmu);
325
params->vtcr = mmu->vtcr;
326
params->hcr_el2 |= HCR_VM;
327
328
/*
329
* The CMO below not only cleans the updated params to the
330
* PoC, but also provides the DSB that ensures ongoing
331
* page-table walks that have started before we trapped to EL2
332
* have completed.
333
*/
334
kvm_flush_dcache_to_poc(params, sizeof(*params));
335
336
write_sysreg_hcr(params->hcr_el2);
337
__load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
338
339
/*
340
* Make sure to have an ISB before the TLB maintenance below but only
341
* when __load_stage2() doesn't include one already.
342
*/
343
asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
344
345
/* Invalidate stale HCR bits that may be cached in TLBs */
346
__tlbi(vmalls12e1);
347
dsb(nsh);
348
isb();
349
350
return 0;
351
}
352
353
static int host_stage2_unmap_dev_all(void)
354
{
355
struct kvm_pgtable *pgt = &host_mmu.pgt;
356
struct memblock_region *reg;
357
u64 addr = 0;
358
int i, ret;
359
360
/* Unmap all non-memory regions to recycle the pages */
361
for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
362
reg = &hyp_memory[i];
363
ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
364
if (ret)
365
return ret;
366
}
367
return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
368
}
369
370
struct kvm_mem_range {
371
u64 start;
372
u64 end;
373
};
374
375
static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
376
{
377
int cur, left = 0, right = hyp_memblock_nr;
378
struct memblock_region *reg;
379
phys_addr_t end;
380
381
range->start = 0;
382
range->end = ULONG_MAX;
383
384
/* The list of memblock regions is sorted, binary search it */
385
while (left < right) {
386
cur = (left + right) >> 1;
387
reg = &hyp_memory[cur];
388
end = reg->base + reg->size;
389
if (addr < reg->base) {
390
right = cur;
391
range->end = reg->base;
392
} else if (addr >= end) {
393
left = cur + 1;
394
range->start = end;
395
} else {
396
range->start = reg->base;
397
range->end = end;
398
return reg;
399
}
400
}
401
402
return NULL;
403
}
404
405
bool addr_is_memory(phys_addr_t phys)
406
{
407
struct kvm_mem_range range;
408
409
return !!find_mem_range(phys, &range);
410
}
411
412
static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
413
{
414
return range->start <= addr && addr < range->end;
415
}
416
417
static int check_range_allowed_memory(u64 start, u64 end)
418
{
419
struct memblock_region *reg;
420
struct kvm_mem_range range;
421
422
/*
423
* Callers can't check the state of a range that overlaps memory and
424
* MMIO regions, so ensure [start, end[ is in the same kvm_mem_range.
425
*/
426
reg = find_mem_range(start, &range);
427
if (!is_in_mem_range(end - 1, &range))
428
return -EINVAL;
429
430
if (!reg || reg->flags & MEMBLOCK_NOMAP)
431
return -EPERM;
432
433
return 0;
434
}
435
436
static bool range_is_memory(u64 start, u64 end)
437
{
438
struct kvm_mem_range r;
439
440
if (!find_mem_range(start, &r))
441
return false;
442
443
return is_in_mem_range(end - 1, &r);
444
}
445
446
static inline int __host_stage2_idmap(u64 start, u64 end,
447
enum kvm_pgtable_prot prot)
448
{
449
return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
450
prot, &host_s2_pool, 0);
451
}
452
453
/*
454
* The pool has been provided with enough pages to cover all of memory with
455
* page granularity, but it is difficult to know how much of the MMIO range
456
* we will need to cover upfront, so we may need to 'recycle' the pages if we
457
* run out.
