#include <hyp/adjust_pc.h>
#include <linux/compiler.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm_host.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#define vtr_to_max_lr_idx(v) ((v) & 0xf)
#define vtr_to_nr_pre_bits(v) ((((u32)(v) >> 26) & 7) + 1)
#define vtr_to_nr_apr_regs(v) (1 << (vtr_to_nr_pre_bits(v) - 5))
u64 __gic_v3_get_lr(unsigned int lr)
{
switch (lr & 0xf) {
case 0:
return read_gicreg(ICH_LR0_EL2);
case 1:
return read_gicreg(ICH_LR1_EL2);
case 2:
return read_gicreg(ICH_LR2_EL2);
case 3:
return read_gicreg(ICH_LR3_EL2);
case 4:
return read_gicreg(ICH_LR4_EL2);
case 5:
return read_gicreg(ICH_LR5_EL2);
case 6:
return read_gicreg(ICH_LR6_EL2);
case 7:
return read_gicreg(ICH_LR7_EL2);
case 8:
return read_gicreg(ICH_LR8_EL2);
case 9:
return read_gicreg(ICH_LR9_EL2);
case 10:
return read_gicreg(ICH_LR10_EL2);
case 11:
return read_gicreg(ICH_LR11_EL2);
case 12:
return read_gicreg(ICH_LR12_EL2);
case 13:
return read_gicreg(ICH_LR13_EL2);
case 14:
return read_gicreg(ICH_LR14_EL2);
case 15:
return read_gicreg(ICH_LR15_EL2);
}
unreachable();
}
static void __gic_v3_set_lr(u64 val, int lr)
{
switch (lr & 0xf) {
case 0:
write_gicreg(val, ICH_LR0_EL2);
break;
case 1:
write_gicreg(val, ICH_LR1_EL2);
break;
case 2:
write_gicreg(val, ICH_LR2_EL2);
break;
case 3:
write_gicreg(val, ICH_LR3_EL2);
break;
case 4:
write_gicreg(val, ICH_LR4_EL2);
break;
case 5:
write_gicreg(val, ICH_LR5_EL2);
break;
case 6:
write_gicreg(val, ICH_LR6_EL2);
break;
case 7:
write_gicreg(val, ICH_LR7_EL2);
break;
case 8:
write_gicreg(val, ICH_LR8_EL2);
break;
case 9:
write_gicreg(val, ICH_LR9_EL2);
break;
case 10:
write_gicreg(val, ICH_LR10_EL2);
break;
case 11:
write_gicreg(val, ICH_LR11_EL2);
break;
case 12:
write_gicreg(val, ICH_LR12_EL2);
break;
case 13:
write_gicreg(val, ICH_LR13_EL2);
break;
case 14:
write_gicreg(val, ICH_LR14_EL2);
break;
case 15:
write_gicreg(val, ICH_LR15_EL2);
break;
}
}
static void __vgic_v3_write_ap0rn(u32 val, int n)
{
switch (n) {
case 0:
write_gicreg(val, ICH_AP0R0_EL2);
break;
case 1:
write_gicreg(val, ICH_AP0R1_EL2);
break;
case 2:
write_gicreg(val, ICH_AP0R2_EL2);
break;
case 3:
write_gicreg(val, ICH_AP0R3_EL2);
break;
}
}
static void __vgic_v3_write_ap1rn(u32 val, int n)
{
switch (n) {
case 0:
write_gicreg(val, ICH_AP1R0_EL2);
break;
case 1:
write_gicreg(val, ICH_AP1R1_EL2);
break;
case 2:
write_gicreg(val, ICH_AP1R2_EL2);
break;
case 3:
write_gicreg(val, ICH_AP1R3_EL2);
break;
}
}
static u32 __vgic_v3_read_ap0rn(int n)
{
u32 val;
switch (n) {
case 0:
val = read_gicreg(ICH_AP0R0_EL2);
break;
case 1:
val = read_gicreg(ICH_AP0R1_EL2);
break;
case 2:
val = read_gicreg(ICH_AP0R2_EL2);
break;
case 3:
val = read_gicreg(ICH_AP0R3_EL2);
break;
default:
unreachable();
}
return val;
}
static u32 __vgic_v3_read_ap1rn(int n)
{
u32 val;
switch (n) {
case 0:
val = read_gicreg(ICH_AP1R0_EL2);
break;
case 1:
val = read_gicreg(ICH_AP1R1_EL2);
break;
case 2:
val = read_gicreg(ICH_AP1R2_EL2);
break;
case 3:
val = read_gicreg(ICH_AP1R3_EL2);
break;
default:
unreachable();
}
return val;
}
void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
{
u64 used_lrs = cpu_if->used_lrs;
if (used_lrs || !has_vhe()) {
if (!cpu_if->vgic_sre) {
dsb(sy);
isb();
}
}
if (used_lrs || cpu_if->its_vpe.its_vm) {
int i;
u32 elrsr;
elrsr = read_gicreg(ICH_ELRSR_EL2);
write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EL2_En, ICH_HCR_EL2);
