Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/hyp/vgic-v3-sr.c
26490 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2012-2015 - ARM Ltd
4
* Author: Marc Zyngier <[email protected]>
5
*/
6
7
#include <hyp/adjust_pc.h>
8
9
#include <linux/compiler.h>
10
#include <linux/irqchip/arm-gic-v3.h>
11
#include <linux/kvm_host.h>
12
13
#include <asm/kvm_emulate.h>
14
#include <asm/kvm_hyp.h>
15
#include <asm/kvm_mmu.h>
16
17
#define vtr_to_max_lr_idx(v) ((v) & 0xf)
18
#define vtr_to_nr_pre_bits(v) ((((u32)(v) >> 26) & 7) + 1)
19
#define vtr_to_nr_apr_regs(v) (1 << (vtr_to_nr_pre_bits(v) - 5))
20
21
u64 __gic_v3_get_lr(unsigned int lr)
22
{
23
switch (lr & 0xf) {
24
case 0:
25
return read_gicreg(ICH_LR0_EL2);
26
case 1:
27
return read_gicreg(ICH_LR1_EL2);
28
case 2:
29
return read_gicreg(ICH_LR2_EL2);
30
case 3:
31
return read_gicreg(ICH_LR3_EL2);
32
case 4:
33
return read_gicreg(ICH_LR4_EL2);
34
case 5:
35
return read_gicreg(ICH_LR5_EL2);
36
case 6:
37
return read_gicreg(ICH_LR6_EL2);
38
case 7:
39
return read_gicreg(ICH_LR7_EL2);
40
case 8:
41
return read_gicreg(ICH_LR8_EL2);
42
case 9:
43
return read_gicreg(ICH_LR9_EL2);
44
case 10:
45
return read_gicreg(ICH_LR10_EL2);
46
case 11:
47
return read_gicreg(ICH_LR11_EL2);
48
case 12:
49
return read_gicreg(ICH_LR12_EL2);
50
case 13:
51
return read_gicreg(ICH_LR13_EL2);
52
case 14:
53
return read_gicreg(ICH_LR14_EL2);
54
case 15:
55
return read_gicreg(ICH_LR15_EL2);
56
}
57
58
unreachable();
59
}
60
61
static void __gic_v3_set_lr(u64 val, int lr)
62
{
63
switch (lr & 0xf) {
64
case 0:
65
write_gicreg(val, ICH_LR0_EL2);
66
break;
67
case 1:
68
write_gicreg(val, ICH_LR1_EL2);
69
break;
70
case 2:
71
write_gicreg(val, ICH_LR2_EL2);
72
break;
73
case 3:
74
write_gicreg(val, ICH_LR3_EL2);
75
break;
76
case 4:
77
write_gicreg(val, ICH_LR4_EL2);
78
break;
79
case 5:
80
write_gicreg(val, ICH_LR5_EL2);
81
break;
82
case 6:
83
write_gicreg(val, ICH_LR6_EL2);
84
break;
85
case 7:
86
write_gicreg(val, ICH_LR7_EL2);
87
break;
88
case 8:
89
write_gicreg(val, ICH_LR8_EL2);
90
break;
91
case 9:
92
write_gicreg(val, ICH_LR9_EL2);
93
break;
94
case 10:
95
write_gicreg(val, ICH_LR10_EL2);
96
break;
97
case 11:
98
write_gicreg(val, ICH_LR11_EL2);
99
break;
100
case 12:
101
write_gicreg(val, ICH_LR12_EL2);
102
break;
103
case 13:
104
write_gicreg(val, ICH_LR13_EL2);
105
break;
106
case 14:
107
write_gicreg(val, ICH_LR14_EL2);
108
break;
109
case 15:
110
write_gicreg(val, ICH_LR15_EL2);
111
break;
112
}
113
}
114
115
static void __vgic_v3_write_ap0rn(u32 val, int n)
116
{
117
switch (n) {
118
case 0:
119
write_gicreg(val, ICH_AP0R0_EL2);
120
break;
121
case 1:
122
write_gicreg(val, ICH_AP0R1_EL2);
123
break;
124
case 2:
125
write_gicreg(val, ICH_AP0R2_EL2);
126
break;
127
case 3:
128
write_gicreg(val, ICH_AP0R3_EL2);
129
break;
130
}
131
}
132
133
static void __vgic_v3_write_ap1rn(u32 val, int n)
134
{
135
switch (n) {
136
case 0:
137
write_gicreg(val, ICH_AP1R0_EL2);
138
break;
139
case 1:
140
write_gicreg(val, ICH_AP1R1_EL2);
141
break;
142
case 2:
143
write_gicreg(val, ICH_AP1R2_EL2);
144
break;
145
case 3:
146
write_gicreg(val, ICH_AP1R3_EL2);
147
break;
148
}
149
}
150
151
static u32 __vgic_v3_read_ap0rn(int n)
152
{
153
u32 val;
154
155
switch (n) {
156
case 0:
157
val = read_gicreg(ICH_AP0R0_EL2);
158
break;
159
case 1:
160
val = read_gicreg(ICH_AP0R1_EL2);
161
break;
162
case 2:
163
val = read_gicreg(ICH_AP0R2_EL2);
164
break;
165
case 3:
166
val = read_gicreg(ICH_AP0R3_EL2);
167
break;
168
default:
169
unreachable();
170
}
171
172
return val;