458
*/
459
#define host_stage2_try(fn, ...) \
460
({ \
461
int __ret; \
462
hyp_assert_lock_held(&host_mmu.lock); \
463
__ret = fn(__VA_ARGS__); \
464
if (__ret == -ENOMEM) { \
465
__ret = host_stage2_unmap_dev_all(); \
466
if (!__ret) \
467
__ret = fn(__VA_ARGS__); \
468
} \
469
__ret; \
470
})
471
472
static inline bool range_included(struct kvm_mem_range *child,
473
struct kvm_mem_range *parent)
474
{
475
return parent->start <= child->start && child->end <= parent->end;
476
}
477
478
static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
479
{
480
struct kvm_mem_range cur;
481
kvm_pte_t pte;
482
u64 granule;
483
s8 level;
484
int ret;
485
486
hyp_assert_lock_held(&host_mmu.lock);
487
ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
488
if (ret)
489
return ret;
490
491
if (kvm_pte_valid(pte))
492
return -EAGAIN;
493
494
if (pte) {
495
WARN_ON(addr_is_memory(addr) &&
496
get_host_state(hyp_phys_to_page(addr)) != PKVM_NOPAGE);
497
return -EPERM;
498
}
499
500
for (; level <= KVM_PGTABLE_LAST_LEVEL; level++) {
501
if (!kvm_level_supports_block_mapping(level))
502
continue;
503
granule = kvm_granule_size(level);
504
cur.start = ALIGN_DOWN(addr, granule);
505
cur.end = cur.start + granule;
506
if (!range_included(&cur, range))
507
continue;
508
*range = cur;
509
return 0;
510
}
511
512
WARN_ON(1);
513
514
return -EINVAL;
515
}
516
517
int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
518
enum kvm_pgtable_prot prot)
519
{
520
return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
521
}
522
523
static void __host_update_page_state(phys_addr_t addr, u64 size, enum pkvm_page_state state)
524
{
525
for_each_hyp_page(page, addr, size)
526
set_host_state(page, state);
527
}
528
529
int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
530
{
531
int ret;
532
533
if (!range_is_memory(addr, addr + size))
534
return -EPERM;
535
536
ret = host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt,
537
addr, size, &host_s2_pool, owner_id);
538
if (ret)
539
return ret;
540
541
/* Don't forget to update the vmemmap tracking for the host */
542
if (owner_id == PKVM_ID_HOST)
543
__host_update_page_state(addr, size, PKVM_PAGE_OWNED);
544
else
545
__host_update_page_state(addr, size, PKVM_NOPAGE);
546
547
return 0;
548
}
549
550
static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
551
{
552
/*
553
* Block mappings must be used with care in the host stage-2 as a
554
* kvm_pgtable_stage2_map() operation targeting a page in the range of
555
* an existing block will delete the block under the assumption that
556
* mappings in the rest of the block range can always be rebuilt lazily.
557
* That assumption is correct for the host stage-2 with RWX mappings
558
* targeting memory or RW mappings targeting MMIO ranges (see
559
* host_stage2_idmap() below which implements some of the host memory
560
* abort logic). However, this is not safe for any other mappings where
561
* the host stage-2 page-table is in fact the only place where this
562
* state is stored. In all those cases, it is safer to use page-level
563
* mappings, hence avoiding to lose the state because of side-effects in
564
* kvm_pgtable_stage2_map().
565
*/
566
if (range_is_memory(addr, end))
567
return prot != PKVM_HOST_MEM_PROT;
568
else
569
return prot != PKVM_HOST_MMIO_PROT;
570
}
571
572
static int host_stage2_idmap(u64 addr)
573
{
574
struct kvm_mem_range range;
575
bool is_memory = !!find_mem_range(addr, &range);
576
enum kvm_pgtable_prot prot;
577
int ret;
578
579
prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
580
581
host_lock_component();
582
ret = host_stage2_adjust_range(addr, &range);
583
if (ret)
584
goto unlock;
585
586
ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
587
unlock:
588
host_unlock_component();
589
590
return ret;
591
}
592
593
void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
594
{
595
struct kvm_vcpu_fault_info fault;
596
u64 esr, addr;
597
int ret = 0;
598
599
esr = read_sysreg_el2(SYS_ESR);
600
if (!__get_fault_info(esr, &fault)) {
601
/*
602
* We've presumably raced with a page-table change which caused
603
* AT to fail, try again.
604
*/
605
return;
606
}
607
608
609
/*
610
* Yikes, we couldn't resolve the fault IPA. This should reinject an
611
* abort into the host when we figure out how to do that.