for (i = 0; i < used_lrs; i++) {
if (elrsr & (1 << i))
cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
else
cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
__gic_v3_set_lr(0, i);
}
}
}
void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
{
u64 used_lrs = cpu_if->used_lrs;
int i;
if (used_lrs || cpu_if->its_vpe.its_vm) {
write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
for (i = 0; i < used_lrs; i++)
__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
}
if (used_lrs || !has_vhe()) {
if (!cpu_if->vgic_sre) {
isb();
dsb(sy);
}
}
}
void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
{
if (!(cpu_if->vgic_hcr & ICH_HCR_EL2_En)) {
write_gicreg(ICC_SRE_EL1_SRE, ICC_SRE_EL1);
isb();
} else if (!cpu_if->vgic_sre) {
write_gicreg(0, ICC_SRE_EL1);
isb();
write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
if (has_vhe()) {
isb();
dsb(sy);
}
}
if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF)) {
write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
ICC_SRE_EL2);
}
if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
}
void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
{
u64 val;
if (!cpu_if->vgic_sre) {
cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
}
if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF)) {
val = read_gicreg(ICC_SRE_EL2);
write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
}
if (!cpu_if->vgic_sre) {
isb();
write_gicreg(1, ICC_SRE_EL1);
}
if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
write_gicreg(0, ICH_HCR_EL2);
}
static void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
{
u64 val;
u32 nr_pre_bits;
val = read_gicreg(ICH_VTR_EL2);
nr_pre_bits = vtr_to_nr_pre_bits(val);
switch (nr_pre_bits) {
case 7:
cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
fallthrough;
case 6:
cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
fallthrough;
default:
cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
}
switch (nr_pre_bits) {
case 7:
cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
fallthrough;
case 6:
cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
fallthrough;
default:
cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
}
}
static void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
{
u64 val;
u32 nr_pre_bits;
val = read_gicreg(ICH_VTR_EL2);
nr_pre_bits = vtr_to_nr_pre_bits(val);
switch (nr_pre_bits) {
case 7:
__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
fallthrough;
case 6:
__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
fallthrough;
default:
__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
}
switch (nr_pre_bits) {
case 7:
__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
fallthrough;
case 6:
__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
fallthrough;
default:
__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
}
}
void __vgic_v3_init_lrs(void)
{
int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
int i;
for (i = 0; i <= max_lr_idx; i++)
__gic_v3_set_lr(0, i);
}
u64 __vgic_v3_get_gic_config(void)
{
u64 val, sre;
unsigned long flags = 0;
if (cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF))
return read_gicreg(ICH_VTR_EL2);
sre = read_gicreg(ICC_SRE_EL1);
if (has_vhe()) {
flags = local_daif_save();
} else {
sysreg_clear_set_hcr(0, HCR_AMO | HCR_FMO | HCR_IMO);
isb();
}
write_gicreg(0, ICC_SRE_EL1);
isb();
val = read_gicreg(ICC_SRE_EL1);
