Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/hyp/pgtable.c
51174 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4
* No bombay mix was harmed in the writing of this file.
5
*
6
* Copyright (C) 2020 Google LLC
7
* Author: Will Deacon <[email protected]>
8
*/
9
10
#include <linux/bitfield.h>
11
#include <asm/kvm_pgtable.h>
12
#include <asm/stage2_pgtable.h>
13
14
struct kvm_pgtable_walk_data {
15
struct kvm_pgtable_walker *walker;
16
17
const u64 start;
18
u64 addr;
19
const u64 end;
20
};
21
22
static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
23
{
24
return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
25
}
26
27
static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
28
{
29
return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
30
}
31
32
static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
33
{
34
u64 granule = kvm_granule_size(ctx->level);
35
36
if (!kvm_level_supports_block_mapping(ctx->level))
37
return false;
38
39
if (granule > (ctx->end - ctx->addr))
40
return false;
41
42
if (!IS_ALIGNED(phys, granule))
43
return false;
44
45
return IS_ALIGNED(ctx->addr, granule);
46
}
47
48
static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
49
{
50
u64 shift = kvm_granule_shift(level);
51
u64 mask = BIT(PAGE_SHIFT - 3) - 1;
52
53
return (data->addr >> shift) & mask;
54
}
55
56
static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
57
{
58
u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
59
u64 mask = BIT(pgt->ia_bits) - 1;
60
61
return (addr & mask) >> shift;
62
}
63
64
static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
65
{
66
struct kvm_pgtable pgt = {
67
.ia_bits = ia_bits,
68
.start_level = start_level,
69
};
70
71
return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
72
}
73
74
static bool kvm_pte_table(kvm_pte_t pte, s8 level)
75
{
76
if (level == KVM_PGTABLE_LAST_LEVEL)
77
return false;
78
79
if (!kvm_pte_valid(pte))
80
return false;
81
82
return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
83
}
84
85
static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
86
{
87
return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
88
}
89
90
static void kvm_clear_pte(kvm_pte_t *ptep)
91
{
92
WRITE_ONCE(*ptep, 0);
93
}
94
95
static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
96
{
97
kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
98
99
pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
100
pte |= KVM_PTE_VALID;
101
return pte;
102
}
103
104
static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
105
{
106
kvm_pte_t pte = kvm_phys_to_pte(pa);
107
u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
108
KVM_PTE_TYPE_BLOCK;
109
110
pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
111
pte |= FIELD_PREP(KVM_PTE_TYPE, type);
112
pte |= KVM_PTE_VALID;
113
114
return pte;
115
}
116
117
static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
118
{
119
return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
120
}
121
122
static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
123
const struct kvm_pgtable_visit_ctx *ctx,
124
enum kvm_pgtable_walk_flags visit)
125
{
126
struct kvm_pgtable_walker *walker = data->walker;
127
128
/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
129
WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
130
return walker->cb(ctx, visit);
131
}
132
133
static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
134
int r)
135
{
136
/*
137
* Visitor callbacks return EAGAIN when the conditions that led to a
138
* fault are no longer reflected in the page tables due to a race to
139
* update a PTE. In the context of a fault handler this is interpreted
140
* as a signal to retry guest execution.
141
*
142
* Ignore the return code altogether for walkers outside a fault handler
143
* (e.g. write protecting a range of memory) and chug along with the
144
* page table walk.
145
*/
146
if (r == -EAGAIN)
147
return walker->flags & KVM_PGTABLE_WALK_IGNORE_EAGAIN;
148
149
return !r;
150
}
151
152
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
153
struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
154
155
static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
156
struct kvm_pgtable_mm_ops *mm_ops,
157
kvm_pteref_t pteref, s8 level)
158
{
159
enum kvm_pgtable_walk_flags flags = data->walker->flags;
160
kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
161
struct kvm_pgtable_visit_ctx ctx = {
162
.ptep = ptep,
163
.old = READ_ONCE(*ptep),
164
.arg = data->walker->arg,
165
.mm_ops = mm_ops,
166
.start = data->start,
167
.addr = data->addr,
168
.end = data->end,
169
.level = level,
170
.flags = flags,
171
};
172
int ret = 0;
173
bool reload = false;
174
kvm_pteref_t childp;
175
bool table = kvm_pte_table(ctx.old, level);
176
177
if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
178
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
179
reload = true;
180
}
181
182
if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
183
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
184
reload = true;
185
}
186
187
/*
188
* Reload the page table after invoking the walker callback for leaf
189
* entries or after pre-order traversal, to allow the walker to descend
190
* into a newly installed or replaced table.