612
*/
613
BUG_ON(!(fault.hpfar_el2 & HPFAR_EL2_NS));
614
addr = FIELD_GET(HPFAR_EL2_FIPA, fault.hpfar_el2) << 12;
615
616
ret = host_stage2_idmap(addr);
617
BUG_ON(ret && ret != -EAGAIN);
618
}
619
620
struct check_walk_data {
621
enum pkvm_page_state desired;
622
enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr);
623
};
624
625
static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
626
enum kvm_pgtable_walk_flags visit)
627
{
628
struct check_walk_data *d = ctx->arg;
629
630
return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM;
631
}
632
633
static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
634
struct check_walk_data *data)
635
{
636
struct kvm_pgtable_walker walker = {
637
.cb = __check_page_state_visitor,
638
.arg = data,
639
.flags = KVM_PGTABLE_WALK_LEAF,
640
};
641
642
return kvm_pgtable_walk(pgt, addr, size, &walker);
643
}
644
645
static int __host_check_page_state_range(u64 addr, u64 size,
646
enum pkvm_page_state state)
647
{
648
int ret;
649
650
ret = check_range_allowed_memory(addr, addr + size);
651
if (ret)
652
return ret;
653
654
hyp_assert_lock_held(&host_mmu.lock);
655
656
for_each_hyp_page(page, addr, size) {
657
if (get_host_state(page) != state)
658
return -EPERM;
659
}
660
661
return 0;
662
}
663
664
static int __host_set_page_state_range(u64 addr, u64 size,
665
enum pkvm_page_state state)
666
{
667
if (get_host_state(hyp_phys_to_page(addr)) == PKVM_NOPAGE) {
668
int ret = host_stage2_idmap_locked(addr, size, PKVM_HOST_MEM_PROT);
669
670
if (ret)
671
return ret;
672
}
673
674
__host_update_page_state(addr, size, state);
675
676
return 0;
677
}
678
679
static void __hyp_set_page_state_range(phys_addr_t phys, u64 size, enum pkvm_page_state state)
680
{
681
for_each_hyp_page(page, phys, size)
682
set_hyp_state(page, state);
683
}
684
685
static int __hyp_check_page_state_range(phys_addr_t phys, u64 size, enum pkvm_page_state state)
686
{
687
for_each_hyp_page(page, phys, size) {
688
if (get_hyp_state(page) != state)
689
return -EPERM;
690
}
691
692
return 0;
693
}
694
695
static enum pkvm_page_state guest_get_page_state(kvm_pte_t pte, u64 addr)
696
{
697
if (!kvm_pte_valid(pte))
698
return PKVM_NOPAGE;
699
700
return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
701
}
702
703
static int __guest_check_page_state_range(struct pkvm_hyp_vm *vm, u64 addr,
704
u64 size, enum pkvm_page_state state)
705
{
706
struct check_walk_data d = {
707
.desired = state,
708
.get_page_state = guest_get_page_state,
709
};
710
711
hyp_assert_lock_held(&vm->lock);
712
return check_page_state_range(&vm->pgt, addr, size, &d);
713
}
714
715
int __pkvm_host_share_hyp(u64 pfn)
716
{
717
u64 phys = hyp_pfn_to_phys(pfn);
718
u64 size = PAGE_SIZE;
719
int ret;
720
721
host_lock_component();
722
hyp_lock_component();
723
724
ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
725
if (ret)
726
goto unlock;
727
ret = __hyp_check_page_state_range(phys, size, PKVM_NOPAGE);
728
if (ret)
729
goto unlock;
730
731
__hyp_set_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
732
WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED));
733
734
unlock:
735
hyp_unlock_component();
736
host_unlock_component();
737
738
return ret;
739
}
740
741
int __pkvm_host_unshare_hyp(u64 pfn)
742
{
743
u64 phys = hyp_pfn_to_phys(pfn);
744
u64 virt = (u64)__hyp_va(phys);
745
u64 size = PAGE_SIZE;
746
int ret;
747
748
host_lock_component();
749
hyp_lock_component();
750
751
ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
752
if (ret)
753
goto unlock;
754
ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
755
if (ret)
756
goto unlock;
757
if (hyp_page_count((void *)virt)) {
758
ret = -EBUSY;
759
goto unlock;
760
}