write_gicreg(sre, ICC_SRE_EL1);
isb();
if (has_vhe()) {
local_daif_restore(flags);
} else {
sysreg_clear_set_hcr(HCR_AMO | HCR_FMO | HCR_IMO, 0);
isb();
}
val = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
val |= read_gicreg(ICH_VTR_EL2);
return val;
}
static void __vgic_v3_compat_mode_enable(void)
{
if (!cpus_have_final_cap(ARM64_HAS_GICV5_CPUIF))
return;
sysreg_clear_set_s(SYS_ICH_VCTLR_EL2, 0, ICH_VCTLR_EL2_V3);
isb();
}
static u64 __vgic_v3_read_vmcr(void)
{
return read_gicreg(ICH_VMCR_EL2);
}
static void __vgic_v3_write_vmcr(u32 vmcr)
{
write_gicreg(vmcr, ICH_VMCR_EL2);
}
void __vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
{
__vgic_v3_save_aprs(cpu_if);
if (cpu_if->vgic_sre)
cpu_if->vgic_vmcr = __vgic_v3_read_vmcr();
}
void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
{
__vgic_v3_compat_mode_enable();
if (cpu_if->vgic_sre)
__vgic_v3_write_vmcr(cpu_if->vgic_vmcr);
__vgic_v3_restore_aprs(cpu_if);
}
static int __vgic_v3_bpr_min(void)
{
return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
}
static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
{
u64 esr = kvm_vcpu_get_esr(vcpu);
u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
return crm != 8;
}
#define GICv3_IDLE_PRIORITY 0xff
static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
u64 *lr_val)
{
unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
u8 priority = GICv3_IDLE_PRIORITY;
int i, lr = -1;
for (i = 0; i < used_lrs; i++) {
u64 val = __gic_v3_get_lr(i);
u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
continue;
if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
continue;
if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
continue;
if (lr_prio >= priority)
continue;
priority = lr_prio;
*lr_val = val;
lr = i;
}
if (lr == -1)
*lr_val = ICC_IAR1_EL1_SPURIOUS;
return lr;
}
static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
u64 *lr_val)
{
unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
int i;
for (i = 0; i < used_lrs; i++) {
u64 val = __gic_v3_get_lr(i);
if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
(val & ICH_LR_ACTIVE_BIT)) {
*lr_val = val;
return i;
}
}
*lr_val = ICC_IAR1_EL1_SPURIOUS;
return -1;
}
static int __vgic_v3_get_highest_active_priority(void)
{
u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
u32 hap = 0;
int i;
for (i = 0; i < nr_apr_regs; i++) {
u32 val;
val = __vgic_v3_read_ap0rn(i);
val |= __vgic_v3_read_ap1rn(i);
if (!val) {
hap += 32;
continue;
}
return (hap + __ffs(val)) << __vgic_v3_bpr_min();
}
return GICv3_IDLE_PRIORITY;
}
static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
{
return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
}
static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
{
unsigned int bpr;
if (vmcr & ICH_VMCR_CBPR_MASK) {
bpr = __vgic_v3_get_bpr0(vmcr);
if (bpr < 7)
bpr++;
} else {
bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
}
return bpr;
}
static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
{
unsigned int bpr;
if (!grp)
bpr = __vgic_v3_get_bpr0(vmcr) + 1;
else
bpr = __vgic_v3_get_bpr1(vmcr);
return pri & (GENMASK(7, 0) << bpr);
}
static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
{
u8 pre, ap;
u32 val;
int apr;
pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
ap = pre >> __vgic_v3_bpr_min();
apr = ap / 32;
if (!grp) {
val = __vgic_v3_read_ap0rn(apr);
__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
} else {
