Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/hyp/pgtable.c
26490 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4
* No bombay mix was harmed in the writing of this file.
5
*
6
* Copyright (C) 2020 Google LLC
7
* Author: Will Deacon <[email protected]>
8
*/
9
10
#include <linux/bitfield.h>
11
#include <asm/kvm_pgtable.h>
12
#include <asm/stage2_pgtable.h>
13
14
struct kvm_pgtable_walk_data {
15
struct kvm_pgtable_walker *walker;
16
17
const u64 start;
18
u64 addr;
19
const u64 end;
20
};
21
22
static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
23
{
24
return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
25
}
26
27
static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
28
{
29
return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
30
}
31
32
static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
33
{
34
u64 granule = kvm_granule_size(ctx->level);
35
36
if (!kvm_level_supports_block_mapping(ctx->level))
37
return false;
38
39
if (granule > (ctx->end - ctx->addr))
40
return false;
41
42
if (!IS_ALIGNED(phys, granule))
43
return false;
44
45
return IS_ALIGNED(ctx->addr, granule);
46
}
47
48
static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
49
{
50
u64 shift = kvm_granule_shift(level);
51
u64 mask = BIT(PAGE_SHIFT - 3) - 1;
52
53
return (data->addr >> shift) & mask;
54
}
55
56
static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
57
{
58
u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
59
u64 mask = BIT(pgt->ia_bits) - 1;
60
61
return (addr & mask) >> shift;
62
}
63
64
static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
65
{
66
struct kvm_pgtable pgt = {
67
.ia_bits = ia_bits,
68
.start_level = start_level,
69
};
70
71
return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
72
}
73
74
static bool kvm_pte_table(kvm_pte_t pte, s8 level)
75
{
76
if (level == KVM_PGTABLE_LAST_LEVEL)
77
return false;
78
79
if (!kvm_pte_valid(pte))
80
return false;
81
82
return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
83
}
84
85
static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
86
{
87
return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
88
}
89
90
static void kvm_clear_pte(kvm_pte_t *ptep)
91
{
92
WRITE_ONCE(*ptep, 0);
93
}
94
95
static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
96
{
97
kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
98
99
pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
100
pte |= KVM_PTE_VALID;
101
return pte;
102
}
103
104
static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
105
{
106
kvm_pte_t pte = kvm_phys_to_pte(pa);
107
u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
108
KVM_PTE_TYPE_BLOCK;
109
110
pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
111
pte |= FIELD_PREP(KVM_PTE_TYPE, type);
112
pte |= KVM_PTE_VALID;
113
114
return pte;
115
}
116
117
static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
118
{
119
return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
120
}
121
122
static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
123
const struct kvm_pgtable_visit_ctx *ctx,
124
enum kvm_pgtable_walk_flags visit)
125
{
126
struct kvm_pgtable_walker *walker = data->walker;
127
128
/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
129
WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
130
return walker->cb(ctx, visit);
131
}
132
133
static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
134
int r)
135
{
136
/*
137
* Visitor callbacks return EAGAIN when the conditions that led to a
138
* fault are no longer reflected in the page tables due to a race to
139
* update a PTE. In the context of a fault handler this is interpreted
140
* as a signal to retry guest execution.
141
*
142
* Ignore the return code altogether for walkers outside a fault handler
143
* (e.g. write protecting a range of memory) and chug along with the
144
* page table walk.
145
*/
146
if (r == -EAGAIN)
147
return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
148
149
return !r;
150
}
151
152
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
153
struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
154
155
static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
156
struct kvm_pgtable_mm_ops *mm_ops,
157
kvm_pteref_t pteref, s8 level)
158
{
159
enum kvm_pgtable_walk_flags flags = data->walker->flags;
160
kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
161
struct kvm_pgtable_visit_ctx ctx = {
162
.ptep = ptep,
163
.old = READ_ONCE(*ptep),
164
.arg = data->walker->arg,
165
.mm_ops = mm_ops,
166
.start = data->start,
167
.addr = data->addr,
168
.end = data->end,
169
.level = level,
170
.flags = flags,
171
};
172
int ret = 0;
173
bool reload = false;
174
kvm_pteref_t childp;
175
bool table = kvm_pte_table(ctx.old, level);
176
177
if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
178
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
179
reload = true;
180
}
181
182
if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
183
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
184
reload = true;
185
}
186
187
/*
188
* Reload the page table after invoking the walker callback for leaf
189
* entries or after pre-order traversal, to allow the walker to descend
190
* into a newly installed or replaced table.