761
762
__hyp_set_page_state_range(phys, size, PKVM_NOPAGE);
763
WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_OWNED));
764
765
unlock:
766
hyp_unlock_component();
767
host_unlock_component();
768
769
return ret;
770
}
771
772
int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
773
{
774
u64 phys = hyp_pfn_to_phys(pfn);
775
u64 size = PAGE_SIZE * nr_pages;
776
void *virt = __hyp_va(phys);
777
int ret;
778
779
host_lock_component();
780
hyp_lock_component();
781
782
ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
783
if (ret)
784
goto unlock;
785
ret = __hyp_check_page_state_range(phys, size, PKVM_NOPAGE);
786
if (ret)
787
goto unlock;
788
789
__hyp_set_page_state_range(phys, size, PKVM_PAGE_OWNED);
790
WARN_ON(pkvm_create_mappings_locked(virt, virt + size, PAGE_HYP));
791
WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HYP));
792
793
unlock:
794
hyp_unlock_component();
795
host_unlock_component();
796
797
return ret;
798
}
799
800
int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
801
{
802
u64 phys = hyp_pfn_to_phys(pfn);
803
u64 size = PAGE_SIZE * nr_pages;
804
u64 virt = (u64)__hyp_va(phys);
805
int ret;
806
807
host_lock_component();
808
hyp_lock_component();
809
810
ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
811
if (ret)
812
goto unlock;
813
ret = __host_check_page_state_range(phys, size, PKVM_NOPAGE);
814
if (ret)
815
goto unlock;
816
817
__hyp_set_page_state_range(phys, size, PKVM_NOPAGE);
818
WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, virt, size) != size);
819
WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HOST));
820
821
unlock:
822
hyp_unlock_component();
823
host_unlock_component();
824
825
return ret;
826
}
827
828
int hyp_pin_shared_mem(void *from, void *to)
829
{
830
u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
831
u64 end = PAGE_ALIGN((u64)to);
832
u64 phys = __hyp_pa(start);
833
u64 size = end - start;
834
struct hyp_page *p;
835
int ret;
836
837
host_lock_component();
838
hyp_lock_component();
839
840
ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
841
if (ret)
842
goto unlock;
843
844
ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
845
if (ret)
846
goto unlock;
847
848
for (cur = start; cur < end; cur += PAGE_SIZE) {
849
p = hyp_virt_to_page(cur);
850
hyp_page_ref_inc(p);
851
if (p->refcount == 1)
852
WARN_ON(pkvm_create_mappings_locked((void *)cur,
853
(void *)cur + PAGE_SIZE,
854
PAGE_HYP));
855
}
856
857
unlock:
858
hyp_unlock_component();
859
host_unlock_component();
860
861
return ret;
862
}
863
864
void hyp_unpin_shared_mem(void *from, void *to)
865
{
866
u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
867
u64 end = PAGE_ALIGN((u64)to);
868
struct hyp_page *p;
869
870
host_lock_component();
871
hyp_lock_component();
872
873
for (cur = start; cur < end; cur += PAGE_SIZE) {
874
p = hyp_virt_to_page(cur);
875
if (p->refcount == 1)
876
WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, cur, PAGE_SIZE) != PAGE_SIZE);
877
hyp_page_ref_dec(p);
878
}
879
880
hyp_unlock_component();
881
host_unlock_component();
882
}
883
884
int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages)
885
{
886
u64 phys = hyp_pfn_to_phys(pfn);
887
u64 size = PAGE_SIZE * nr_pages;
888
int ret;
889
890
host_lock_component();
891
ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
892
if (!ret)
893
ret = __host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
894
host_unlock_component();
895
896
return ret;
897
}
898
899
int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages)
900
{
901
u64 phys = hyp_pfn_to_phys(pfn);
902
u64 size = PAGE_SIZE * nr_pages;
903
int ret;
904
905
host_lock_component();
906
ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
907
if (!ret)
908
ret = __host_set_page_state_range(phys, size, PKVM_PAGE_OWNED);
909
host_unlock_component();
910
911
return ret;
912
}
913
914
static int __guest_check_transition_size(u64 phys, u64 ipa, u64 nr_pages, u64 *size)
915
{
916
size_t block_size;
917
918
if (nr_pages == 1) {
919
*size = PAGE_SIZE;
920
return 0;
921
}
922
923
/* We solely support second to last level huge mapping */
924
block_size = kvm_granule_size(KVM_PGTABLE_LAST_LEVEL - 1);
925
926
if (nr_pages != block_size >> PAGE_SHIFT)
927
return -EINVAL;
928
929
if (!IS_ALIGNED(phys | ipa, block_size))
930
return -EINVAL;
931
932
*size = block_size;
933
return 0;
934
}
935
936
int __pkvm_host_share_guest(u64 pfn, u64 gfn, u64 nr_pages, struct pkvm_hyp_vcpu *vcpu,
937
enum kvm_pgtable_prot prot)
938
{
939
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
940
u64 phys = hyp_pfn_to_phys(pfn);
941
u64 ipa = hyp_pfn_to_phys(gfn);
942
u64 size;
943
int ret;
944
945
if (prot & ~KVM_PGTABLE_PROT_RWX)
946
return -EINVAL;
947
948
ret = __guest_check_transition_size(phys, ipa, nr_pages, &size);
949
if (ret)
950
return ret;
951
952
ret = check_range_allowed_memory(phys, phys + size);
953
if (ret)
954
return ret;
955
956
host_lock_component();
957
guest_lock_component(vm);
958
959
ret = __guest_check_page_state_range(vm, ipa, size, PKVM_NOPAGE);
960
if (ret)
961
goto unlock;
962
963
for_each_hyp_page(page, phys, size) {
964
switch (get_host_state(page)) {
965
case PKVM_PAGE_OWNED:
966
continue;
967
case PKVM_PAGE_SHARED_OWNED:
968
if (page->host_share_guest_count == U32_MAX) {
969
ret = -EBUSY;
970
goto unlock;
971
}
972
973
/* Only host to np-guest multi-sharing is tolerated */
974
if (page->host_share_guest_count)
975
continue;
976
977
fallthrough;
978
default:
979
ret = -EPERM;
980
goto unlock;
981
}
982
}
983
984
for_each_hyp_page(page, phys, size) {
985
set_host_state(page, PKVM_PAGE_SHARED_OWNED);
986
page->host_share_guest_count++;
987
}
988
989
WARN_ON(kvm_pgtable_stage2_map(&vm->pgt, ipa, size, phys,
990
pkvm_mkstate(prot, PKVM_PAGE_SHARED_BORROWED),
991
&vcpu->vcpu.arch.pkvm_memcache, 0));
992
993
unlock:
994
guest_unlock_component(vm);
995
host_unlock_component();
996
997
return ret;
998
}
999
1000
static int __check_host_shared_guest(struct pkvm_hyp_vm *vm, u64 *__phys, u64 ipa, u64 size)
1001
{
1002
enum pkvm_page_state state;
1003
kvm_pte_t pte;
1004
u64 phys;
1005
s8 level;
1006
int ret;
1007
1008
ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level);
1009
if (ret)
1010
return ret;
1011
if (!kvm_pte_valid(pte))
1012
return -ENOENT;
1013
if (kvm_granule_size(level) != size)
1014
return -E2BIG;
1015
1016
state = guest_get_page_state(pte, ipa);
1017
if (state != PKVM_PAGE_SHARED_BORROWED)
1018
return -EPERM;
1019
1020
phys = kvm_pte_to_phys(pte);
1021
ret = check_range_allowed_memory(phys, phys + size);
1022
if (WARN_ON(ret))
1023
return ret;
1024
1025
for_each_hyp_page(page, phys, size) {
1026
if (get_host_state(page) != PKVM_PAGE_SHARED_OWNED)
1027
return -EPERM;
1028
if (WARN_ON(!page->host_share_guest_count))
1029
return -EINVAL;
1030
}
1031
1032
*__phys = phys;
1033
1034
return 0;
1035
}
1036
1037
int __pkvm_host_unshare_guest(u64 gfn, u64 nr_pages, struct pkvm_hyp_vm *vm)
1038
{
1039
u64 ipa = hyp_pfn_to_phys(gfn);
1040
u64 size, phys;
1041
int ret;
1042
1043
ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1044
if (ret)
1045
return ret;
1046
1047
host_lock_component();
1048
guest_lock_component(vm);
1049
1050
ret = __check_host_shared_guest(vm, &phys, ipa, size);
1051
if (ret)
1052
goto unlock;
1053
1054
ret = kvm_pgtable_stage2_unmap(&vm->pgt, ipa, size);
1055
if (ret)
1056
goto unlock;
1057
1058