173
}
174
175
static u32 __vgic_v3_read_ap1rn(int n)
176
{
177
u32 val;
178
179
switch (n) {
180
case 0:
181
val = read_gicreg(ICH_AP1R0_EL2);
182
break;
183
case 1:
184
val = read_gicreg(ICH_AP1R1_EL2);
185
break;
186
case 2:
187
val = read_gicreg(ICH_AP1R2_EL2);
188
break;
189
case 3:
190
val = read_gicreg(ICH_AP1R3_EL2);
191
break;
192
default:
193
unreachable();
194
}
195
196
return val;
197
}
198
199
void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
200
{
201
u64 used_lrs = cpu_if->used_lrs;
202
203
/*
204
* Make sure stores to the GIC via the memory mapped interface
205
* are now visible to the system register interface when reading the
206
* LRs, and when reading back the VMCR on non-VHE systems.
207
*/
208
if (used_lrs || !has_vhe()) {
209
if (!cpu_if->vgic_sre) {
210
dsb(sy);
211
isb();
212
}
213
}
214
215
if (used_lrs || cpu_if->its_vpe.its_vm) {
216
int i;
217
u32 elrsr;
218
219
elrsr = read_gicreg(ICH_ELRSR_EL2);
220
221
write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EL2_En, ICH_HCR_EL2);
222
223
for (i = 0; i < used_lrs; i++) {
224
if (elrsr & (1 << i))
225
cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
226
else
227
cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
228
229
__gic_v3_set_lr(0, i);
230
}
231
}
232
}
233
234
void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
235
{
236
u64 used_lrs = cpu_if->used_lrs;
237
int i;
238
239
if (used_lrs || cpu_if->its_vpe.its_vm) {
240
write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
241
242
for (i = 0; i < used_lrs; i++)
243
__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
244
}
245
246
/*
247
* Ensure that writes to the LRs, and on non-VHE systems ensure that
248
* the write to the VMCR in __vgic_v3_activate_traps(), will have
249
* reached the (re)distributors. This ensure the guest will read the
250
* correct values from the memory-mapped interface.
251
*/
252
if (used_lrs || !has_vhe()) {
253
if (!cpu_if->vgic_sre) {
254
isb();
255
dsb(sy);
256
}
257
}
258
}
259
260
void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
261
{
262
/*
263
* VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
264
* Group0 interrupt (as generated in GICv2 mode) to be
265
* delivered as a FIQ to the guest, with potentially fatal
266
* consequences. So we must make sure that ICC_SRE_EL1 has
267
* been actually programmed with the value we want before
268
* starting to mess with the rest of the GIC, and VMCR_EL2 in
269
* particular. This logic must be called before
270
* __vgic_v3_restore_state().
271
*
272
* However, if the vgic is disabled (ICH_HCR_EL2.EN==0), no GIC is
273
* provisioned at all. In order to prevent illegal accesses to the
274
* system registers to trap to EL1 (duh), force ICC_SRE_EL1.SRE to 1
275
* so that the trap bits can take effect. Yes, we *loves* the GIC.
276
*/
277
if (!(cpu_if->vgic_hcr & ICH_HCR_EL2_En)) {
278
write_gicreg(ICC_SRE_EL1_SRE, ICC_SRE_EL1);
279
isb();
280
} else if (!cpu_if->vgic_sre) {
281
write_gicreg(0, ICC_SRE_EL1);
282
isb();
283
write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
284
285
286
if (has_vhe()) {
287
/*
288
* Ensure that the write to the VMCR will have reached
289
* the (re)distributors. This ensure the guest will
290
* read the correct values from the memory-mapped
291
* interface.
292
*/
293
isb();
294
dsb(sy);
295
}
296
}
297
298
/*
299
* GICv5 BET0 FEAT_GCIE_LEGACY doesn't include ICC_SRE_EL2. This is due
300
* to be relaxed in a future spec release, at which point this in
301
* condition can be dropped.