191
*/
192
if (reload) {
193
ctx.old = READ_ONCE(*ptep);
194
table = kvm_pte_table(ctx.old, level);
195
}
196
197
if (!kvm_pgtable_walk_continue(data->walker, ret))
198
goto out;
199
200
if (!table) {
201
data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
202
data->addr += kvm_granule_size(level);
203
goto out;
204
}
205
206
childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
207
ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
208
if (!kvm_pgtable_walk_continue(data->walker, ret))
209
goto out;
210
211
if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
212
ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
213
214
out:
215
if (kvm_pgtable_walk_continue(data->walker, ret))
216
return 0;
217
218
return ret;
219
}
220
221
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
222
struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
223
{
224
u32 idx;
225
int ret = 0;
226
227
if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
228
level > KVM_PGTABLE_LAST_LEVEL))
229
return -EINVAL;
230
231
for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
232
kvm_pteref_t pteref = &pgtable[idx];
233
234
if (data->addr >= data->end)
235
break;
236
237
ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
238
if (ret)
239
break;
240
}
241
242
return ret;
243
}
244
245
static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
246
{
247
u32 idx;
248
int ret = 0;
249
u64 limit = BIT(pgt->ia_bits);
250
251
if (data->addr > limit || data->end > limit)
252
return -ERANGE;
253
254
if (!pgt->pgd)
255
return -EINVAL;
256
257
for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
258
kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
259
260
ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
261
if (ret)
262
break;
263
}
264
265
return ret;
266
}
267
268
int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
269
struct kvm_pgtable_walker *walker)
270
{
271
struct kvm_pgtable_walk_data walk_data = {
272
.start = ALIGN_DOWN(addr, PAGE_SIZE),
273
.addr = ALIGN_DOWN(addr, PAGE_SIZE),
274
.end = PAGE_ALIGN(walk_data.addr + size),
275
.walker = walker,
276
};
277
int r;
278
279
r = kvm_pgtable_walk_begin(walker);
280
if (r)
281
return r;
282
283
r = _kvm_pgtable_walk(pgt, &walk_data);
284
kvm_pgtable_walk_end(walker);
285
286
return r;
287
}
288
289
struct leaf_walk_data {
290
kvm_pte_t pte;
291
s8 level;
292
};
293
294
static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
295
enum kvm_pgtable_walk_flags visit)
296
{
297
struct leaf_walk_data *data = ctx->arg;
298
299
data->pte = ctx->old;
300
data->level = ctx->level;
301
302
return 0;
303
}
304
305
int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
306
kvm_pte_t *ptep, s8 *level)
307
{
308
struct leaf_walk_data data;
309
struct kvm_pgtable_walker walker = {
310
.cb = leaf_walker,
311
.flags = KVM_PGTABLE_WALK_LEAF,
312
.arg = &data,
313
};
314
int ret;
315
316
ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
317
PAGE_SIZE, &walker);
318
if (!ret) {
319
if (ptep)
320
*ptep = data.pte;
321
if (level)
322
*level = data.level;
323
}
324
325
return ret;
326
}
327
328
struct hyp_map_data {
329
const u64 phys;
330
kvm_pte_t attr;
331
};
332
333
static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
334
{
335
bool device = prot & KVM_PGTABLE_PROT_DEVICE;
336
u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
337
kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
338
u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
339
u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
340
KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
341
342
if (!(prot & KVM_PGTABLE_PROT_R))
343
return -EINVAL;
344
345
if (prot & KVM_PGTABLE_PROT_X) {
346
if (prot & KVM_PGTABLE_PROT_W)
347
return -EINVAL;
348
349
if (device)
350
return -EINVAL;
351
352
if (system_supports_bti_kernel())
353
attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
354
} else {
355
attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
356
}
357
358
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
359
if (!kvm_lpa2_is_enabled())
360
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
361
attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
362
attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
363
*ptep = attr;
364
365
return 0;
366
}
367
368
enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
369
{
370
enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
371
u32 ap;
372
373
if (!kvm_pte_valid(pte))
374
return prot;
375
376
if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
377
prot |= KVM_PGTABLE_PROT_X;
378
379
ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
380
if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
381
prot |= KVM_PGTABLE_PROT_R;
382
else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
383
prot |= KVM_PGTABLE_PROT_RW;
384
385
return prot;
386
}
387
388
static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
389
struct hyp_map_data *data)
390
{
391
u64 phys = data->phys + (ctx->addr - ctx->start);
392
kvm_pte_t new;
393
394
if (!kvm_block_mapping_supported(ctx, phys))
395
return false;
396
397
new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
398
if (ctx->old == new)
399
return true;
400
if (!kvm_pte_valid(ctx->old))
401
ctx->mm_ops->get_page(ctx->ptep);
402
else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
403
return false;
404
405
smp_store_release(ctx->ptep, new);
406
return true;
407
}
408
409
static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
410
enum kvm_pgtable_walk_flags visit)
411
{
412
kvm_pte_t *childp, new;
413
struct hyp_map_data *data = ctx->arg;
414
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
415
416