191
*/
192
if (reload) {
193
ctx.old = READ_ONCE(*ptep);
194
table = kvm_pte_table(ctx.old, level);
195
}
196
197
if (!kvm_pgtable_walk_continue(data->walker, ret))
198
goto out;
199
200
if (!table) {
201
data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
202
data->addr += kvm_granule_size(level);
203
goto out;
204
}
205
206
childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
207
ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
208
if (!kvm_pgtable_walk_continue(data->walker, ret))
209
goto out;
210
211
if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
212
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
213
214
out:
215
if (kvm_pgtable_walk_continue(data->walker, ret))
216
return 0;
217
218
return ret;
219
}
220
221
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
222
struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
223
{
224
u32 idx;
225
int ret = 0;
226
227
if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
228
level > KVM_PGTABLE_LAST_LEVEL))
229
return -EINVAL;
230
231
for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
232
kvm_pteref_t pteref = &pgtable[idx];
233
234
if (data->addr >= data->end)
235
break;
236
237
ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
238
if (ret)
239
break;
240
}
241
242
return ret;
243
}
244
245
static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
246
{
247
u32 idx;
248
int ret = 0;
249
u64 limit = BIT(pgt->ia_bits);
250
251
if (data->addr > limit || data->end > limit)
252
return -ERANGE;
253
254
if (!pgt->pgd)
255
return -EINVAL;
256
257
for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
258
kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
259
260
ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
261
if (ret)
262
break;
263
}
264
265
return ret;
266
}
267
268
int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
269
struct kvm_pgtable_walker *walker)
270
{
271
struct kvm_pgtable_walk_data walk_data = {
272
.start = ALIGN_DOWN(addr, PAGE_SIZE),
273
.addr = ALIGN_DOWN(addr, PAGE_SIZE),
274
.end = PAGE_ALIGN(walk_data.addr + size),
275
.walker = walker,
276
};
277
int r;
278
279
r = kvm_pgtable_walk_begin(walker);
280
if (r)
281
return r;
282
283
r = _kvm_pgtable_walk(pgt, &walk_data);
284
kvm_pgtable_walk_end(walker);
285
286
return r;
287
}
288
289
struct leaf_walk_data {
290
kvm_pte_t pte;
291
s8 level;
292
};
293
294
static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
295
enum kvm_pgtable_walk_flags visit)
296
{
297
struct leaf_walk_data *data = ctx->arg;
298
299
data->pte = ctx->old;
300
data->level = ctx->level;
301
302
return 0;
303
}
304
305
int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
306
kvm_pte_t *ptep, s8 *level)
307
{
308
struct leaf_walk_data data;
309
struct kvm_pgtable_walker walker = {
310
.cb = leaf_walker,
311
.flags = KVM_PGTABLE_WALK_LEAF,
312
.arg = &data,
313
};
314
int ret;
315
316
ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
317
PAGE_SIZE, &walker);
318
if (!ret) {
319
if (ptep)
320
*ptep = data.pte;
321
if (level)
322
*level = data.level;
323
}
324
325
return ret;
326
}
327
328
struct hyp_map_data {
329
const u64 phys;
330
kvm_pte_t attr;
331
};
332
333
static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
334
{
335
bool device = prot & KVM_PGTABLE_PROT_DEVICE;
336
u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
337
kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
338
u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
339
u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
340
KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
341
342
if (!(prot & KVM_PGTABLE_PROT_R))
343
return -EINVAL;
344
345
if (prot & KVM_PGTABLE_PROT_X) {
346
if (prot & KVM_PGTABLE_PROT_W)
347
return -EINVAL;
348
349
if (device)
350
return -EINVAL;
351
352
if (system_supports_bti_kernel())
353
attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
354
} else {
355
attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
356
}
357
358
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
359
if (!kvm_lpa2_is_enabled())
360
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
361
attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
362
attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
363
*ptep = attr;
364
365
return 0;
366
}
367
368
enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
369
{
370
enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
371
u32 ap;
372
373
if (!kvm_pte_valid(pte))
374
return prot;
375
376
if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
377
prot |= KVM_PGTABLE_PROT_X;
378
379
ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
380
if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
381
prot |= KVM_PGTABLE_PROT_R;
382
else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
383
prot |= KVM_PGTABLE_PROT_RW;
384
385
return prot;
386
}
387
388
static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
389
struct hyp_map_data *data)
390
{
391
u64 phys = data->phys + (ctx->addr - ctx->start);
392
kvm_pte_t new;
393
394
if (!kvm_block_mapping_supported(ctx, phys))
395
return false;
396
397
new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
398
if (ctx->old == new)
399
return true;
400
if (!kvm_pte_valid(ctx->old))
401
ctx->mm_ops->get_page(ctx->ptep);
402
else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
403
return false;
404
405
smp_store_release(ctx->ptep, new);
406
return true;
407
}
408
409
static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
410
enum kvm_pgtable_walk_flags visit)
411
{
412
kvm_pte_t *childp, new;
413
struct hyp_map_data *data = ctx->arg;
414
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
415
416
if (hyp_map_walker_try_leaf(ctx, data))
417
return 0;
418
419
if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
420
return -EINVAL;
421
422
childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
423
if (!childp)
424
return -ENOMEM;
425
426
new = kvm_init_table_pte(childp, mm_ops);
427
mm_ops->get_page(ctx->ptep);
428
smp_store_release(ctx->ptep, new);
429
430
return 0;
431
}
432
433
int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
434