302
*/
303
if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF)) {
304
/*
305
* Prevent the guest from touching the ICC_SRE_EL1 system
306
* register. Note that this may not have any effect, as
307
* ICC_SRE_EL2.Enable being RAO/WI is a valid implementation.
308
*/
309
write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
310
ICC_SRE_EL2);
311
}
312
313
/*
314
* If we need to trap system registers, we must write
315
* ICH_HCR_EL2 anyway, even if no interrupts are being
316
* injected. Note that this also applies if we don't expect
317
* any system register access (no vgic at all).
318
*/
319
if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
320
cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
321
write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
322
}
323
324
void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
325
{
326
u64 val;
327
328
if (!cpu_if->vgic_sre) {
329
cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
330
}
331
332
/*
333
* Can be dropped in the future when GICv5 spec is relaxed. See comment
334
* above.
335
*/
336
if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF)) {
337
val = read_gicreg(ICC_SRE_EL2);
338
write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
339
}
340
341
if (!cpu_if->vgic_sre) {
342
/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
343
isb();
344
write_gicreg(1, ICC_SRE_EL1);
345
}
346
347
/*
348
* If we were trapping system registers, we enabled the VGIC even if
349
* no interrupts were being injected, and we disable it again here.
350
*/
351
if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
352
cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
353
write_gicreg(0, ICH_HCR_EL2);
354
}
355
356
static void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
357
{
358
u64 val;
359
u32 nr_pre_bits;
360
361
val = read_gicreg(ICH_VTR_EL2);
362
nr_pre_bits = vtr_to_nr_pre_bits(val);
363
364
switch (nr_pre_bits) {
365
case 7:
366
cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
367
cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
368
fallthrough;
369
case 6:
370
cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
371
fallthrough;
372
default:
373
cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
374
}
375
376
switch (nr_pre_bits) {
377
case 7:
378
cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
379
cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
380
fallthrough;
381
case 6:
382
cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
383
fallthrough;
384
default:
385
cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
386
}
387
}
388
389
static void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
390
{
391
u64 val;
392
u32 nr_pre_bits;
393
394
val = read_gicreg(ICH_VTR_EL2);
395
nr_pre_bits = vtr_to_nr_pre_bits(val);
396
397
switch (nr_pre_bits) {
398
case 7:
399
__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
400
__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
401
fallthrough;
402
case 6:
403
__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
404
fallthrough;
405
default:
406
__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
407
}
408
409
switch (nr_pre_bits) {
410
case 7:
411
__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
412
__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
413
fallthrough;
414
case 6:
415
__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
416
fallthrough;
417
default:
418
__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
419
}
420
}
421
422
void __vgic_v3_init_lrs(void)
423
{
424
int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
425
int i;
426
427
for (i = 0; i <= max_lr_idx; i++)
428
__gic_v3_set_lr(0, i);
429
}
430
431
/*
432
* Return the GIC CPU configuration:
433
* - [31:0] ICH_VTR_EL2
434
* - [62:32] RES0
435
* - [63] MMIO (GICv2) capable
436
*/
437
u64 __vgic_v3_get_gic_config(void)
438
{
439
u64 val, sre;
440
unsigned long flags = 0;
441
442
/*
443
* In compat mode, we cannot access ICC_SRE_EL1 at any EL
444
* other than EL1 itself; just return the
445
* ICH_VTR_EL2. ICC_IDR0_EL1 is only implemented on a GICv5
446
* system, so we first check if we have GICv5 support.
447
*/
448
if (cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF))
449
return read_gicreg(ICH_VTR_EL2);
450
451
sre = read_gicreg(ICC_SRE_EL1);
452
/*
453
* To check whether we have a MMIO-based (GICv2 compatible)
454
* CPU interface, we need to disable the system register
455
* view.
456
*
457
* Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates
458
* that to be able to set ICC_SRE_EL1.SRE to 0, all the
459
* interrupt overrides must be set. You've got to love this.
460
*
461
* As we always run VHE with HCR_xMO set, no extra xMO
462
* manipulation is required in that case.
463
*
464
* To safely disable SRE, we have to prevent any interrupt
465
* from firing (which would be deadly). This only makes sense
466
* on VHE, as interrupts are already masked for nVHE as part
467
* of the exception entry to EL2.