val = __vgic_v3_read_ap1rn(apr);
__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
}
}
static int __vgic_v3_clear_highest_active_priority(void)
{
u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
u32 hap = 0;
int i;
for (i = 0; i < nr_apr_regs; i++) {
u32 ap0, ap1;
int c0, c1;
ap0 = __vgic_v3_read_ap0rn(i);
ap1 = __vgic_v3_read_ap1rn(i);
if (!ap0 && !ap1) {
hap += 32;
continue;
}
c0 = ap0 ? __ffs(ap0) : 32;
c1 = ap1 ? __ffs(ap1) : 32;
if (c0 < c1) {
ap0 &= ~BIT(c0);
__vgic_v3_write_ap0rn(ap0, i);
hap += c0;
} else {
ap1 &= ~BIT(c1);
__vgic_v3_write_ap1rn(ap1, i);
hap += c1;
}
return hap << __vgic_v3_bpr_min();
}
return GICv3_IDLE_PRIORITY;
}
static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 lr_val;
u8 lr_prio, pmr;
int lr, grp;
grp = __vgic_v3_get_group(vcpu);
lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
if (lr < 0)
goto spurious;
if (grp != !!(lr_val & ICH_LR_GROUP))
goto spurious;
pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
if (pmr <= lr_prio)
goto spurious;
if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
goto spurious;
lr_val &= ~ICH_LR_STATE;
lr_val |= ICH_LR_ACTIVE_BIT;
__gic_v3_set_lr(lr_val, lr);
__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
return;
spurious:
vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
}
static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
{
lr_val &= ~ICH_LR_ACTIVE_BIT;
if (lr_val & ICH_LR_HW) {
u32 pid;
pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
gic_write_dir(pid);
}
__gic_v3_set_lr(lr_val, lr);
}
static void __vgic_v3_bump_eoicount(void)
{
u32 hcr;
hcr = read_gicreg(ICH_HCR_EL2);
hcr += 1 << ICH_HCR_EL2_EOIcount_SHIFT;
write_gicreg(hcr, ICH_HCR_EL2);
}
static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 vid = vcpu_get_reg(vcpu, rt);
u64 lr_val;
int lr;
if (!(vmcr & ICH_VMCR_EOIM_MASK))
return;
if (vid >= VGIC_MIN_LPI)
return;
lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
if (lr == -1) {
__vgic_v3_bump_eoicount();
return;
}
__vgic_v3_clear_active_lr(lr, lr_val);
}
static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 vid = vcpu_get_reg(vcpu, rt);
u64 lr_val;
u8 lr_prio, act_prio;
int lr, grp;
grp = __vgic_v3_get_group(vcpu);
act_prio = __vgic_v3_clear_highest_active_priority();
lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
if (lr == -1) {
if (!(vid >= VGIC_MIN_LPI))
__vgic_v3_bump_eoicount();
return;
}
if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
return;
lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
if (grp != !!(lr_val & ICH_LR_GROUP) ||
__vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
return;
__vgic_v3_clear_active_lr(lr, lr_val);
}
static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
}
static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
}
static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 val = vcpu_get_reg(vcpu, rt);
if (val & 1)
vmcr |= ICH_VMCR_ENG0_MASK;
else
vmcr &= ~ICH_VMCR_ENG0_MASK;
__vgic_v3_write_vmcr(vmcr);
}
static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 val = vcpu_get_reg(vcpu, rt);
if (val & 1)
vmcr |= ICH_VMCR_ENG1_MASK;
else
vmcr &= ~ICH_VMCR_ENG1_MASK;
__vgic_v3_write_vmcr(vmcr);
}
static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
}
static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
}
static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 val = vcpu_get_reg(vcpu, rt);