for_each_hyp_page(page, phys, size) {
1059
/* __check_host_shared_guest() protects against underflow */
1060
page->host_share_guest_count--;
1061
if (!page->host_share_guest_count)
1062
set_host_state(page, PKVM_PAGE_OWNED);
1063
}
1064
1065
unlock:
1066
guest_unlock_component(vm);
1067
host_unlock_component();
1068
1069
return ret;
1070
}
1071
1072
static void assert_host_shared_guest(struct pkvm_hyp_vm *vm, u64 ipa, u64 size)
1073
{
1074
u64 phys;
1075
int ret;
1076
1077
if (!IS_ENABLED(CONFIG_NVHE_EL2_DEBUG))
1078
return;
1079
1080
host_lock_component();
1081
guest_lock_component(vm);
1082
1083
ret = __check_host_shared_guest(vm, &phys, ipa, size);
1084
1085
guest_unlock_component(vm);
1086
host_unlock_component();
1087
1088
WARN_ON(ret && ret != -ENOENT);
1089
}
1090
1091
int __pkvm_host_relax_perms_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu, enum kvm_pgtable_prot prot)
1092
{
1093
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1094
u64 ipa = hyp_pfn_to_phys(gfn);
1095
int ret;
1096
1097
if (pkvm_hyp_vm_is_protected(vm))
1098
return -EPERM;
1099
1100
if (prot & ~KVM_PGTABLE_PROT_RWX)
1101
return -EINVAL;
1102
1103
assert_host_shared_guest(vm, ipa, PAGE_SIZE);
1104
guest_lock_component(vm);
1105
ret = kvm_pgtable_stage2_relax_perms(&vm->pgt, ipa, prot, 0);
1106
guest_unlock_component(vm);
1107
1108
return ret;
1109
}
1110
1111
int __pkvm_host_wrprotect_guest(u64 gfn, u64 nr_pages, struct pkvm_hyp_vm *vm)
1112
{
1113
u64 size, ipa = hyp_pfn_to_phys(gfn);
1114
int ret;
1115
1116
if (pkvm_hyp_vm_is_protected(vm))
1117
return -EPERM;
1118
1119
ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1120
if (ret)
1121
return ret;
1122
1123
assert_host_shared_guest(vm, ipa, size);
1124
guest_lock_component(vm);
1125
ret = kvm_pgtable_stage2_wrprotect(&vm->pgt, ipa, size);
1126
guest_unlock_component(vm);
1127
1128
return ret;
1129
}
1130
1131
int __pkvm_host_test_clear_young_guest(u64 gfn, u64 nr_pages, bool mkold, struct pkvm_hyp_vm *vm)
1132
{
1133
u64 size, ipa = hyp_pfn_to_phys(gfn);
1134
int ret;
1135
1136
if (pkvm_hyp_vm_is_protected(vm))
1137
return -EPERM;
1138
1139
ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1140
if (ret)
1141
return ret;
1142
1143
assert_host_shared_guest(vm, ipa, size);
1144
guest_lock_component(vm);
1145
ret = kvm_pgtable_stage2_test_clear_young(&vm->pgt, ipa, size, mkold);
1146
guest_unlock_component(vm);
1147
1148
return ret;
1149
}
1150
1151
int __pkvm_host_mkyoung_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu)
1152
{
1153
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1154
u64 ipa = hyp_pfn_to_phys(gfn);
1155
1156
if (pkvm_hyp_vm_is_protected(vm))
1157
return -EPERM;
1158
1159
assert_host_shared_guest(vm, ipa, PAGE_SIZE);
1160
guest_lock_component(vm);
1161
kvm_pgtable_stage2_mkyoung(&vm->pgt, ipa, 0);
1162
guest_unlock_component(vm);
1163
1164
return 0;
1165
}
1166
1167
#ifdef CONFIG_NVHE_EL2_DEBUG
1168
struct pkvm_expected_state {
1169
enum pkvm_page_state host;
1170
enum pkvm_page_state hyp;
1171
enum pkvm_page_state guest[2]; /* [ gfn, gfn + 1 ] */
1172
};
1173
1174
static struct pkvm_expected_state selftest_state;
1175
static struct hyp_page *selftest_page;
1176
1177
static struct pkvm_hyp_vm selftest_vm = {
1178
.kvm = {
1179
.arch = {
1180
.mmu = {
1181
.arch = &selftest_vm.kvm.arch,
1182
.pgt = &selftest_vm.pgt,
1183
},
1184
},
1185
},
1186
};
1187
1188
static struct pkvm_hyp_vcpu selftest_vcpu = {
1189
.vcpu = {
1190
.arch = {
1191
.hw_mmu = &selftest_vm.kvm.arch.mmu,
1192
},
1193
.kvm = &selftest_vm.kvm,
1194
},
1195
};
1196
1197
static void init_selftest_vm(void *virt)
1198
{
1199
struct hyp_page *p = hyp_virt_to_page(virt);
1200
int i;
1201
1202