468
*/
469
if (has_vhe()) {
470
flags = local_daif_save();
471
} else {
472
sysreg_clear_set_hcr(0, HCR_AMO | HCR_FMO | HCR_IMO);
473
isb();
474
}
475
476
write_gicreg(0, ICC_SRE_EL1);
477
isb();
478
479
val = read_gicreg(ICC_SRE_EL1);
480
481
write_gicreg(sre, ICC_SRE_EL1);
482
isb();
483
484
if (has_vhe()) {
485
local_daif_restore(flags);
486
} else {
487
sysreg_clear_set_hcr(HCR_AMO | HCR_FMO | HCR_IMO, 0);
488
isb();
489
}
490
491
val = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
492
val |= read_gicreg(ICH_VTR_EL2);
493
494
return val;
495
}
496
497
static void __vgic_v3_compat_mode_enable(void)
498
{
499
if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF))
500
return;
501
502
sysreg_clear_set_s(SYS_ICH_VCTLR_EL2, 0, ICH_VCTLR_EL2_V3);
503
/* Wait for V3 to become enabled */
504
isb();
505
}
506
507
static u64 __vgic_v3_read_vmcr(void)
508
{
509
return read_gicreg(ICH_VMCR_EL2);
510
}
511
512
static void __vgic_v3_write_vmcr(u32 vmcr)
513
{
514
write_gicreg(vmcr, ICH_VMCR_EL2);
515
}
516
517
void __vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
518
{
519
__vgic_v3_save_aprs(cpu_if);
520
if (cpu_if->vgic_sre)
521
cpu_if->vgic_vmcr = __vgic_v3_read_vmcr();
522
}
523
524
void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
525
{
526
__vgic_v3_compat_mode_enable();
527
528
/*
529
* If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
530
* is dependent on ICC_SRE_EL1.SRE, and we have to perform the
531
* VMCR_EL2 save/restore in the world switch.
532
*/
533
if (cpu_if->vgic_sre)
534
__vgic_v3_write_vmcr(cpu_if->vgic_vmcr);
535
__vgic_v3_restore_aprs(cpu_if);
536
}
537
538
static int __vgic_v3_bpr_min(void)
539
{
540
/* See Pseudocode for VPriorityGroup */
541
return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
542
}
543
544
static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
545
{
546
u64 esr = kvm_vcpu_get_esr(vcpu);
547
u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
548
549
return crm != 8;
550
}
551
552
#define GICv3_IDLE_PRIORITY 0xff
553
554
static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
555
u64 *lr_val)
556
{
557
unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
558
u8 priority = GICv3_IDLE_PRIORITY;
559
int i, lr = -1;
560
561
for (i = 0; i < used_lrs; i++) {
562
u64 val = __gic_v3_get_lr(i);
563
u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
564
565
/* Not pending in the state? */
566
if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
567
continue;
568
569
/* Group-0 interrupt, but Group-0 disabled? */
570
if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
571
continue;
572
573
/* Group-1 interrupt, but Group-1 disabled? */
574
if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
575
continue;
576
577
/* Not the highest priority? */
578
if (lr_prio >= priority)
579
continue;
580
581
/* This is a candidate */
582
priority = lr_prio;
583
*lr_val = val;
584
lr = i;
585
}
586
587
if (lr == -1)
588
*lr_val = ICC_IAR1_EL1_SPURIOUS;
589
590
return lr;
591
}
592
593
static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
594
u64 *lr_val)
595
{
596
unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
597
int i;
598
599
for (i = 0; i < used_lrs; i++) {
600
u64 val = __gic_v3_get_lr(i);
601
602
if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
603
(val & ICH_LR_ACTIVE_BIT)) {
604
*lr_val = val;
605
return i;
606
}
607
}
608
609
*lr_val = ICC_IAR1_EL1_SPURIOUS;
610
return -1;
611
}
612
613
static int __vgic_v3_get_highest_active_priority(void)
614
{
615
u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
616
u32 hap = 0;
617
int i;
618
619
for (i = 0; i < nr_apr_regs; i++) {
620
u32 val;
621
622
/*
623
* The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
624
* contain the active priority levels for this VCPU
625
* for the maximum number of supported priority
626
* levels, and we return the full priority level only
627
* if the BPR is programmed to its minimum, otherwise
628
* we return a combination of the priority level and
629
* subpriority, as determined by the setting of the
630
* BPR, but without the full subpriority.
631
*/
632
val = __vgic_v3_read_ap0rn(i);
633
val |= __vgic_v3_read_ap1rn(i);
634
if (!val) {
635
hap += 32;
636
continue;
637
}
638
639
return (hap + __ffs(val)) << __vgic_v3_bpr_min();
640
}
641
642
return GICv3_IDLE_PRIORITY;
643
}
644
645
static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
646
{
647
return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
648
}
649
650
static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
651
{
652
unsigned int bpr;
653
654
if (vmcr & ICH_VMCR_CBPR_MASK) {
655
bpr = __vgic_v3_get_bpr0(vmcr);
656
if (bpr < 7)
657
bpr++;
658
} else {
659
bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
660
}
661
662
return bpr;
663
}
664
665
/*
666
* Convert a priority to a preemption level, taking the relevant BPR
667
* into account by zeroing the sub-priority bits.