u8 bpr_min = __vgic_v3_bpr_min() - 1;
if (val < bpr_min)
val = bpr_min;
val <<= ICH_VMCR_BPR0_SHIFT;
val &= ICH_VMCR_BPR0_MASK;
vmcr &= ~ICH_VMCR_BPR0_MASK;
vmcr |= val;
__vgic_v3_write_vmcr(vmcr);
}
static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 val = vcpu_get_reg(vcpu, rt);
u8 bpr_min = __vgic_v3_bpr_min();
if (vmcr & ICH_VMCR_CBPR_MASK)
return;
if (val < bpr_min)
val = bpr_min;
val <<= ICH_VMCR_BPR1_SHIFT;
val &= ICH_VMCR_BPR1_MASK;
vmcr &= ~ICH_VMCR_BPR1_MASK;
vmcr |= val;
__vgic_v3_write_vmcr(vmcr);
}
static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
{
u32 val;
if (!__vgic_v3_get_group(vcpu))
val = __vgic_v3_read_ap0rn(n);
else
val = __vgic_v3_read_ap1rn(n);
vcpu_set_reg(vcpu, rt, val);
}
static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
{
u32 val = vcpu_get_reg(vcpu, rt);
if (!__vgic_v3_get_group(vcpu))
__vgic_v3_write_ap0rn(val, n);
else
__vgic_v3_write_ap1rn(val, n);
}
static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
{
__vgic_v3_read_apxrn(vcpu, rt, 0);
}
static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
{
__vgic_v3_read_apxrn(vcpu, rt, 1);
}
static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_read_apxrn(vcpu, rt, 2);
}
static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_read_apxrn(vcpu, rt, 3);
}
static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_write_apxrn(vcpu, rt, 0);
}
static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_write_apxrn(vcpu, rt, 1);
}
static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_write_apxrn(vcpu, rt, 2);
}
static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_write_apxrn(vcpu, rt, 3);
}
static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 lr_val;
int lr, lr_grp, grp;
grp = __vgic_v3_get_group(vcpu);
lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
if (lr == -1)
goto spurious;
lr_grp = !!(lr_val & ICH_LR_GROUP);
if (lr_grp != grp)
lr_val = ICC_IAR1_EL1_SPURIOUS;
spurious:
vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
}
static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
vmcr &= ICH_VMCR_PMR_MASK;
vmcr >>= ICH_VMCR_PMR_SHIFT;
vcpu_set_reg(vcpu, rt, vmcr);
}
static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 val = vcpu_get_reg(vcpu, rt);
val <<= ICH_VMCR_PMR_SHIFT;
val &= ICH_VMCR_PMR_MASK;
vmcr &= ~ICH_VMCR_PMR_MASK;
vmcr |= val;
write_gicreg(vmcr, ICH_VMCR_EL2);
}
static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 val = __vgic_v3_get_highest_active_priority();
vcpu_set_reg(vcpu, rt, val);
}
static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 vtr, val;
vtr = read_gicreg(ICH_VTR_EL2);
val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
vcpu_set_reg(vcpu, rt, val);
}
static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 val = vcpu_get_reg(vcpu, rt);
if (val & ICC_CTLR_EL1_CBPR_MASK)
vmcr |= ICH_VMCR_CBPR_MASK;
else
vmcr &= ~ICH_VMCR_CBPR_MASK;
if (val & ICC_CTLR_EL1_EOImode_MASK)
vmcr |= ICH_VMCR_EOIM_MASK;
else
vmcr &= ~ICH_VMCR_EOIM_MASK;
write_gicreg(vmcr, ICH_VMCR_EL2);
}
static bool __vgic_v3_check_trap_forwarding(struct kvm_vcpu *vcpu,
u32 sysreg, bool is_read)
{
u64 ich_hcr;
if (!is_nested_ctxt(vcpu))
return false;
ich_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
switch (sysreg) {
case SYS_ICC_IGRPEN0_EL1:
if (is_read &&
(__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
return true;
if (!is_read &&