if (hyp_map_walker_try_leaf(ctx, data))
417
return 0;
418
419
if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
420
return -EINVAL;
421
422
childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
423
if (!childp)
424
return -ENOMEM;
425
426
new = kvm_init_table_pte(childp, mm_ops);
427
mm_ops->get_page(ctx->ptep);
428
smp_store_release(ctx->ptep, new);
429
430
return 0;
431
}
432
433
int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
434
enum kvm_pgtable_prot prot)
435
{
436
int ret;
437
struct hyp_map_data map_data = {
438
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
439
};
440
struct kvm_pgtable_walker walker = {
441
.cb = hyp_map_walker,
442
.flags = KVM_PGTABLE_WALK_LEAF,
443
.arg = &map_data,
444
};
445
446
ret = hyp_set_prot_attr(prot, &map_data.attr);
447
if (ret)
448
return ret;
449
450
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
451
dsb(ishst);
452
isb();
453
return ret;
454
}
455
456
static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
457
enum kvm_pgtable_walk_flags visit)
458
{
459
kvm_pte_t *childp = NULL;
460
u64 granule = kvm_granule_size(ctx->level);
461
u64 *unmapped = ctx->arg;
462
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
463
464
if (!kvm_pte_valid(ctx->old))
465
return -EINVAL;
466
467
if (kvm_pte_table(ctx->old, ctx->level)) {
468
childp = kvm_pte_follow(ctx->old, mm_ops);
469
470
if (mm_ops->page_count(childp) != 1)
471
return 0;
472
473
kvm_clear_pte(ctx->ptep);
474
dsb(ishst);
475
__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
476
} else {
477
if (ctx->end - ctx->addr < granule)
478
return -EINVAL;
479
480
kvm_clear_pte(ctx->ptep);
481
dsb(ishst);
482
__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
483
*unmapped += granule;
484
}
485
486
dsb(ish);
487
isb();
488
mm_ops->put_page(ctx->ptep);
489
490
if (childp)
491
mm_ops->put_page(childp);
492
493
return 0;
494
}
495
496
u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
497
{
498
u64 unmapped = 0;
499
struct kvm_pgtable_walker walker = {
500
.cb = hyp_unmap_walker,
501
.arg = &unmapped,
502
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
503
};
504
505
if (!pgt->mm_ops->page_count)
506
return 0;
507
508
kvm_pgtable_walk(pgt, addr, size, &walker);
509
return unmapped;
510
}
511
512
int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
513
struct kvm_pgtable_mm_ops *mm_ops)
514
{
515
s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
516
ARM64_HW_PGTABLE_LEVELS(va_bits);
517
518
if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
519
start_level > KVM_PGTABLE_LAST_LEVEL)
520
return -EINVAL;
521
522
pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
523
if (!pgt->pgd)
524
return -ENOMEM;
525
526
pgt->ia_bits = va_bits;
527
pgt->start_level = start_level;
528
pgt->mm_ops = mm_ops;
529
pgt->mmu = NULL;
530
pgt->force_pte_cb = NULL;
531
532
return 0;
533
}
534
535
static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
536
enum kvm_pgtable_walk_flags visit)
537
{
538
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
539
540
if (!kvm_pte_valid(ctx->old))
541
return 0;
542
543
mm_ops->put_page(ctx->ptep);
544
545
if (kvm_pte_table(ctx->old, ctx->level))
546
mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
547
548
return 0;
549
}
550
551
void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
552
{
553
struct kvm_pgtable_walker walker = {
554
.cb = hyp_free_walker,
555
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
556
};
557
558
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
559
pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
560
pgt->pgd = NULL;
561
}
562
563
struct stage2_map_data {
564
const u64 phys;
565
kvm_pte_t attr;
566
u8 owner_id;
567
568
kvm_pte_t *anchor;
569
kvm_pte_t *childp;
570
571
struct kvm_s2_mmu *mmu;
572
void *memcache;
573
574
/* Force mappings to page granularity */
575
bool force_pte;
576
577
/* Walk should update owner_id only */
578
bool annotation;
579
};
580
581
u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
582
{
583
u64 vtcr = VTCR_EL2_FLAGS;
584
s8 lvls;
585
586
vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
587
vtcr |= VTCR_EL2_T0SZ(phys_shift);
588
/*
589
* Use a minimum 2 level page table to prevent splitting
590
* host PMD huge pages at stage2.
591
*/
592
lvls = stage2_pgtable_levels(phys_shift);
593
if (lvls < 2)
594
lvls = 2;
595
596
/*
597
* When LPA2 is enabled, the HW supports an extra level of translation
598
* (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
599
* to as an addition to SL0 to enable encoding this extra start level.
600
* However, since we always use concatenated pages for the first level
601
* lookup, we will never need this extra level and therefore do not need
602
* to touch SL2.
603
*/
604
vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
605
606
#ifdef CONFIG_ARM64_HW_AFDBM
607
/*
608
* Enable the Hardware Access Flag management, unconditionally
609
* on all CPUs. In systems that have asymmetric support for the feature
610
* this allows KVM to leverage hardware support on the subset of cores
611
* that implement the feature.
612
*
613
* The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
614
* hardware) on implementations that do not advertise support for the
615
* feature. As such, setting HA unconditionally is safe, unless you
616
* happen to be running on a design that has unadvertised support for
617
* HAFDBS. Here be dragons.
618
*/
619
if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
620
vtcr |= VTCR_EL2_HA;
621
#endif /* CONFIG_ARM64_HW_AFDBM */
622
623
if (kvm_lpa2_is_enabled())
624
vtcr |= VTCR_EL2_DS;
625
626
/* Set the vmid bits */
627
vtcr |= (get_vmid_bits(mmfr1) == 16) ?