668
*/
669
static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
670
{
671
unsigned int bpr;
672
673
if (!grp)
674
bpr = __vgic_v3_get_bpr0(vmcr) + 1;
675
else
676
bpr = __vgic_v3_get_bpr1(vmcr);
677
678
return pri & (GENMASK(7, 0) << bpr);
679
}
680
681
/*
682
* The priority value is independent of any of the BPR values, so we
683
* normalize it using the minimal BPR value. This guarantees that no
684
* matter what the guest does with its BPR, we can always set/get the
685
* same value of a priority.
686
*/
687
static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
688
{
689
u8 pre, ap;
690
u32 val;
691
int apr;
692
693
pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
694
ap = pre >> __vgic_v3_bpr_min();
695
apr = ap / 32;
696
697
if (!grp) {
698
val = __vgic_v3_read_ap0rn(apr);
699
__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
700
} else {
701
val = __vgic_v3_read_ap1rn(apr);
702
__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
703
}
704
}
705
706
static int __vgic_v3_clear_highest_active_priority(void)
707
{
708
u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
709
u32 hap = 0;
710
int i;
711
712
for (i = 0; i < nr_apr_regs; i++) {
713
u32 ap0, ap1;
714
int c0, c1;
715
716
ap0 = __vgic_v3_read_ap0rn(i);
717
ap1 = __vgic_v3_read_ap1rn(i);
718
if (!ap0 && !ap1) {
719
hap += 32;
720
continue;
721
}
722
723
c0 = ap0 ? __ffs(ap0) : 32;
724
c1 = ap1 ? __ffs(ap1) : 32;
725
726
/* Always clear the LSB, which is the highest priority */
727
if (c0 < c1) {
728
ap0 &= ~BIT(c0);
729
__vgic_v3_write_ap0rn(ap0, i);
730
hap += c0;
731
} else {
732
ap1 &= ~BIT(c1);
733
__vgic_v3_write_ap1rn(ap1, i);
734
hap += c1;
735
}
736
737
/* Rescale to 8 bits of priority */
738
return hap << __vgic_v3_bpr_min();
739
}
740
741
return GICv3_IDLE_PRIORITY;
742
}
743
744
static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
745
{
746
u64 lr_val;
747
u8 lr_prio, pmr;
748
int lr, grp;
749
750
grp = __vgic_v3_get_group(vcpu);
751
752
lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
753
if (lr < 0)
754
goto spurious;
755
756
if (grp != !!(lr_val & ICH_LR_GROUP))
757
goto spurious;
758
759
pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
760
lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
761
if (pmr <= lr_prio)
762
goto spurious;
763
764
if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
765
goto spurious;
766
767
lr_val &= ~ICH_LR_STATE;
768
lr_val |= ICH_LR_ACTIVE_BIT;
769
__gic_v3_set_lr(lr_val, lr);
770
__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
771
vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
772
return;
773
774
spurious:
775
vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
776
}
777
778
static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
779
{
780
lr_val &= ~ICH_LR_ACTIVE_BIT;
781
if (lr_val & ICH_LR_HW) {
782
u32 pid;
783
784
pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
785
gic_write_dir(pid);
786
}
787
788
__gic_v3_set_lr(lr_val, lr);
789
}
790
791
static void __vgic_v3_bump_eoicount(void)
792
{
793
u32 hcr;
794
795
hcr = read_gicreg(ICH_HCR_EL2);
796
hcr += 1 << ICH_HCR_EL2_EOIcount_SHIFT;
797
write_gicreg(hcr, ICH_HCR_EL2);
798
}
799
800
static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
801
{
802
u32 vid = vcpu_get_reg(vcpu, rt);
803
u64 lr_val;
804
int lr;
805
806
/* EOImode == 0, nothing to be done here */
807
if (!(vmcr & ICH_VMCR_EOIM_MASK))
808
return;
809
810
/* No deactivate to be performed on an LPI */
811
if (vid >= VGIC_MIN_LPI)
812
return;
813
814
lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
815
if (lr == -1) {
816
__vgic_v3_bump_eoicount();
817
return;
818
}
819
820
__vgic_v3_clear_active_lr(lr, lr_val);
821
}
822
823
static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