enum kvm_pgtable_prot prot)
435
{
436
int ret;
437
struct hyp_map_data map_data = {
438
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
439
};
440
struct kvm_pgtable_walker walker = {
441
.cb = hyp_map_walker,
442
.flags = KVM_PGTABLE_WALK_LEAF,
443
.arg = &map_data,
444
};
445
446
ret = hyp_set_prot_attr(prot, &map_data.attr);
447
if (ret)
448
return ret;
449
450
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
451
dsb(ishst);
452
isb();
453
return ret;
454
}
455
456
static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
457
enum kvm_pgtable_walk_flags visit)
458
{
459
kvm_pte_t *childp = NULL;
460
u64 granule = kvm_granule_size(ctx->level);
461
u64 *unmapped = ctx->arg;
462
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
463
464
if (!kvm_pte_valid(ctx->old))
465
return -EINVAL;
466
467
if (kvm_pte_table(ctx->old, ctx->level)) {
468
childp = kvm_pte_follow(ctx->old, mm_ops);
469
470
if (mm_ops->page_count(childp) != 1)
471
return 0;
472
473
kvm_clear_pte(ctx->ptep);
474
dsb(ishst);
475
__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
476
} else {
477
if (ctx->end - ctx->addr < granule)
478
return -EINVAL;
479
480
kvm_clear_pte(ctx->ptep);
481
dsb(ishst);
482
__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
483
*unmapped += granule;
484
}
485
486
dsb(ish);
487
isb();
488
mm_ops->put_page(ctx->ptep);
489
490
if (childp)
491
mm_ops->put_page(childp);
492
493
return 0;
494
}
495
496
u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
497
{
498
u64 unmapped = 0;
499
struct kvm_pgtable_walker walker = {
500
.cb = hyp_unmap_walker,
501
.arg = &unmapped,
502
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
503
};
504
505
if (!pgt->mm_ops->page_count)
506
return 0;
507
508
kvm_pgtable_walk(pgt, addr, size, &walker);
509
return unmapped;
510
}
511
512
int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
513
struct kvm_pgtable_mm_ops *mm_ops)
514
{
515
s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
516
ARM64_HW_PGTABLE_LEVELS(va_bits);
517
518
if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
519
start_level > KVM_PGTABLE_LAST_LEVEL)
520
return -EINVAL;
521
522
pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
523
if (!pgt->pgd)
524
return -ENOMEM;
525
526
pgt->ia_bits = va_bits;
527
pgt->start_level = start_level;
528
pgt->mm_ops = mm_ops;
529
pgt->mmu = NULL;
530
pgt->force_pte_cb = NULL;
531
532
return 0;
533
}
534
535
static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
536
enum kvm_pgtable_walk_flags visit)
537
{
538
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
539
540
if (!kvm_pte_valid(ctx->old))
541
return 0;
542
543
mm_ops->put_page(ctx->ptep);
544
545
if (kvm_pte_table(ctx->old, ctx->level))
546
mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
547
548
return 0;
549
}
550
551
void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
552
{
553
struct kvm_pgtable_walker walker = {
554
.cb = hyp_free_walker,
555
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
556
};
557
558
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
559
pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
560
pgt->pgd = NULL;
561
}
562
563
struct stage2_map_data {
564
const u64 phys;
565
kvm_pte_t attr;
566
u8 owner_id;
567
568
kvm_pte_t *anchor;
569
kvm_pte_t *childp;
570
571
struct kvm_s2_mmu *mmu;
572
void *memcache;
573
574
/* Force mappings to page granularity */
575
bool force_pte;
576
577
/* Walk should update owner_id only */
578
bool annotation;
579
};
580
581
u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
582
{
583
u64 vtcr = VTCR_EL2_FLAGS;
584
s8 lvls;
585
586
vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
587
vtcr |= VTCR_EL2_T0SZ(phys_shift);
588
/*
589
* Use a minimum 2 level page table to prevent splitting
590
* host PMD huge pages at stage2.
591
*/
592
lvls = stage2_pgtable_levels(phys_shift);
593
if (lvls < 2)
594
lvls = 2;
595
596
/*
597
* When LPA2 is enabled, the HW supports an extra level of translation
598
* (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
599
* to as an addition to SL0 to enable encoding this extra start level.
600
* However, since we always use concatenated pages for the first level
601
* lookup, we will never need this extra level and therefore do not need
602
* to touch SL2.
603
*/
604
vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
605
606
#ifdef CONFIG_ARM64_HW_AFDBM
607
/*
608
* Enable the Hardware Access Flag management, unconditionally
609
* on all CPUs. In systems that have asymmetric support for the feature
610
* this allows KVM to leverage hardware support on the subset of cores
611
* that implement the feature.
612
*
613
* The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
614
* hardware) on implementations that do not advertise support for the
615
* feature. As such, setting HA unconditionally is safe, unless you
616
* happen to be running on a design that has unadvertised support for
617
* HAFDBS. Here be dragons.
618
*/
619
if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
620
vtcr |= VTCR_EL2_HA;
621
#endif /* CONFIG_ARM64_HW_AFDBM */
622
623
if (kvm_lpa2_is_enabled())
624
vtcr |= VTCR_EL2_DS;
625
626
/* Set the vmid bits */
627
vtcr |= (get_vmid_bits(mmfr1) == 16) ?
628
VTCR_EL2_VS_16BIT :
629
VTCR_EL2_VS_8BIT;
630
631
return vtcr;
632
}
633
634
static bool stage2_has_fwb(struct kvm_pgtable *pgt)
635
{
636
if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
637
return false;
638
639
return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
640
}
641
642
void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
643
phys_addr_t addr, size_t size)
644
{
645
unsigned long pages, inval_pages;
646
647
if (!system_supports_tlb_range()) {
648
kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
649
return;
650
}
651
652
pages = size >> PAGE_SHIFT;
653
while (pages > 0) {
654
inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
655
kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
656
657
addr += inval_pages << PAGE_SHIFT;
658
pages -= inval_pages;
659
}
660
}
661
662
#define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
663
664