628
VTCR_EL2_VS_16BIT :
629
VTCR_EL2_VS_8BIT;
630
631
return vtcr;
632
}
633
634
static bool stage2_has_fwb(struct kvm_pgtable *pgt)
635
{
636
if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
637
return false;
638
639
return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
640
}
641
642
void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
643
phys_addr_t addr, size_t size)
644
{
645
unsigned long pages, inval_pages;
646
647
if (!system_supports_tlb_range()) {
648
kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
649
return;
650
}
651
652
pages = size >> PAGE_SHIFT;
653
while (pages > 0) {
654
inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
655
kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
656
657
addr += inval_pages << PAGE_SHIFT;
658
pages -= inval_pages;
659
}
660
}
661
662
#define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
663
664
static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
665
kvm_pte_t *ptep)
666
{
667
kvm_pte_t attr;
668
u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
669
670
switch (prot & (KVM_PGTABLE_PROT_DEVICE |
671
KVM_PGTABLE_PROT_NORMAL_NC)) {
672
case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
673
return -EINVAL;
674
case KVM_PGTABLE_PROT_DEVICE:
675
if (prot & KVM_PGTABLE_PROT_X)
676
return -EINVAL;
677
attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
678
break;
679
case KVM_PGTABLE_PROT_NORMAL_NC:
680
if (prot & KVM_PGTABLE_PROT_X)
681
return -EINVAL;
682
attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
683
break;
684
default:
685
attr = KVM_S2_MEMATTR(pgt, NORMAL);
686
}
687
688
if (!(prot & KVM_PGTABLE_PROT_X))
689
attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
690
691
if (prot & KVM_PGTABLE_PROT_R)
692
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
693
694
if (prot & KVM_PGTABLE_PROT_W)
695
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
696
697
if (!kvm_lpa2_is_enabled())
698
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
699
700
attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
701
attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
702
*ptep = attr;
703
704
return 0;
705
}
706
707
enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
708
{
709
enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
710
711
if (!kvm_pte_valid(pte))
712
return prot;
713
714
if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
715
prot |= KVM_PGTABLE_PROT_R;
716
if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
717
prot |= KVM_PGTABLE_PROT_W;
718
if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
719
prot |= KVM_PGTABLE_PROT_X;
720
721
return prot;
722
}
723
724
static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
725
{
726
if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
727
return true;
728
729
return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
730
}
731
732
static bool stage2_pte_is_counted(kvm_pte_t pte)
733
{
734
/*
735
* The refcount tracks valid entries as well as invalid entries if they
736
* encode ownership of a page to another entity than the page-table
737
* owner, whose id is 0.
738
*/
739
return !!pte;
740
}
741
742
static bool stage2_pte_is_locked(kvm_pte_t pte)
743
{
744
return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
745
}
746
747
static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
748
{
749
if (!kvm_pgtable_walk_shared(ctx)) {
750
WRITE_ONCE(*ctx->ptep, new);
751
return true;
752
}
753
754
return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
755
}
756
757
/**
758
* stage2_try_break_pte() - Invalidates a pte according to the
759
* 'break-before-make' requirements of the
760
* architecture.
761
*
762
* @ctx: context of the visited pte.
763
* @mmu: stage-2 mmu
764
*
765
* Returns: true if the pte was successfully broken.
766
*
767
* If the removed pte was valid, performs the necessary serialization and TLB
768
* invalidation for the old value. For counted ptes, drops the reference count
769
* on the containing table page.
770
*/
771
static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
772
struct kvm_s2_mmu *mmu)
773
{
774
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
775
776
if (stage2_pte_is_locked(ctx->old)) {
777
/*
778
* Should never occur if this walker has exclusive access to the
779
* page tables.
780
*/
781
WARN_ON(!kvm_pgtable_walk_shared(ctx));
782
return false;
783
}
784
785
if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
786
return false;
787
788
if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
789
/*
790
* Perform the appropriate TLB invalidation based on the
791
* evicted pte value (if any).
792
*/
793
if (kvm_pte_table(ctx->old, ctx->level)) {
794
u64 size = kvm_granule_size(ctx->level);
795
u64 addr = ALIGN_DOWN(ctx->addr, size);
796
797
kvm_tlb_flush_vmid_range(mmu, addr, size);
798
} else if (kvm_pte_valid(ctx->old)) {
799
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
800
ctx->addr, ctx->level);
801
}
802
}
803
804
if (stage2_pte_is_counted(ctx->old))
805
mm_ops->put_page(ctx->ptep);
806
807
return true;
808
}
809
810
static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
811
{
812
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
813
814
WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
815
816
if (stage2_pte_is_counted(new))
817
mm_ops->get_page(ctx->ptep);
818
819
smp_store_release(ctx->ptep, new);
820
}
821
822
static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
823
{
824
/*
825
* If FEAT_TLBIRANGE is implemented, defer the individual
826
* TLB invalidations until the entire walk is finished, and
827
* then use the range-based TLBI instructions to do the
828
* invalidations. Condition deferred TLB invalidation on the
829
* system supporting FWB as the optimization is entirely
830
* pointless when the unmap walker needs to perform CMOs.
831
*/
832
return system_supports_tlb_range() && stage2_has_fwb(pgt);
833
}
834
835
static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
836
struct kvm_s2_mmu *mmu,
837
struct kvm_pgtable_mm_ops *mm_ops)
838
{
839
struct kvm_pgtable *pgt = ctx->arg;
840
841
/*
842
* Clear the existing PTE, and perform break-before-make if it was
843
* valid. Depending on the system support, defer the TLB maintenance
844
* for the same until the entire unmap walk is completed.