824
{
825
u32 vid = vcpu_get_reg(vcpu, rt);
826
u64 lr_val;
827
u8 lr_prio, act_prio;
828
int lr, grp;
829
830
grp = __vgic_v3_get_group(vcpu);
831
832
/* Drop priority in any case */
833
act_prio = __vgic_v3_clear_highest_active_priority();
834
835
lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
836
if (lr == -1) {
837
/* Do not bump EOIcount for LPIs that aren't in the LRs */
838
if (!(vid >= VGIC_MIN_LPI))
839
__vgic_v3_bump_eoicount();
840
return;
841
}
842
843
/* EOImode == 1 and not an LPI, nothing to be done here */
844
if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
845
return;
846
847
lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
848
849
/* If priorities or group do not match, the guest has fscked-up. */
850
if (grp != !!(lr_val & ICH_LR_GROUP) ||
851
__vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
852
return;
853
854
/* Let's now perform the deactivation */
855
__vgic_v3_clear_active_lr(lr, lr_val);
856
}
857
858
static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
859
{
860
vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
861
}
862
863
static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
864
{
865
vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
866
}
867
868
static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
869
{
870
u64 val = vcpu_get_reg(vcpu, rt);
871
872
if (val & 1)
873
vmcr |= ICH_VMCR_ENG0_MASK;
874
else
875
vmcr &= ~ICH_VMCR_ENG0_MASK;
876
877
__vgic_v3_write_vmcr(vmcr);
878
}
879
880
static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
881
{
882
u64 val = vcpu_get_reg(vcpu, rt);
883
884
if (val & 1)
885
vmcr |= ICH_VMCR_ENG1_MASK;
886
else
887
vmcr &= ~ICH_VMCR_ENG1_MASK;
888
889
__vgic_v3_write_vmcr(vmcr);
890
}
891
892
static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
893
{
894
vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
895
}
896
897
static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
898
{
899
vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
900
}
901
902
static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
903
{
904
u64 val = vcpu_get_reg(vcpu, rt);
905
u8 bpr_min = __vgic_v3_bpr_min() - 1;
906
907
/* Enforce BPR limiting */
908
if (val < bpr_min)
909
val = bpr_min;
910
911
val <<= ICH_VMCR_BPR0_SHIFT;
912
val &= ICH_VMCR_BPR0_MASK;
913
vmcr &= ~ICH_VMCR_BPR0_MASK;
914
vmcr |= val;
915
916
__vgic_v3_write_vmcr(vmcr);
917
}
918
919
static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
920
{
921
u64 val = vcpu_get_reg(vcpu, rt);
922
u8 bpr_min = __vgic_v3_bpr_min();
923
924
if (vmcr & ICH_VMCR_CBPR_MASK)
925
return;
926
927
/* Enforce BPR limiting */
928
if (val < bpr_min)
929
val = bpr_min;
930
931
val <<= ICH_VMCR_BPR1_SHIFT;
932
val &= ICH_VMCR_BPR1_MASK;
933
vmcr &= ~ICH_VMCR_BPR1_MASK;
934
vmcr |= val;
935
936
__vgic_v3_write_vmcr(vmcr);
937
}
938
939
static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
940
{
941
u32 val;
942
943
if (!__vgic_v3_get_group(vcpu))
944
val = __vgic_v3_read_ap0rn(n);
945
else
946
val = __vgic_v3_read_ap1rn(n);
947
948
vcpu_set_reg(vcpu, rt, val);
949
}
950
951
static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
952
{
953
u32 val = vcpu_get_reg(vcpu, rt);
954
955
if (!__vgic_v3_get_group(vcpu))
956
__vgic_v3_write_ap0rn(val, n);
957
else
958
__vgic_v3_write_ap1rn(val, n);
959
}
960
961
static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
962
u32 vmcr, int rt)
963
{
964
__vgic_v3_read_apxrn(vcpu, rt, 0);
965
}
966
967
static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
968
u32 vmcr, int rt)
969
{
970
__vgic_v3_read_apxrn(vcpu, rt, 1);
971
}
972
973
static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
974
{
975
__vgic_v3_read_apxrn(vcpu, rt, 2);
976