static int stage2_set_xn_attr(enum kvm_pgtable_prot prot, kvm_pte_t *attr)
665
{
666
bool px, ux;
667
u8 xn;
668
669
px = prot & KVM_PGTABLE_PROT_PX;
670
ux = prot & KVM_PGTABLE_PROT_UX;
671
672
if (!cpus_have_final_cap(ARM64_HAS_XNX) && px != ux)
673
return -EINVAL;
674
675
if (px && ux)
676
xn = 0b00;
677
else if (!px && ux)
678
xn = 0b01;
679
else if (!px && !ux)
680
xn = 0b10;
681
else
682
xn = 0b11;
683
684
*attr &= ~KVM_PTE_LEAF_ATTR_HI_S2_XN;
685
*attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_HI_S2_XN, xn);
686
return 0;
687
}
688
689
static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
690
kvm_pte_t *ptep)
691
{
692
kvm_pte_t attr;
693
u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
694
int r;
695
696
switch (prot & (KVM_PGTABLE_PROT_DEVICE |
697
KVM_PGTABLE_PROT_NORMAL_NC)) {
698
case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
699
return -EINVAL;
700
case KVM_PGTABLE_PROT_DEVICE:
701
if (prot & KVM_PGTABLE_PROT_X)
702
return -EINVAL;
703
attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
704
break;
705
case KVM_PGTABLE_PROT_NORMAL_NC:
706
if (prot & KVM_PGTABLE_PROT_X)
707
return -EINVAL;
708
attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
709
break;
710
default:
711
attr = KVM_S2_MEMATTR(pgt, NORMAL);
712
}
713
714
r = stage2_set_xn_attr(prot, &attr);
715
if (r)
716
return r;
717
718
if (prot & KVM_PGTABLE_PROT_R)
719
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
720
721
if (prot & KVM_PGTABLE_PROT_W)
722
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
723
724
if (!kvm_lpa2_is_enabled())
725
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
726
727
attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
728
attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
729
*ptep = attr;
730
731
return 0;
732
}
733
734
enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
735
{
736
enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
737
738
if (!kvm_pte_valid(pte))
739
return prot;
740
741
if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
742
prot |= KVM_PGTABLE_PROT_R;
743
if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
744
prot |= KVM_PGTABLE_PROT_W;
745
746
switch (FIELD_GET(KVM_PTE_LEAF_ATTR_HI_S2_XN, pte)) {
747
case 0b00:
748
prot |= KVM_PGTABLE_PROT_PX | KVM_PGTABLE_PROT_UX;
749
break;
750
case 0b01:
751
prot |= KVM_PGTABLE_PROT_UX;
752
break;
753
case 0b11:
754
prot |= KVM_PGTABLE_PROT_PX;
755
break;
756
default:
757
break;
758
}
759
760
return prot;
761
}
762
763
static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
764
{
765
if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
766
return true;
767
768
return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
769
}
770
771
static bool stage2_pte_is_counted(kvm_pte_t pte)
772
{
773
/*
774
* The refcount tracks valid entries as well as invalid entries if they
775
* encode ownership of a page to another entity than the page-table
776
* owner, whose id is 0.
777
*/
778
return !!pte;
779
}
780
781
static bool stage2_pte_is_locked(kvm_pte_t pte)
782
{
783
return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
784
}
785
786
static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
787
{
788
if (!kvm_pgtable_walk_shared(ctx)) {
789
WRITE_ONCE(*ctx->ptep, new);
790
return true;
791
}
792
793
return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
794
}
795
796
/**
797
* stage2_try_break_pte() - Invalidates a pte according to the
798
* 'break-before-make' requirements of the
799
* architecture.
800
*
801
* @ctx: context of the visited pte.
802
* @mmu: stage-2 mmu
803
*
804
* Returns: true if the pte was successfully broken.
805
*
806
* If the removed pte was valid, performs the necessary serialization and TLB
807
* invalidation for the old value. For counted ptes, drops the reference count
808
* on the containing table page.
809
*/
810
static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
811
struct kvm_s2_mmu *mmu)
812
{
813
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
814
815
if (stage2_pte_is_locked(ctx->old)) {
816
/*
817
* Should never occur if this walker has exclusive access to the
818
* page tables.
819
*/
820
WARN_ON(!kvm_pgtable_walk_shared(ctx));
821
return false;
822
}
823
824
if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
825
return false;
826
827
if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
828
/*
829
* Perform the appropriate TLB invalidation based on the
830
* evicted pte value (if any).
831
*/
832
if (kvm_pte_table(ctx->old, ctx->level)) {
833
u64 size = kvm_granule_size(ctx->level);
834
u64 addr = ALIGN_DOWN(ctx->addr, size);
835
836
kvm_tlb_flush_vmid_range(mmu, addr, size);
837
} else if (kvm_pte_valid(ctx->old)) {
838
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
839
ctx->addr, ctx->level);
840
}
841
}
842
843
if (stage2_pte_is_counted(ctx->old))
844
mm_ops->put_page(ctx->ptep);
845
846
return true;
847
}
848
849
static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
850
{
851
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
852
853
WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
854
855
if (stage2_pte_is_counted(new))
856
mm_ops->get_page(ctx->ptep);
857
858
smp_store_release(ctx->ptep, new);
859
}
860
861
static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
862
{
863
/*
864
* If FEAT_TLBIRANGE is implemented, defer the individual
865
* TLB invalidations until the entire walk is finished, and
866
* then use the range-based TLBI instructions to do the
867
* invalidations. Condition deferred TLB invalidation on the
868
* system supporting FWB as the optimization is entirely
869
* pointless when the unmap walker needs to perform CMOs.
870
*/
871
return system_supports_tlb_range() && stage2_has_fwb(pgt);
872
}
873
874
static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
875
struct kvm_s2_mmu *mmu,
876
struct kvm_pgtable_mm_ops *mm_ops)
877
{
878
struct kvm_pgtable *pgt = ctx->arg;
879
880
/*
881
* Clear the existing PTE, and perform break-before-make if it was
882
* valid. Depending on the system support, defer the TLB maintenance
883
* for the same until the entire unmap walk is completed.