845
*/
846
if (kvm_pte_valid(ctx->old)) {
847
kvm_clear_pte(ctx->ptep);
848
849
if (kvm_pte_table(ctx->old, ctx->level)) {
850
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
851
TLBI_TTL_UNKNOWN);
852
} else if (!stage2_unmap_defer_tlb_flush(pgt)) {
853
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
854
ctx->level);
855
}
856
}
857
858
mm_ops->put_page(ctx->ptep);
859
}
860
861
static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
862
{
863
u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
864
return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
865
}
866
867
static bool stage2_pte_executable(kvm_pte_t pte)
868
{
869
return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
870
}
871
872
static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
873
const struct stage2_map_data *data)
874
{
875
u64 phys = data->phys;
876
877
/* Work out the correct PA based on how far the walk has gotten */
878
return phys + (ctx->addr - ctx->start);
879
}
880
881
static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
882
struct stage2_map_data *data)
883
{
884
u64 phys = stage2_map_walker_phys_addr(ctx, data);
885
886
if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
887
return false;
888
889
if (data->annotation)
890
return true;
891
892
return kvm_block_mapping_supported(ctx, phys);
893
}
894
895
static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
896
struct stage2_map_data *data)
897
{
898
kvm_pte_t new;
899
u64 phys = stage2_map_walker_phys_addr(ctx, data);
900
u64 granule = kvm_granule_size(ctx->level);
901
struct kvm_pgtable *pgt = data->mmu->pgt;
902
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
903
904
if (!stage2_leaf_mapping_allowed(ctx, data))
905
return -E2BIG;
906
907
if (!data->annotation)
908
new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
909
else
910
new = kvm_init_invalid_leaf_owner(data->owner_id);
911
912
/*
913
* Skip updating the PTE if we are trying to recreate the exact
914
* same mapping or only change the access permissions. Instead,
915
* the vCPU will exit one more time from guest if still needed
916
* and then go through the path of relaxing permissions.
917
*/
918
if (!stage2_pte_needs_update(ctx->old, new))
919
return -EAGAIN;
920
921
/* If we're only changing software bits, then store them and go! */
922
if (!kvm_pgtable_walk_shared(ctx) &&
923
!((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
924
bool old_is_counted = stage2_pte_is_counted(ctx->old);
925
926
if (old_is_counted != stage2_pte_is_counted(new)) {
927
if (old_is_counted)
928
mm_ops->put_page(ctx->ptep);
929
else
930
mm_ops->get_page(ctx->ptep);
931
}
932
WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
933
return 0;
934
}
935
936
if (!stage2_try_break_pte(ctx, data->mmu))
937
return -EAGAIN;
938
939
/* Perform CMOs before installation of the guest stage-2 PTE */
940
if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
941
stage2_pte_cacheable(pgt, new))
942
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
943
granule);
944
945
if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
946
stage2_pte_executable(new))
947
mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
948
949
stage2_make_pte(ctx, new);
950
951
return 0;
952
}
953
954
static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
955
struct stage2_map_data *data)
956
{
957
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
958
kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
959
int ret;
960
961
if (!stage2_leaf_mapping_allowed(ctx, data))
962
return 0;
963
964
ret = stage2_map_walker_try_leaf(ctx, data);
965
if (ret)
966
return ret;
967
968
mm_ops->free_unlinked_table(childp, ctx->level);
969
return 0;
970
}
971
972
static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
973
struct stage2_map_data *data)
974
{
975
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
976
kvm_pte_t *childp, new;
977
int ret;
978
979
ret = stage2_map_walker_try_leaf(ctx, data);
980
if (ret != -E2BIG)
981
return ret;
982
983
if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
984
return -EINVAL;
985
986
if (!data->memcache)
987
return -ENOMEM;
988
989
childp = mm_ops->zalloc_page(data->memcache);
990
if (!childp)
991
return -ENOMEM;
992
993
if (!stage2_try_break_pte(ctx, data->mmu)) {
994
mm_ops->put_page(childp);
995
return -EAGAIN;
996
}
997
998
/*
999
* If we've run into an existing block mapping then replace it with
1000
* a table. Accesses beyond 'end' that fall within the new table
1001
* will be mapped lazily.
1002
*/
1003
new = kvm_init_table_pte(childp, mm_ops);
1004
stage2_make_pte(ctx, new);
1005
1006
return 0;
1007
}
1008
1009
/*
1010
* The TABLE_PRE callback runs for table entries on the way down, looking
1011
* for table entries which we could conceivably replace with a block entry
1012
* for this mapping. If it finds one it replaces the entry and calls
1013
* kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1014
*
1015
* Otherwise, the LEAF callback performs the mapping at the existing leaves
1016
* instead.