selftest_vm.kvm.arch.mmu.vtcr = host_mmu.arch.mmu.vtcr;
1203
WARN_ON(kvm_guest_prepare_stage2(&selftest_vm, virt));
1204
1205
for (i = 0; i < pkvm_selftest_pages(); i++) {
1206
if (p[i].refcount)
1207
continue;
1208
p[i].refcount = 1;
1209
hyp_put_page(&selftest_vm.pool, hyp_page_to_virt(&p[i]));
1210
}
1211
}
1212
1213
static u64 selftest_ipa(void)
1214
{
1215
return BIT(selftest_vm.pgt.ia_bits - 1);
1216
}
1217
1218
static void assert_page_state(void)
1219
{
1220
void *virt = hyp_page_to_virt(selftest_page);
1221
u64 size = PAGE_SIZE << selftest_page->order;
1222
struct pkvm_hyp_vcpu *vcpu = &selftest_vcpu;
1223
u64 phys = hyp_virt_to_phys(virt);
1224
u64 ipa[2] = { selftest_ipa(), selftest_ipa() + PAGE_SIZE };
1225
struct pkvm_hyp_vm *vm;
1226
1227
vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1228
1229
host_lock_component();
1230
WARN_ON(__host_check_page_state_range(phys, size, selftest_state.host));
1231
host_unlock_component();
1232
1233
hyp_lock_component();
1234
WARN_ON(__hyp_check_page_state_range(phys, size, selftest_state.hyp));
1235
hyp_unlock_component();
1236
1237
guest_lock_component(&selftest_vm);
1238
WARN_ON(__guest_check_page_state_range(vm, ipa[0], size, selftest_state.guest[0]));
1239
WARN_ON(__guest_check_page_state_range(vm, ipa[1], size, selftest_state.guest[1]));
1240
guest_unlock_component(&selftest_vm);
1241
}
1242
1243
#define assert_transition_res(res, fn, ...) \
1244
do { \
1245
WARN_ON(fn(__VA_ARGS__) != res); \
1246
assert_page_state(); \
1247
} while (0)
1248
1249
void pkvm_ownership_selftest(void *base)
1250
{
1251
enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_RWX;
1252
void *virt = hyp_alloc_pages(&host_s2_pool, 0);
1253
struct pkvm_hyp_vcpu *vcpu = &selftest_vcpu;
1254
struct pkvm_hyp_vm *vm = &selftest_vm;
1255
u64 phys, size, pfn, gfn;
1256
1257
WARN_ON(!virt);
1258
selftest_page = hyp_virt_to_page(virt);
1259
selftest_page->refcount = 0;
1260
init_selftest_vm(base);
1261
1262
size = PAGE_SIZE << selftest_page->order;
1263
phys = hyp_virt_to_phys(virt);
1264
pfn = hyp_phys_to_pfn(phys);
1265
gfn = hyp_phys_to_pfn(selftest_ipa());
1266
1267
selftest_state.host = PKVM_NOPAGE;
1268
selftest_state.hyp = PKVM_PAGE_OWNED;
1269
selftest_state.guest[0] = selftest_state.guest[1] = PKVM_NOPAGE;
1270
assert_page_state();
1271
assert_transition_res(-EPERM, __pkvm_host_donate_hyp, pfn, 1);
1272
assert_transition_res(-EPERM, __pkvm_host_share_hyp, pfn);
1273
assert_transition_res(-EPERM, __pkvm_host_unshare_hyp, pfn);
1274
assert_transition_res(-EPERM, __pkvm_host_share_ffa, pfn, 1);
1275
assert_transition_res(-EPERM, __pkvm_host_unshare_ffa, pfn, 1);
1276
assert_transition_res(-EPERM, hyp_pin_shared_mem, virt, virt + size);
1277
assert_transition_res(-EPERM, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1278
assert_transition_res(-ENOENT, __pkvm_host_unshare_guest, gfn, 1, vm);
1279
1280
selftest_state.host = PKVM_PAGE_OWNED;
1281
selftest_state.hyp = PKVM_NOPAGE;
1282
assert_transition_res(0, __pkvm_hyp_donate_host, pfn, 1);
1283
assert_transition_res(-EPERM, __pkvm_hyp_donate_host, pfn, 1);
1284
assert_transition_res(-EPERM, __pkvm_host_unshare_hyp, pfn);
1285
assert_transition_res(-EPERM, __pkvm_host_unshare_ffa, pfn, 1);
1286
assert_transition_res(-ENOENT, __pkvm_host_unshare_guest, gfn, 1, vm);
1287
assert_transition_res(-EPERM, hyp_pin_shared_mem, virt, virt + size);
1288
1289
selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1290
selftest_state.hyp = PKVM_PAGE_SHARED_BORROWED;
1291
assert_transition_res(0, __pkvm_host_share_hyp, pfn);
1292
assert_transition_res(-EPERM, __pkvm_host_share_hyp, pfn);
1293
assert_transition_res(-EPERM, __pkvm_host_donate_hyp, pfn, 1);
1294