}
977
978
static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
979
{
980
__vgic_v3_read_apxrn(vcpu, rt, 3);
981
}
982
983
static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
984
{
985
__vgic_v3_write_apxrn(vcpu, rt, 0);
986
}
987
988
static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
989
{
990
__vgic_v3_write_apxrn(vcpu, rt, 1);
991
}
992
993
static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
994
{
995
__vgic_v3_write_apxrn(vcpu, rt, 2);
996
}
997
998
static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
999
{
1000
__vgic_v3_write_apxrn(vcpu, rt, 3);
1001
}
1002
1003
static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1004
{
1005
u64 lr_val;
1006
int lr, lr_grp, grp;
1007
1008
grp = __vgic_v3_get_group(vcpu);
1009
1010
lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
1011
if (lr == -1)
1012
goto spurious;
1013
1014
lr_grp = !!(lr_val & ICH_LR_GROUP);
1015
if (lr_grp != grp)
1016
lr_val = ICC_IAR1_EL1_SPURIOUS;
1017
1018
spurious:
1019
vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
1020
}
1021
1022
static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1023
{
1024
vmcr &= ICH_VMCR_PMR_MASK;
1025
vmcr >>= ICH_VMCR_PMR_SHIFT;
1026
vcpu_set_reg(vcpu, rt, vmcr);
1027
}
1028
1029
static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1030
{
1031
u32 val = vcpu_get_reg(vcpu, rt);
1032
1033
val <<= ICH_VMCR_PMR_SHIFT;
1034
val &= ICH_VMCR_PMR_MASK;
1035
vmcr &= ~ICH_VMCR_PMR_MASK;
1036
vmcr |= val;
1037
1038
write_gicreg(vmcr, ICH_VMCR_EL2);
1039
}
1040
1041
static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1042
{
1043
u32 val = __vgic_v3_get_highest_active_priority();
1044
vcpu_set_reg(vcpu, rt, val);
1045
}
1046
1047
static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1048
{
1049
u32 vtr, val;
1050
1051
vtr = read_gicreg(ICH_VTR_EL2);
1052
/* PRIbits */
1053
val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
1054
/* IDbits */
1055
val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
1056
/* A3V */
1057
val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
1058
/* EOImode */
1059
val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
1060
/* CBPR */
1061
val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
1062
1063
vcpu_set_reg(vcpu, rt, val);
1064
}
1065
1066
static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1067
{
1068
u32 val = vcpu_get_reg(vcpu, rt);
1069
1070
if (val & ICC_CTLR_EL1_CBPR_MASK)
1071
vmcr |= ICH_VMCR_CBPR_MASK;
1072
else
1073
vmcr &= ~ICH_VMCR_CBPR_MASK;
1074
1075
if (val & ICC_CTLR_EL1_EOImode_MASK)
1076
vmcr |= ICH_VMCR_EOIM_MASK;
1077
else
1078
vmcr &= ~ICH_VMCR_EOIM_MASK;
1079
1080
write_gicreg(vmcr, ICH_VMCR_EL2);
1081
}
1082
1083
static bool __vgic_v3_check_trap_forwarding(struct kvm_vcpu *vcpu,
1084
u32 sysreg, bool is_read)
1085
{
1086
u64 ich_hcr;
1087
1088
if (!is_nested_ctxt(vcpu))
1089
return false;
1090
1091
ich_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
1092
1093
switch (sysreg) {
1094
case SYS_ICC_IGRPEN0_EL1:
1095
if (is_read &&
1096
(__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
1097
return true;
1098
1099
if (!is_read &&
1100
(__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
1101
return true;
1102
1103
fallthrough;
1104
1105
case SYS_ICC_AP0Rn_EL1(0):
1106
case SYS_ICC_AP0Rn_EL1(1):
1107
case SYS_ICC_AP0Rn_EL1(2):
1108
case SYS_ICC_AP0Rn_EL1(3):
1109
case SYS_ICC_BPR0_EL1:
1110
case SYS_ICC_EOIR0_EL1:
1111
case SYS_ICC_HPPIR0_EL1:
1112
case SYS_ICC_IAR0_EL1:
1113
return ich_hcr & ICH_HCR_EL2_TALL0;
1114
1115
case SYS_ICC_IGRPEN1_EL1:
1116
if (is_read &&
1117
(__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
1118
return true;
1119
1120
if (!is_read &&
1121
(__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