1017
*/
1018
static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1019
enum kvm_pgtable_walk_flags visit)
1020
{
1021
struct stage2_map_data *data = ctx->arg;
1022
1023
switch (visit) {
1024
case KVM_PGTABLE_WALK_TABLE_PRE:
1025
return stage2_map_walk_table_pre(ctx, data);
1026
case KVM_PGTABLE_WALK_LEAF:
1027
return stage2_map_walk_leaf(ctx, data);
1028
default:
1029
return -EINVAL;
1030
}
1031
}
1032
1033
int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1034
u64 phys, enum kvm_pgtable_prot prot,
1035
void *mc, enum kvm_pgtable_walk_flags flags)
1036
{
1037
int ret;
1038
struct stage2_map_data map_data = {
1039
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
1040
.mmu = pgt->mmu,
1041
.memcache = mc,
1042
.force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1043
};
1044
struct kvm_pgtable_walker walker = {
1045
.cb = stage2_map_walker,
1046
.flags = flags |
1047
KVM_PGTABLE_WALK_TABLE_PRE |
1048
KVM_PGTABLE_WALK_LEAF,
1049
.arg = &map_data,
1050
};
1051
1052
if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1053
return -EINVAL;
1054
1055
ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1056
if (ret)
1057
return ret;
1058
1059
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1060
dsb(ishst);
1061
return ret;
1062
}
1063
1064
int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1065
void *mc, u8 owner_id)
1066
{
1067
int ret;
1068
struct stage2_map_data map_data = {
1069
.mmu = pgt->mmu,
1070
.memcache = mc,
1071
.owner_id = owner_id,
1072
.force_pte = true,
1073
.annotation = true,
1074
};
1075
struct kvm_pgtable_walker walker = {
1076
.cb = stage2_map_walker,
1077
.flags = KVM_PGTABLE_WALK_TABLE_PRE |
1078
KVM_PGTABLE_WALK_LEAF,
1079
.arg = &map_data,
1080
};
1081
1082
if (owner_id > KVM_MAX_OWNER_ID)
1083
return -EINVAL;
1084
1085
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1086
return ret;
1087
}
1088
1089
static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1090
enum kvm_pgtable_walk_flags visit)
1091
{
1092
struct kvm_pgtable *pgt = ctx->arg;
1093
struct kvm_s2_mmu *mmu = pgt->mmu;
1094
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1095
kvm_pte_t *childp = NULL;
1096
bool need_flush = false;
1097
1098
if (!kvm_pte_valid(ctx->old)) {
1099
if (stage2_pte_is_counted(ctx->old)) {
1100
kvm_clear_pte(ctx->ptep);
1101
mm_ops->put_page(ctx->ptep);
1102
}
1103
return 0;
1104
}
1105
1106
if (kvm_pte_table(ctx->old, ctx->level)) {
1107
childp = kvm_pte_follow(ctx->old, mm_ops);
1108
1109
if (mm_ops->page_count(childp) != 1)
1110
return 0;
1111
} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1112
need_flush = !stage2_has_fwb(pgt);
1113
}
1114
1115
/*
1116
* This is similar to the map() path in that we unmap the entire
1117
* block entry and rely on the remaining portions being faulted
1118
* back lazily.
1119
*/
1120
stage2_unmap_put_pte(ctx, mmu, mm_ops);
1121
1122
if (need_flush && mm_ops->dcache_clean_inval_poc)
1123
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1124
kvm_granule_size(ctx->level));
1125
1126
if (childp)
1127
mm_ops->put_page(childp);
1128
1129
return 0;
1130
}
1131
1132
int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1133
{
1134
int ret;
1135
struct kvm_pgtable_walker walker = {
1136
.cb = stage2_unmap_walker,
1137
.arg = pgt,
1138
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1139
};
1140
1141
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1142
if (stage2_unmap_defer_tlb_flush(pgt))
1143
/* Perform the deferred TLB invalidations */
1144
kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1145
1146
return ret;
1147
}
1148
1149
struct stage2_attr_data {
1150
kvm_pte_t attr_set;
1151
kvm_pte_t attr_clr;
1152
kvm_pte_t pte;
1153
s8 level;
1154
};
1155
1156
static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1157
enum kvm_pgtable_walk_flags visit)
1158
{
1159
kvm_pte_t pte = ctx->old;
1160
struct stage2_attr_data *data = ctx->arg;
1161
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1162
1163
if (!kvm_pte_valid(ctx->old))
1164
return -EAGAIN;
1165
1166
data->level = ctx->level;
1167
data->pte = pte;
1168
pte &= ~data->attr_clr;
1169
pte |= data->attr_set;
1170
1171
/*
1172
* We may race with the CPU trying to set the access flag here,
1173
* but worst-case the access flag update gets lost and will be
1174
* set on the next access instead.
1175
*/
1176
if (data->pte != pte) {
1177
/*
1178
* Invalidate instruction cache before updating the guest
1179
* stage-2 PTE if we are going to add executable permission.
1180
*/
1181
if (mm_ops->icache_inval_pou &&
1182
stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1183
mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1184
kvm_granule_size(ctx->level));
1185
1186
if (!stage2_try_set_pte(ctx, pte))
1187
return -EAGAIN;
1188
}
1189
1190
return 0;
1191
}
1192
1193
static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1194
u64 size, kvm_pte_t attr_set,
1195
kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1196
s8 *level, enum kvm_pgtable_walk_flags flags)
1197
{
1198
int ret;
1199
kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1200
struct stage2_attr_data data = {
1201
.attr_set = attr_set & attr_mask,
1202
.attr_clr = attr_clr & attr_mask,
1203
};
1204
struct kvm_pgtable_walker walker = {
1205
.cb = stage2_attr_walker,
1206
.arg = &data,
1207
.flags = flags | KVM_PGTABLE_WALK_LEAF,
1208
};
1209
1210
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1211
if (ret)
1212
return ret;
1213
1214
if (orig_pte)
1215
*orig_pte = data.pte;
1216
1217
if (level)
1218
*level = data.level;
1219
return 0;
1220
}
1221
1222
int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1223
{
1224
return stage2_update_leaf_attrs(pgt, addr, size, 0,
1225
KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1226
NULL, NULL, 0);
1227
}
1228
1229
void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr,
1230
enum kvm_pgtable_walk_flags flags)
1231
{
1232
int ret;
1233
1234
ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1235
NULL, NULL, flags);
1236
if (!ret)
1237
dsb(ishst);
1238
}
1239
1240
struct stage2_age_data {
1241
bool mkold;
1242
bool young;
1243
};
1244
1245
static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1246
enum kvm_pgtable_walk_flags visit)
1247
{
1248
kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1249
struct stage2_age_data *data = ctx->arg;
1250
1251
if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1252
return 0;
1253
1254
data->young = true;
1255
1256
/*
1257
* stage2_age_walker() is always called while holding the MMU lock for
1258
* write, so this will always succeed. Nonetheless, this deliberately
1259
* follows the race detection pattern of the other stage-2 walkers in
1260
* case the locking mechanics of the MMU notifiers is ever changed.