(__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
return true;
fallthrough;
case SYS_ICC_AP0Rn_EL1(0):
case SYS_ICC_AP0Rn_EL1(1):
case SYS_ICC_AP0Rn_EL1(2):
case SYS_ICC_AP0Rn_EL1(3):
case SYS_ICC_BPR0_EL1:
case SYS_ICC_EOIR0_EL1:
case SYS_ICC_HPPIR0_EL1:
case SYS_ICC_IAR0_EL1:
return ich_hcr & ICH_HCR_EL2_TALL0;
case SYS_ICC_IGRPEN1_EL1:
if (is_read &&
(__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
return true;
if (!is_read &&
(__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
return true;
fallthrough;
case SYS_ICC_AP1Rn_EL1(0):
case SYS_ICC_AP1Rn_EL1(1):
case SYS_ICC_AP1Rn_EL1(2):
case SYS_ICC_AP1Rn_EL1(3):
case SYS_ICC_BPR1_EL1:
case SYS_ICC_EOIR1_EL1:
case SYS_ICC_HPPIR1_EL1:
case SYS_ICC_IAR1_EL1:
return ich_hcr & ICH_HCR_EL2_TALL1;
case SYS_ICC_DIR_EL1:
if (ich_hcr & ICH_HCR_EL2_TDIR)
return true;
fallthrough;
case SYS_ICC_RPR_EL1:
case SYS_ICC_CTLR_EL1:
case SYS_ICC_PMR_EL1:
return ich_hcr & ICH_HCR_EL2_TC;
default:
return false;
}
}
int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
{
int rt;
u64 esr;
u32 vmcr;
void (*fn)(struct kvm_vcpu *, u32, int);
bool is_read;
u32 sysreg;
if (kern_hyp_va(vcpu->kvm)->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
return 0;
esr = kvm_vcpu_get_esr(vcpu);
if (vcpu_mode_is_32bit(vcpu)) {
if (!kvm_condition_valid(vcpu)) {
__kvm_skip_instr(vcpu);
return 1;
}
sysreg = esr_cp15_to_sysreg(esr);
} else {
sysreg = esr_sys64_to_sysreg(esr);
}
is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
if (__vgic_v3_check_trap_forwarding(vcpu, sysreg, is_read))
return 0;
switch (sysreg) {
case SYS_ICC_IAR0_EL1:
case SYS_ICC_IAR1_EL1:
if (unlikely(!is_read))
return 0;
fn = __vgic_v3_read_iar;
break;
case SYS_ICC_EOIR0_EL1:
case SYS_ICC_EOIR1_EL1:
if (unlikely(is_read))
return 0;
fn = __vgic_v3_write_eoir;
break;
case SYS_ICC_IGRPEN1_EL1:
if (is_read)
fn = __vgic_v3_read_igrpen1;
else
fn = __vgic_v3_write_igrpen1;
break;
case SYS_ICC_BPR1_EL1:
if (is_read)
fn = __vgic_v3_read_bpr1;
else
fn = __vgic_v3_write_bpr1;
break;
case SYS_ICC_AP0Rn_EL1(0):
case SYS_ICC_AP1Rn_EL1(0):
if (is_read)
fn = __vgic_v3_read_apxr0;
else
fn = __vgic_v3_write_apxr0;
break;
case SYS_ICC_AP0Rn_EL1(1):
case SYS_ICC_AP1Rn_EL1(1):
if (is_read)
fn = __vgic_v3_read_apxr1;
else
fn = __vgic_v3_write_apxr1;
break;
case SYS_ICC_AP0Rn_EL1(2):
case SYS_ICC_AP1Rn_EL1(2):
if (is_read)
fn = __vgic_v3_read_apxr2;
else
fn = __vgic_v3_write_apxr2;
break;
case SYS_ICC_AP0Rn_EL1(3):
case SYS_ICC_AP1Rn_EL1(3):
if (is_read)
fn = __vgic_v3_read_apxr3;
else
fn = __vgic_v3_write_apxr3;
break;
case SYS_ICC_HPPIR0_EL1:
case SYS_ICC_HPPIR1_EL1:
if (unlikely(!is_read))
return 0;
fn = __vgic_v3_read_hppir;
break;
case SYS_ICC_IGRPEN0_EL1:
if (is_read)
fn = __vgic_v3_read_igrpen0;
else
fn = __vgic_v3_write_igrpen0;
break;
case SYS_ICC_BPR0_EL1:
if (is_read)
fn = __vgic_v3_read_bpr0;
else
fn = __vgic_v3_write_bpr0;
break;
case SYS_ICC_DIR_EL1:
if (unlikely(is_read))
return 0;
fn = __vgic_v3_write_dir;
break;
case SYS_ICC_RPR_EL1:
if (unlikely(!is_read))
return 0;
fn = __vgic_v3_read_rpr;
break;
case SYS_ICC_CTLR_EL1:
if (is_read)
fn = __vgic_v3_read_ctlr;
else
fn = __vgic_v3_write_ctlr;
break;
case SYS_ICC_PMR_EL1:
if (is_read)
fn = __vgic_v3_read_pmr;
else
fn = __vgic_v3_write_pmr;
break;
default:
return 0;
}
vmcr = __vgic_v3_read_vmcr();
rt = kvm_vcpu_sys_get_rt(vcpu);
fn(vcpu, vmcr, rt);
__kvm_skip_instr(vcpu);
return 1;
}