1122
return true;
1123
1124
fallthrough;
1125
1126
case SYS_ICC_AP1Rn_EL1(0):
1127
case SYS_ICC_AP1Rn_EL1(1):
1128
case SYS_ICC_AP1Rn_EL1(2):
1129
case SYS_ICC_AP1Rn_EL1(3):
1130
case SYS_ICC_BPR1_EL1:
1131
case SYS_ICC_EOIR1_EL1:
1132
case SYS_ICC_HPPIR1_EL1:
1133
case SYS_ICC_IAR1_EL1:
1134
return ich_hcr & ICH_HCR_EL2_TALL1;
1135
1136
case SYS_ICC_DIR_EL1:
1137
if (ich_hcr & ICH_HCR_EL2_TDIR)
1138
return true;
1139
1140
fallthrough;
1141
1142
case SYS_ICC_RPR_EL1:
1143
case SYS_ICC_CTLR_EL1:
1144
case SYS_ICC_PMR_EL1:
1145
return ich_hcr & ICH_HCR_EL2_TC;
1146
1147
default:
1148
return false;
1149
}
1150
}
1151
1152
int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
1153
{
1154
int rt;
1155
u64 esr;
1156
u32 vmcr;
1157
void (*fn)(struct kvm_vcpu *, u32, int);
1158
bool is_read;
1159
u32 sysreg;
1160
1161
if (kern_hyp_va(vcpu->kvm)->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
1162
return 0;
1163
1164
esr = kvm_vcpu_get_esr(vcpu);
1165
if (vcpu_mode_is_32bit(vcpu)) {
1166
if (!kvm_condition_valid(vcpu)) {
1167
__kvm_skip_instr(vcpu);
1168
return 1;
1169
}
1170
1171
sysreg = esr_cp15_to_sysreg(esr);
1172
} else {
1173
sysreg = esr_sys64_to_sysreg(esr);
1174
}
1175
1176
is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
1177
1178
if (__vgic_v3_check_trap_forwarding(vcpu, sysreg, is_read))
1179
return 0;
1180
1181
switch (sysreg) {
1182
case SYS_ICC_IAR0_EL1:
1183
case SYS_ICC_IAR1_EL1:
1184
if (unlikely(!is_read))
1185
return 0;
1186
fn = __vgic_v3_read_iar;
1187
break;
1188
case SYS_ICC_EOIR0_EL1:
1189
case SYS_ICC_EOIR1_EL1:
1190
if (unlikely(is_read))
1191
return 0;
1192
fn = __vgic_v3_write_eoir;
1193
break;
1194
case SYS_ICC_IGRPEN1_EL1:
1195
if (is_read)
1196
fn = __vgic_v3_read_igrpen1;
1197
else
1198
fn = __vgic_v3_write_igrpen1;
1199
break;
1200
case SYS_ICC_BPR1_EL1:
1201
if (is_read)
1202
fn = __vgic_v3_read_bpr1;
1203
else
1204
fn = __vgic_v3_write_bpr1;
1205
break;
1206
case SYS_ICC_AP0Rn_EL1(0):
1207
case SYS_ICC_AP1Rn_EL1(0):
1208
if (is_read)
1209
fn = __vgic_v3_read_apxr0;
1210
else
1211
fn = __vgic_v3_write_apxr0;
1212
break;
1213
case SYS_ICC_AP0Rn_EL1(1):
1214
case SYS_ICC_AP1Rn_EL1(1):
1215
if (is_read)
1216
fn = __vgic_v3_read_apxr1;
1217
else
1218
fn = __vgic_v3_write_apxr1;
1219
break;
1220
case SYS_ICC_AP0Rn_EL1(2):
1221
case SYS_ICC_AP1Rn_EL1(2):
1222
if (is_read)
1223
fn = __vgic_v3_read_apxr2;
1224
else
1225
fn = __vgic_v3_write_apxr2;
1226
break;
1227
case SYS_ICC_AP0Rn_EL1(3):
1228
case SYS_ICC_AP1Rn_EL1(3):
1229
if (is_read)
1230
fn = __vgic_v3_read_apxr3;
1231
else
1232
fn = __vgic_v3_write_apxr3;
1233
break;
1234
case SYS_ICC_HPPIR0_EL1:
1235
case SYS_ICC_HPPIR1_EL1:
1236
if (unlikely(!is_read))
1237
return 0;
1238
fn = __vgic_v3_read_hppir;
1239
break;
1240
case SYS_ICC_IGRPEN0_EL1:
1241
if (is_read)
1242
fn = __vgic_v3_read_igrpen0;
1243
else
1244
fn = __vgic_v3_write_igrpen0;
1245
break;
1246
case SYS_ICC_BPR0_EL1:
1247
if (is_read)
1248
fn = __vgic_v3_read_bpr0;
1249
else
1250
fn = __vgic_v3_write_bpr0;
1251
break;
1252
case SYS_ICC_DIR_EL1:
1253
if (unlikely(is_read))
1254
return 0;
1255
fn = __vgic_v3_write_dir;
1256
break;
1257
case SYS_ICC_RPR_EL1:
1258
if (unlikely(!is_read))
1259
return 0;
1260
fn = __vgic_v3_read_rpr;
1261
break;
1262
case SYS_ICC_CTLR_EL1:
1263
if (is_read)
1264
fn = __vgic_v3_read_ctlr;
1265
else
1266
fn = __vgic_v3_write_ctlr;
1267
break;
1268
case SYS_ICC_PMR_EL1:
1269
if (is_read)
1270
fn = __vgic_v3_read_pmr;
1271
else
1272
fn = __vgic_v3_write_pmr;
1273
break;
1274
default:
1275
return 0;
1276
}
1277
1278
vmcr = __vgic_v3_read_vmcr();
1279
rt = kvm_vcpu_sys_get_rt(vcpu);
1280
fn(vcpu, vmcr, rt);
1281
1282
__kvm_skip_instr(vcpu);
1283
1284
return 1;
1285
}
1286
1287