1261
*/
1262
if (data->mkold && !stage2_try_set_pte(ctx, new))
1263
return -EAGAIN;
1264
1265
/*
1266
* "But where's the TLBI?!", you scream.
1267
* "Over in the core code", I sigh.
1268
*
1269
* See the '->clear_flush_young()' callback on the KVM mmu notifier.
1270
*/
1271
return 0;
1272
}
1273
1274
bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1275
u64 size, bool mkold)
1276
{
1277
struct stage2_age_data data = {
1278
.mkold = mkold,
1279
};
1280
struct kvm_pgtable_walker walker = {
1281
.cb = stage2_age_walker,
1282
.arg = &data,
1283
.flags = KVM_PGTABLE_WALK_LEAF,
1284
};
1285
1286
WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1287
return data.young;
1288
}
1289
1290
int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1291
enum kvm_pgtable_prot prot, enum kvm_pgtable_walk_flags flags)
1292
{
1293
int ret;
1294
s8 level;
1295
kvm_pte_t set = 0, clr = 0;
1296
1297
if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1298
return -EINVAL;
1299
1300
if (prot & KVM_PGTABLE_PROT_R)
1301
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1302
1303
if (prot & KVM_PGTABLE_PROT_W)
1304
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1305
1306
if (prot & KVM_PGTABLE_PROT_X)
1307
clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1308
1309
ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, flags);
1310
if (!ret || ret == -EAGAIN)
1311
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1312
return ret;
1313
}
1314
1315
static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1316
enum kvm_pgtable_walk_flags visit)
1317
{
1318
struct kvm_pgtable *pgt = ctx->arg;
1319
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1320
1321
if (!stage2_pte_cacheable(pgt, ctx->old))
1322
return 0;
1323
1324
if (mm_ops->dcache_clean_inval_poc)
1325
mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1326
kvm_granule_size(ctx->level));
1327
return 0;
1328
}
1329
1330
int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1331
{
1332
struct kvm_pgtable_walker walker = {
1333
.cb = stage2_flush_walker,
1334
.flags = KVM_PGTABLE_WALK_LEAF,
1335
.arg = pgt,
1336
};
1337
1338
if (stage2_has_fwb(pgt))
1339
return 0;
1340
1341
return kvm_pgtable_walk(pgt, addr, size, &walker);
1342
}
1343
1344
kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1345
u64 phys, s8 level,
1346
enum kvm_pgtable_prot prot,
1347
void *mc, bool force_pte)
1348
{
1349
struct stage2_map_data map_data = {
1350
.phys = phys,
1351
.mmu = pgt->mmu,
1352
.memcache = mc,
1353
.force_pte = force_pte,
1354
};
1355
struct kvm_pgtable_walker walker = {
1356
.cb = stage2_map_walker,
1357
.flags = KVM_PGTABLE_WALK_LEAF |
1358
KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1359
KVM_PGTABLE_WALK_SKIP_CMO,
1360
.arg = &map_data,
1361
};
1362
/*
1363
* The input address (.addr) is irrelevant for walking an
1364
* unlinked table. Construct an ambiguous IA range to map
1365
* kvm_granule_size(level) worth of memory.
1366
*/
1367
struct kvm_pgtable_walk_data data = {
1368
.walker = &walker,
1369
.addr = 0,
1370
.end = kvm_granule_size(level),
1371
};
1372
struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1373
kvm_pte_t *pgtable;
1374
int ret;
1375
1376
if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1377
return ERR_PTR(-EINVAL);
1378
1379
ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1380
if (ret)
1381
return ERR_PTR(ret);
1382
1383
pgtable = mm_ops->zalloc_page(mc);
1384
if (!pgtable)
1385
return ERR_PTR(-ENOMEM);
1386
1387
ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1388
level + 1);
1389
if (ret) {
1390
kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1391
return ERR_PTR(ret);
1392
}
1393
1394
return pgtable;
1395
}
1396
1397
/*
1398
* Get the number of page-tables needed to replace a block with a
1399
* fully populated tree up to the PTE entries. Note that @level is
1400
* interpreted as in "level @level entry".
1401
*/
1402
static int stage2_block_get_nr_page_tables(s8 level)
1403
{
1404
switch (level) {
1405
case 1:
1406
return PTRS_PER_PTE + 1;
1407
case 2:
1408
return 1;
1409
case 3:
1410
return 0;
1411
default:
1412
WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1413
level > KVM_PGTABLE_LAST_LEVEL);
1414
return -EINVAL;
1415
};
1416
}
1417
1418
static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1419
enum kvm_pgtable_walk_flags visit)
1420
{
1421
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1422
struct kvm_mmu_memory_cache *mc = ctx->arg;
1423
struct kvm_s2_mmu *mmu;
1424
kvm_pte_t pte = ctx->old, new, *childp;
1425
enum kvm_pgtable_prot prot;
1426
s8 level = ctx->level;
1427
bool force_pte;
1428
int nr_pages;
1429
u64 phys;
1430
1431
/* No huge-pages exist at the last level */
1432
if (level == KVM_PGTABLE_LAST_LEVEL)
1433
return 0;
1434
1435
/* We only split valid block mappings */
1436
if (!kvm_pte_valid(pte))
1437
return 0;
1438
1439
nr_pages = stage2_block_get_nr_page_tables(level);
1440
if (nr_pages < 0)
1441
return nr_pages;
1442
1443
if (mc->nobjs >= nr_pages) {
1444
/* Build a tree mapped down to the PTE granularity. */
1445
force_pte = true;
1446
} else {
1447
/*
1448
* Don't force PTEs, so create_unlinked() below does
1449
* not populate the tree up to the PTE level. The
1450
* consequence is that the call will require a single
1451
* page of level 2 entries at level 1, or a single
1452
* page of PTEs at level 2. If we are at level 1, the
1453
* PTEs will be created recursively.