884
*/
885
if (kvm_pte_valid(ctx->old)) {
886
kvm_clear_pte(ctx->ptep);
887
888
if (kvm_pte_table(ctx->old, ctx->level)) {
889
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
890
TLBI_TTL_UNKNOWN);
891
} else if (!stage2_unmap_defer_tlb_flush(pgt)) {
892
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
893
ctx->level);
894
}
895
}
896
897
mm_ops->put_page(ctx->ptep);
898
}
899
900
static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
901
{
902
u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
903
return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
904
}
905
906
static bool stage2_pte_executable(kvm_pte_t pte)
907
{
908
return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
909
}
910
911
static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
912
const struct stage2_map_data *data)
913
{
914
u64 phys = data->phys;
915
916
/* Work out the correct PA based on how far the walk has gotten */
917
return phys + (ctx->addr - ctx->start);
918
}
919
920
static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
921
struct stage2_map_data *data)
922
{
923
u64 phys = stage2_map_walker_phys_addr(ctx, data);
924
925
if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
926
return false;
927
928
if (data->annotation)
929
return true;
930
931
return kvm_block_mapping_supported(ctx, phys);
932
}
933
934
static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
935
struct stage2_map_data *data)
936
{
937
kvm_pte_t new;
938
u64 phys = stage2_map_walker_phys_addr(ctx, data);
939
u64 granule = kvm_granule_size(ctx->level);
940
struct kvm_pgtable *pgt = data->mmu->pgt;
941
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
942
943
if (!stage2_leaf_mapping_allowed(ctx, data))
944
return -E2BIG;
945
946
if (!data->annotation)
947
new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
948
else
949
new = kvm_init_invalid_leaf_owner(data->owner_id);
950
951
/*
952
* Skip updating the PTE if we are trying to recreate the exact
953
* same mapping or only change the access permissions. Instead,
954
* the vCPU will exit one more time from guest if still needed
955
* and then go through the path of relaxing permissions.
956
*/
957
if (!stage2_pte_needs_update(ctx->old, new))
958
return -EAGAIN;
959
960
/* If we're only changing software bits, then store them and go! */
961
if (!kvm_pgtable_walk_shared(ctx) &&
962
!((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
963
bool old_is_counted = stage2_pte_is_counted(ctx->old);
964
965
if (old_is_counted != stage2_pte_is_counted(new)) {
966
if (old_is_counted)
967
mm_ops->put_page(ctx->ptep);
968
else
969
mm_ops->get_page(ctx->ptep);
970
}
971
WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
972
return 0;
973
}
974
975
if (!stage2_try_break_pte(ctx, data->mmu))
976
return -EAGAIN;
977
978
/* Perform CMOs before installation of the guest stage-2 PTE */
979
if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
980
stage2_pte_cacheable(pgt, new))
981
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
982
granule);
983
984
if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
985
stage2_pte_executable(new))
986
mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
987
988
stage2_make_pte(ctx, new);
989
990
return 0;
991
}
992
993
static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
994
struct stage2_map_data *data)
995
{
996
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
997
kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
998
int ret;
999
1000
if (!stage2_leaf_mapping_allowed(ctx, data))
1001
return 0;
1002
1003
ret = stage2_map_walker_try_leaf(ctx, data);
1004
if (ret)
1005
return ret;
1006
1007
mm_ops->free_unlinked_table(childp, ctx->level);
1008
return 0;
1009
}
1010
1011
static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
1012
struct stage2_map_data *data)
1013
{
1014
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1015
kvm_pte_t *childp, new;
1016
int ret;
1017
1018
ret = stage2_map_walker_try_leaf(ctx, data);
1019
if (ret != -E2BIG)
1020
return ret;
1021
1022
if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
1023
return -EINVAL;
1024
1025
if (!data->memcache)
1026
return -ENOMEM;
1027
1028
childp = mm_ops->zalloc_page(data->memcache);
1029
if (!childp)
1030
return -ENOMEM;
1031
1032
if (!stage2_try_break_pte(ctx, data->mmu)) {
1033
mm_ops->put_page(childp);
1034
return -EAGAIN;
1035
}
1036
1037
/*
1038
* If we've run into an existing block mapping then replace it with
1039
* a table. Accesses beyond 'end' that fall within the new table
1040
* will be mapped lazily.
1041
*/
1042
new = kvm_init_table_pte(childp, mm_ops);
1043
stage2_make_pte(ctx, new);
1044
1045
return 0;
1046
}
1047
1048
/*
1049
* The TABLE_PRE callback runs for table entries on the way down, looking
1050
* for table entries which we could conceivably replace with a block entry
1051
* for this mapping. If it finds one it replaces the entry and calls
1052
* kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1053
*
1054
* Otherwise, the LEAF callback performs the mapping at the existing leaves
1055
* instead.
1056
*/
1057
static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1058
enum kvm_pgtable_walk_flags visit)
1059
{
1060
struct stage2_map_data *data = ctx->arg;
1061
1062
switch (visit) {
1063
case KVM_PGTABLE_WALK_TABLE_PRE:
1064
return stage2_map_walk_table_pre(ctx, data);
1065
case KVM_PGTABLE_WALK_LEAF:
1066
return stage2_map_walk_leaf(ctx, data);
1067
default:
1068
return -EINVAL;
1069
}
1070
}
1071
1072
int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1073
u64 phys, enum kvm_pgtable_prot prot,
1074
void *mc, enum kvm_pgtable_walk_flags flags)
1075
{
1076
int ret;
1077
struct stage2_map_data map_data = {
1078
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
1079
.mmu = pgt->mmu,
1080
.memcache = mc,
1081
.force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1082
};
1083
struct kvm_pgtable_walker walker = {
1084
.cb = stage2_map_walker,
1085
.flags = flags |
1086
KVM_PGTABLE_WALK_TABLE_PRE |
1087
KVM_PGTABLE_WALK_LEAF,
1088
.arg = &map_data,
1089
};
1090
1091
if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1092
return -EINVAL;
1093
1094
ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1095
if (ret)
1096
return ret;
1097
1098
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1099
dsb(ishst);
1100
return ret;
1101
}
1102
1103
int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1104
void *mc, u8 owner_id)
1105
{
1106
int ret;
1107
struct stage2_map_data map_data = {
1108
.mmu = pgt->mmu,
1109
.memcache = mc,
1110
.owner_id = owner_id,
1111
.force_pte = true,
1112
.annotation = true,
1113
};
1114
struct kvm_pgtable_walker walker = {
1115
.cb = stage2_map_walker,
1116
.flags = KVM_PGTABLE_WALK_TABLE_PRE |
1117
KVM_PGTABLE_WALK_LEAF,
1118
.arg = &map_data,
1119
};
1120
1121
if (owner_id > KVM_MAX_OWNER_ID)
1122
return -EINVAL;
1123
1124
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1125
return ret;
1126
}
1127
1128
static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1129
enum kvm_pgtable_walk_flags visit)
1130
{
1131
struct kvm_pgtable *pgt = ctx->arg;
1132
struct kvm_s2_mmu *mmu = pgt->mmu;
1133
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1134
kvm_pte_t *childp = NULL;
1135
bool need_flush = false;
1136
1137
if (!kvm_pte_valid(ctx->old)) {
1138
if (stage2_pte_is_counted(ctx->old)) {
1139
kvm_clear_pte(ctx->ptep);
1140
mm_ops->put_page(ctx->ptep);
1141
}
1142
return 0;
1143
}
1144
1145
if (kvm_pte_table(ctx->old, ctx->level)) {
1146
childp = kvm_pte_follow(ctx->old, mm_ops);
1147
1148
if (mm_ops->page_count(childp) != 1)
1149
return 0;
1150
} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1151
need_flush = !stage2_has_fwb(pgt);
1152
}
1153
1154
/*
1155
* This is similar to the map() path in that we unmap the entire
1156
* block entry and rely on the remaining portions being faulted
1157
* back lazily.