assert_transition_res(-EPERM, __pkvm_host_share_ffa, pfn, 1);
1295
assert_transition_res(-EPERM, __pkvm_hyp_donate_host, pfn, 1);
1296
assert_transition_res(-EPERM, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1297
assert_transition_res(-ENOENT, __pkvm_host_unshare_guest, gfn, 1, vm);
1298
1299
assert_transition_res(0, hyp_pin_shared_mem, virt, virt + size);
1300
assert_transition_res(0, hyp_pin_shared_mem, virt, virt + size);
1301
hyp_unpin_shared_mem(virt, virt + size);
1302
WARN_ON(hyp_page_count(virt) != 1);
1303
assert_transition_res(-EBUSY, __pkvm_host_unshare_hyp, pfn);
1304
assert_transition_res(-EPERM, __pkvm_host_share_hyp, pfn);
1305
assert_transition_res(-EPERM, __pkvm_host_donate_hyp, pfn, 1);
1306
assert_transition_res(-EPERM, __pkvm_host_share_ffa, pfn, 1);
1307
assert_transition_res(-EPERM, __pkvm_hyp_donate_host, pfn, 1);
1308
assert_transition_res(-EPERM, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1309
assert_transition_res(-ENOENT, __pkvm_host_unshare_guest, gfn, 1, vm);
1310
1311
hyp_unpin_shared_mem(virt, virt + size);
1312
assert_page_state();
1313
WARN_ON(hyp_page_count(virt));
1314
1315
selftest_state.host = PKVM_PAGE_OWNED;
1316
selftest_state.hyp = PKVM_NOPAGE;
1317
assert_transition_res(0, __pkvm_host_unshare_hyp, pfn);
1318
1319
selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1320
selftest_state.hyp = PKVM_NOPAGE;
1321
assert_transition_res(0, __pkvm_host_share_ffa, pfn, 1);
1322
assert_transition_res(-EPERM, __pkvm_host_share_ffa, pfn, 1);
1323
assert_transition_res(-EPERM, __pkvm_host_donate_hyp, pfn, 1);
1324
assert_transition_res(-EPERM, __pkvm_host_share_hyp, pfn);
1325
assert_transition_res(-EPERM, __pkvm_host_unshare_hyp, pfn);
1326
assert_transition_res(-EPERM, __pkvm_hyp_donate_host, pfn, 1);
1327
assert_transition_res(-EPERM, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1328
assert_transition_res(-ENOENT, __pkvm_host_unshare_guest, gfn, 1, vm);
1329
assert_transition_res(-EPERM, hyp_pin_shared_mem, virt, virt + size);
1330
1331
selftest_state.host = PKVM_PAGE_OWNED;
1332
selftest_state.hyp = PKVM_NOPAGE;
1333
assert_transition_res(0, __pkvm_host_unshare_ffa, pfn, 1);
1334
assert_transition_res(-EPERM, __pkvm_host_unshare_ffa, pfn, 1);
1335
1336
selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1337
selftest_state.guest[0] = PKVM_PAGE_SHARED_BORROWED;
1338
assert_transition_res(0, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1339
assert_transition_res(-EPERM, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1340
assert_transition_res(-EPERM, __pkvm_host_share_ffa, pfn, 1);
1341
assert_transition_res(-EPERM, __pkvm_host_donate_hyp, pfn, 1);
1342
assert_transition_res(-EPERM, __pkvm_host_share_hyp, pfn);
1343
assert_transition_res(-EPERM, __pkvm_host_unshare_hyp, pfn);
1344
assert_transition_res(-EPERM, __pkvm_hyp_donate_host, pfn, 1);
1345
assert_transition_res(-EPERM, hyp_pin_shared_mem, virt, virt + size);
1346
1347
selftest_state.guest[1] = PKVM_PAGE_SHARED_BORROWED;
1348
assert_transition_res(0, __pkvm_host_share_guest, pfn, gfn + 1, 1, vcpu, prot);
1349
WARN_ON(hyp_virt_to_page(virt)->host_share_guest_count != 2);
1350
1351
selftest_state.guest[0] = PKVM_NOPAGE;
1352
assert_transition_res(0, __pkvm_host_unshare_guest, gfn, 1, vm);
1353
1354
selftest_state.guest[1] = PKVM_NOPAGE;
1355
selftest_state.host = PKVM_PAGE_OWNED;
1356
assert_transition_res(0, __pkvm_host_unshare_guest, gfn + 1, 1, vm);
1357
1358
selftest_state.host = PKVM_NOPAGE;
1359
selftest_state.hyp = PKVM_PAGE_OWNED;
1360
assert_transition_res(0, __pkvm_host_donate_hyp, pfn, 1);
1361
1362
selftest_page->refcount = 1;
1363
hyp_put_page(&host_s2_pool, virt);
1364
}
1365
#endif
1366
1367