1454
*/
1455
force_pte = false;
1456
nr_pages = 1;
1457
}
1458
1459
if (mc->nobjs < nr_pages)
1460
return -ENOMEM;
1461
1462
mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1463
phys = kvm_pte_to_phys(pte);
1464
prot = kvm_pgtable_stage2_pte_prot(pte);
1465
1466
childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1467
level, prot, mc, force_pte);
1468
if (IS_ERR(childp))
1469
return PTR_ERR(childp);
1470
1471
if (!stage2_try_break_pte(ctx, mmu)) {
1472
kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1473
return -EAGAIN;
1474
}
1475
1476
/*
1477
* Note, the contents of the page table are guaranteed to be made
1478
* visible before the new PTE is assigned because stage2_make_pte()
1479
* writes the PTE using smp_store_release().
1480
*/
1481
new = kvm_init_table_pte(childp, mm_ops);
1482
stage2_make_pte(ctx, new);
1483
return 0;
1484
}
1485
1486
int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1487
struct kvm_mmu_memory_cache *mc)
1488
{
1489
struct kvm_pgtable_walker walker = {
1490
.cb = stage2_split_walker,
1491
.flags = KVM_PGTABLE_WALK_LEAF,
1492
.arg = mc,
1493
};
1494
int ret;
1495
1496
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1497
dsb(ishst);
1498
return ret;
1499
}
1500
1501
int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1502
struct kvm_pgtable_mm_ops *mm_ops,
1503
enum kvm_pgtable_stage2_flags flags,
1504
kvm_pgtable_force_pte_cb_t force_pte_cb)
1505
{
1506
size_t pgd_sz;
1507
u64 vtcr = mmu->vtcr;
1508
u32 ia_bits = VTCR_EL2_IPA(vtcr);
1509
u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1510
s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1511
1512
pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1513
pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1514
if (!pgt->pgd)
1515
return -ENOMEM;
1516
1517
pgt->ia_bits = ia_bits;
1518
pgt->start_level = start_level;
1519
pgt->mm_ops = mm_ops;
1520
pgt->mmu = mmu;
1521
pgt->flags = flags;
1522
pgt->force_pte_cb = force_pte_cb;
1523
1524
/* Ensure zeroed PGD pages are visible to the hardware walker */
1525
dsb(ishst);
1526
return 0;
1527
}
1528
1529
size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1530
{
1531
u32 ia_bits = VTCR_EL2_IPA(vtcr);
1532
u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1533
s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1534
1535
return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1536
}
1537
1538
static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1539
enum kvm_pgtable_walk_flags visit)
1540
{
1541
struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1542
1543
if (!stage2_pte_is_counted(ctx->old))
1544
return 0;
1545
1546
mm_ops->put_page(ctx->ptep);
1547
1548
if (kvm_pte_table(ctx->old, ctx->level))
1549
mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1550
1551
return 0;
1552
}
1553
1554
void kvm_pgtable_stage2_destroy_range(struct kvm_pgtable *pgt,
1555
u64 addr, u64 size)
1556
{
1557
struct kvm_pgtable_walker walker = {
1558
.cb = stage2_free_walker,
1559
.flags = KVM_PGTABLE_WALK_LEAF |
1560
KVM_PGTABLE_WALK_TABLE_POST,
1561
};
1562
1563
WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1564
}
1565
1566
void kvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable *pgt)
1567
{
1568
size_t pgd_sz;
1569
1570
pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1571
1572
/*
1573
* Since the pgtable is unlinked at this point, and not shared with
1574
* other walkers, safely deference pgd with kvm_dereference_pteref_raw()
1575
*/
1576
pgt->mm_ops->free_pages_exact(kvm_dereference_pteref_raw(pgt->pgd), pgd_sz);
1577
pgt->pgd = NULL;
1578
}
1579
1580
void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1581
{
1582
kvm_pgtable_stage2_destroy_range(pgt, 0, BIT(pgt->ia_bits));
1583
kvm_pgtable_stage2_destroy_pgd(pgt);
1584
}
1585
1586
void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1587
{
1588
kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1589
struct kvm_pgtable_walker walker = {
1590
.cb = stage2_free_walker,
1591
.flags = KVM_PGTABLE_WALK_LEAF |
1592
KVM_PGTABLE_WALK_TABLE_POST,
1593
};
1594
struct kvm_pgtable_walk_data data = {
1595
.walker = &walker,
1596
1597
/*
1598
* At this point the IPA really doesn't matter, as the page
1599
* table being traversed has already been removed from the stage
1600
* 2. Set an appropriate range to cover the entire page table.
1601
*/
1602
.addr = 0,
1603
.end = kvm_granule_size(level),
1604
};
1605
1606
WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1607
1608
WARN_ON(mm_ops->page_count(pgtable) != 1);
1609
mm_ops->put_page(pgtable);
1610
}
1611
1612