1158
*/
1159
stage2_unmap_put_pte(ctx, mmu, mm_ops);
1160
1161
if (need_flush && mm_ops->dcache_clean_inval_poc)
1162
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1163
kvm_granule_size(ctx->level));
1164
1165
if (childp)
1166
mm_ops->put_page(childp);
1167
1168
return 0;
1169
}
1170
1171
int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1172
{
1173
int ret;
1174
struct kvm_pgtable_walker walker = {
1175
.cb = stage2_unmap_walker,
1176
.arg = pgt,
1177
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1178
};
1179
1180
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1181
if (stage2_unmap_defer_tlb_flush(pgt))
1182
/* Perform the deferred TLB invalidations */
1183
kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1184
1185
return ret;
1186
}
1187
1188
struct stage2_attr_data {
1189
kvm_pte_t attr_set;
1190
kvm_pte_t attr_clr;
1191
kvm_pte_t pte;
1192
s8 level;
1193
};
1194
1195
static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1196
enum kvm_pgtable_walk_flags visit)
1197
{
1198
kvm_pte_t pte = ctx->old;
1199
struct stage2_attr_data *data = ctx->arg;
1200
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1201
1202
if (!kvm_pte_valid(ctx->old))
1203
return -EAGAIN;
1204
1205
data->level = ctx->level;
1206
data->pte = pte;
1207
pte &= ~data->attr_clr;
1208
pte |= data->attr_set;
1209
1210
/*
1211
* We may race with the CPU trying to set the access flag here,
1212
* but worst-case the access flag update gets lost and will be
1213
* set on the next access instead.
1214
*/
1215
if (data->pte != pte) {
1216
/*
1217
* Invalidate instruction cache before updating the guest
1218
* stage-2 PTE if we are going to add executable permission.
1219
*/
1220
if (mm_ops->icache_inval_pou &&
1221
stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1222
mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1223
kvm_granule_size(ctx->level));
1224
1225
if (!stage2_try_set_pte(ctx, pte))
1226
return -EAGAIN;
1227
}
1228
1229
return 0;
1230
}
1231
1232
static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1233
u64 size, kvm_pte_t attr_set,
1234
kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1235
s8 *level, enum kvm_pgtable_walk_flags flags)
1236
{
1237
int ret;
1238
kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1239
struct stage2_attr_data data = {
1240
.attr_set = attr_set & attr_mask,
1241
.attr_clr = attr_clr & attr_mask,
1242
};
1243
struct kvm_pgtable_walker walker = {
1244
.cb = stage2_attr_walker,
1245
.arg = &data,
1246
.flags = flags | KVM_PGTABLE_WALK_LEAF,
1247
};
1248
1249
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1250
if (ret)
1251
return ret;
1252
1253
if (orig_pte)
1254
*orig_pte = data.pte;
1255
1256
if (level)
1257
*level = data.level;
1258
return 0;
1259
}
1260
1261
int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1262
{
1263
return stage2_update_leaf_attrs(pgt, addr, size, 0,
1264
KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1265
NULL, NULL,
1266
KVM_PGTABLE_WALK_IGNORE_EAGAIN);
1267
}
1268
1269
void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr,
1270
enum kvm_pgtable_walk_flags flags)
1271
{
1272
int ret;
1273
1274
ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1275
NULL, NULL, flags);
1276
if (!ret)
1277
dsb(ishst);
1278
}
1279
1280
struct stage2_age_data {
1281
bool mkold;
1282
bool young;
1283
};
1284
1285
static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1286
enum kvm_pgtable_walk_flags visit)
1287
{
1288
kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1289
struct stage2_age_data *data = ctx->arg;
1290
1291
if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1292
return 0;
1293
1294
data->young = true;
1295
1296
/*
1297
* stage2_age_walker() is always called while holding the MMU lock for
1298
* write, so this will always succeed. Nonetheless, this deliberately
1299
* follows the race detection pattern of the other stage-2 walkers in
1300
* case the locking mechanics of the MMU notifiers is ever changed.
1301
*/
1302
if (data->mkold && !stage2_try_set_pte(ctx, new))
1303
return -EAGAIN;
1304
1305
/*
1306
* "But where's the TLBI?!", you scream.
1307
* "Over in the core code", I sigh.
1308
*
1309
* See the '->clear_flush_young()' callback on the KVM mmu notifier.
1310
*/
1311
return 0;
1312
}
1313
1314
bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1315
u64 size, bool mkold)
1316
{
1317
struct stage2_age_data data = {
1318
.mkold = mkold,
1319
};
1320
struct kvm_pgtable_walker walker = {
1321
.cb = stage2_age_walker,
1322
.arg = &data,
1323
.flags = KVM_PGTABLE_WALK_LEAF,
1324
};
1325
1326
WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1327
return data.young;
1328
}
1329
1330
int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1331
enum kvm_pgtable_prot prot, enum kvm_pgtable_walk_flags flags)
1332
{
1333
kvm_pte_t xn = 0, set = 0, clr = 0;
1334
s8 level;
1335
int ret;
1336
1337
if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1338
return -EINVAL;
1339
1340
if (prot & KVM_PGTABLE_PROT_R)
1341
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1342
1343
if (prot & KVM_PGTABLE_PROT_W)
1344
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1345
1346
ret = stage2_set_xn_attr(prot, &xn);
1347
if (ret)
1348
return ret;
1349
1350
set |= xn & KVM_PTE_LEAF_ATTR_HI_S2_XN;
1351
clr |= ~xn & KVM_PTE_LEAF_ATTR_HI_S2_XN;
1352
1353
ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, flags);
1354
if (!ret || ret == -EAGAIN)
1355
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1356
return ret;
1357
}
1358
1359
static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1360
enum kvm_pgtable_walk_flags visit)
1361
{
1362
struct kvm_pgtable *pgt = ctx->arg;
1363
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1364
1365
if (!stage2_pte_cacheable(pgt, ctx->old))
1366
return 0;
1367
1368
if (mm_ops->dcache_clean_inval_poc)
1369
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1370
kvm_granule_size(ctx->level));
1371
return 0;
1372
}
1373
1374
int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1375
{
1376
struct kvm_pgtable_walker walker = {
1377
.cb = stage2_flush_walker,
1378
.flags = KVM_PGTABLE_WALK_LEAF,
1379
.arg = pgt,
1380
};
1381
1382
if (stage2_has_fwb(pgt))
1383
return 0;
1384
1385
return kvm_pgtable_walk(pgt, addr, size, &walker);
1386
}
1387
1388
kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1389
u64 phys, s8 level,
1390
enum kvm_pgtable_prot prot,
1391
void *mc, bool force_pte)
1392
{
1393
struct stage2_map_data map_data = {
1394
.phys = phys,
1395
.mmu = pgt->mmu,
1396
.memcache = mc,
1397
.force_pte = force_pte,
1398
};
1399
struct kvm_pgtable_walker walker = {
1400
.cb = stage2_map_walker,
1401
.flags = KVM_PGTABLE_WALK_LEAF |
1402
KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1403
KVM_PGTABLE_WALK_SKIP_CMO,
1404
.arg = &map_data,
1405
};
1406
/*
1407
* The input address (.addr) is irrelevant for walking an
1408
* unlinked table. Construct an ambiguous IA range to map
1409
* kvm_granule_size(level) worth of memory.
1410
*/
1411
struct kvm_pgtable_walk_data data = {
1412
.walker = &walker,
1413
.addr = 0,
1414
.end = kvm_granule_size(level),
1415
};
1416
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1417
kvm_pte_t *pgtable;
1418
int ret;
1419
1420
if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1421
return ERR_PTR(-EINVAL);
1422
1423
ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1424
if (ret)
1425
return ERR_PTR(ret);
1426
1427
pgtable = mm_ops->zalloc_page(mc);
1428
if (!pgtable)
1429
return ERR_PTR(-ENOMEM);
1430
1431
ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1432
level + 1);
1433
if (ret) {
1434
kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1435
return ERR_PTR(ret);
1436
}
1437
1438
return pgtable;
1439
}
1440
1441
/*
1442
* Get the number of page-tables needed to replace a block with a
1443
* fully populated tree up to the PTE entries. Note that @level is
1444
* interpreted as in "level @level entry".
1445
*/
1446
static int stage2_block_get_nr_page_tables(s8 level)
1447
{
1448
switch (level) {
1449
case 1:
1450
return PTRS_PER_PTE + 1;
1451
case 2:
1452
return 1;
1453
case 3:
1454
return 0;
1455
default:
1456
WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1457
level > KVM_PGTABLE_LAST_LEVEL);
1458
return -EINVAL;
1459
};
1460
}
1461
1462
static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1463
enum kvm_pgtable_walk_flags visit)
1464
{
1465
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1466
struct kvm_mmu_memory_cache *mc = ctx->arg;
1467
struct kvm_s2_mmu *mmu;
1468
kvm_pte_t pte = ctx->old, new, *childp;
1469
enum kvm_pgtable_prot prot;
1470
s8 level = ctx->level;
1471
bool force_pte;
1472
int nr_pages;
1473
u64 phys;
1474
1475
/* No huge-pages exist at the last level */
1476
if (level == KVM_PGTABLE_LAST_LEVEL)
1477
return 0;
1478
1479
/* We only split valid block mappings */
1480
if (!kvm_pte_valid(pte))
1481
return 0;
1482
1483
nr_pages = stage2_block_get_nr_page_tables(level);
1484
if (nr_pages < 0)
1485
return nr_pages;
1486
1487
if (mc->nobjs >= nr_pages) {
1488
/* Build a tree mapped down to the PTE granularity. */
1489
force_pte = true;
1490
} else {
1491
/*
1492
* Don't force PTEs, so create_unlinked() below does
1493
* not populate the tree up to the PTE level. The
1494
* consequence is that the call will require a single
1495
* page of level 2 entries at level 1, or a single
1496
* page of PTEs at level 2. If we are at level 1, the
1497
* PTEs will be created recursively.
1498
*/
1499
force_pte = false;
1500
nr_pages = 1;
1501
}
1502
1503
if (mc->nobjs < nr_pages)
1504
return -ENOMEM;
1505
1506
mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1507
phys = kvm_pte_to_phys(pte);
1508
prot = kvm_pgtable_stage2_pte_prot(pte);
1509
1510
childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1511
level, prot, mc, force_pte);
1512
if (IS_ERR(childp))
1513
return PTR_ERR(childp);
1514
1515
if (!stage2_try_break_pte(ctx, mmu)) {
1516
kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1517
return -EAGAIN;
1518
}
1519
1520
/*
1521
* Note, the contents of the page table are guaranteed to be made
1522
* visible before the new PTE is assigned because stage2_make_pte()
1523
* writes the PTE using smp_store_release().
1524
*/
1525
new = kvm_init_table_pte(childp, mm_ops);
1526
stage2_make_pte(ctx, new);
1527
return 0;
1528
}
1529
1530
int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1531
struct kvm_mmu_memory_cache *mc)
1532
{
1533
struct kvm_pgtable_walker walker = {
1534
.cb = stage2_split_walker,
1535
.flags = KVM_PGTABLE_WALK_LEAF,
1536
.arg = mc,
1537
};
1538
int ret;
1539
1540
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1541
dsb(ishst);
1542
return ret;
1543
}
1544
1545
int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1546
struct kvm_pgtable_mm_ops *mm_ops,
1547
enum kvm_pgtable_stage2_flags flags,
1548
kvm_pgtable_force_pte_cb_t force_pte_cb)
1549
{
1550
size_t pgd_sz;
1551
u64 vtcr = mmu->vtcr;
1552
u32 ia_bits = VTCR_EL2_IPA(vtcr);
1553
u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1554
s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1555
1556
pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1557
pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1558
if (!pgt->pgd)
1559
return -ENOMEM;
1560
1561
pgt->ia_bits = ia_bits;
1562
pgt->start_level = start_level;
1563
pgt->mm_ops = mm_ops;
1564
pgt->mmu = mmu;
1565
pgt->flags = flags;
1566
pgt->force_pte_cb = force_pte_cb;
1567
1568
/* Ensure zeroed PGD pages are visible to the hardware walker */
1569
dsb(ishst);
1570
return 0;
1571
}
1572
1573
size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1574
{
1575
u32 ia_bits = VTCR_EL2_IPA(vtcr);
1576
u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1577
s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1578
1579
return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1580
}
1581
1582
static int stage2_free_leaf(const struct kvm_pgtable_visit_ctx *ctx)
1583
{
1584
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1585
1586
mm_ops->put_page(ctx->ptep);
1587
return 0;
1588
}
1589
1590
static int stage2_free_table_post(const struct kvm_pgtable_visit_ctx *ctx)
1591
{
1592
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1593
kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
1594
1595
if (mm_ops->page_count(childp) != 1)
1596
return 0;
1597
1598
/*
1599
* Drop references and clear the now stale PTE to avoid rewalking the
1600
* freed page table.
1601
*/
1602
mm_ops->put_page(ctx->ptep);
1603
mm_ops->put_page(childp);
1604
kvm_clear_pte(ctx->ptep);
1605
return 0;
1606
}
1607
1608
static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1609
enum kvm_pgtable_walk_flags visit)
1610
{
1611
if (!stage2_pte_is_counted(ctx->old))
1612
return 0;
1613
1614
switch (visit) {
1615
case KVM_PGTABLE_WALK_LEAF:
1616
return stage2_free_leaf(ctx);
1617
case KVM_PGTABLE_WALK_TABLE_POST:
1618
return stage2_free_table_post(ctx);
1619
default:
1620
return -EINVAL;
1621
}
1622
}
1623
1624
void kvm_pgtable_stage2_destroy_range(struct kvm_pgtable *pgt,
1625
u64 addr, u64 size)
1626
{
1627
struct kvm_pgtable_walker walker = {
1628
.cb = stage2_free_walker,
1629
.flags = KVM_PGTABLE_WALK_LEAF |
1630
KVM_PGTABLE_WALK_TABLE_POST,
1631
};
1632
1633
WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1634
}
1635
1636
void kvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable *pgt)
1637
{
1638
size_t pgd_sz;
1639
1640
pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1641
1642
/*
1643
* Since the pgtable is unlinked at this point, and not shared with
1644
* other walkers, safely deference pgd with kvm_dereference_pteref_raw()
1645
*/
1646
pgt->mm_ops->free_pages_exact(kvm_dereference_pteref_raw(pgt->pgd), pgd_sz);
1647
pgt->pgd = NULL;
1648
}
1649
1650
void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1651
{
1652
kvm_pgtable_stage2_destroy_range(pgt, 0, BIT(pgt->ia_bits));
1653
kvm_pgtable_stage2_destroy_pgd(pgt);
1654
}
1655
1656
void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1657
{
1658
kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1659
struct kvm_pgtable_walker walker = {
1660
.cb = stage2_free_walker,
1661
.flags = KVM_PGTABLE_WALK_LEAF |
1662
KVM_PGTABLE_WALK_TABLE_POST,
1663
};
1664
struct kvm_pgtable_walk_data data = {
1665
.walker = &walker,
1666
1667
/*
1668
* At this point the IPA really doesn't matter, as the page
1669
* table being traversed has already been removed from the stage
1670
* 2. Set an appropriate range to cover the entire page table.
1671
*/
1672
.addr = 0,
1673
.end = kvm_granule_size(level),
1674
};
1675
1676
WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1677
1678
WARN_ON(mm_ops->page_count(pgtable) != 1);
1679
mm_ops->put_page(pgtable);
1680
}
1681
1682