Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/pmu-emul.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2015 Linaro Ltd.
4
* Author: Shannon Zhao <[email protected]>
5
*/
6
7
#include <linux/cpu.h>
8
#include <linux/kvm.h>
9
#include <linux/kvm_host.h>
10
#include <linux/list.h>
11
#include <linux/perf_event.h>
12
#include <linux/perf/arm_pmu.h>
13
#include <linux/uaccess.h>
14
#include <asm/kvm_emulate.h>
15
#include <kvm/arm_pmu.h>
16
#include <kvm/arm_vgic.h>
17
18
#define PERF_ATTR_CFG1_COUNTER_64BIT BIT(0)
19
20
static LIST_HEAD(arm_pmus);
21
static DEFINE_MUTEX(arm_pmus_lock);
22
23
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
24
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
25
static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc);
26
27
bool kvm_supports_guest_pmuv3(void)
28
{
29
guard(mutex)(&arm_pmus_lock);
30
return !list_empty(&arm_pmus);
31
}
32
33
static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
34
{
35
return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
36
}
37
38
static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
39
{
40
return &vcpu->arch.pmu.pmc[cnt_idx];
41
}
42
43
static u32 __kvm_pmu_event_mask(unsigned int pmuver)
44
{
45
switch (pmuver) {
46
case ID_AA64DFR0_EL1_PMUVer_IMP:
47
return GENMASK(9, 0);
48
case ID_AA64DFR0_EL1_PMUVer_V3P1:
49
case ID_AA64DFR0_EL1_PMUVer_V3P4:
50
case ID_AA64DFR0_EL1_PMUVer_V3P5:
51
case ID_AA64DFR0_EL1_PMUVer_V3P7:
52
return GENMASK(15, 0);
53
default: /* Shouldn't be here, just for sanity */
54
WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
55
return 0;
56
}
57
}
58
59
static u32 kvm_pmu_event_mask(struct kvm *kvm)
60
{
61
u64 dfr0 = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
62
u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
63
64
return __kvm_pmu_event_mask(pmuver);
65
}
66
67
u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
68
{
69
u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 |
70
kvm_pmu_event_mask(kvm);
71
72
if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL2, IMP))
73
mask |= ARMV8_PMU_INCLUDE_EL2;
74
75
if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
76
mask |= ARMV8_PMU_EXCLUDE_NS_EL0 |
77
ARMV8_PMU_EXCLUDE_NS_EL1 |
78
ARMV8_PMU_EXCLUDE_EL3;
79
80
return mask;
81
}
82
83
/**
84
* kvm_pmc_is_64bit - determine if counter is 64bit
85
* @pmc: counter context
86
*/
87
static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
88
{
89
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
90
91
return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
92
kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5));
93
}
94
95
static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
96
{
97
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
98
u64 val = kvm_vcpu_read_pmcr(vcpu);
99
100
if (kvm_pmu_counter_is_hyp(vcpu, pmc->idx))
101
return __vcpu_sys_reg(vcpu, MDCR_EL2) & MDCR_EL2_HLP;
102
103
return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
104
(pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
105
}
106
107
static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
108
{
109
return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
110
!kvm_pmc_has_64bit_overflow(pmc));
111
}
112
113
static u32 counter_index_to_reg(u64 idx)
114
{
115
return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
116
}
117
118
static u32 counter_index_to_evtreg(u64 idx)
119
{
120
return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
121
}
122
123
static u64 kvm_pmc_read_evtreg(const struct kvm_pmc *pmc)
124
{
125
return __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), counter_index_to_evtreg(pmc->idx));
126
}
127
128
static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
129
{
130
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
131
u64 counter, reg, enabled, running;
132
133
reg = counter_index_to_reg(pmc->idx);
134
counter = __vcpu_sys_reg(vcpu, reg);
135
136
/*
137
* The real counter value is equal to the value of counter register plus
138
* the value perf event counts.
139
*/
140
if (pmc->perf_event)
141
counter += perf_event_read_value(pmc->perf_event, &enabled,
142
&running);
143
144
if (!kvm_pmc_is_64bit(pmc))
145
counter = lower_32_bits(counter);
146
147
return counter;
148
}
149
150
/**
151
* kvm_pmu_get_counter_value - get PMU counter value
152
* @vcpu: The vcpu pointer
153
* @select_idx: The counter index
154
*/
155
u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
156
{
157
return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
158
}
159
160
static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
161
{
162
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
163
u64 reg;
164
165
kvm_pmu_release_perf_event(pmc);
166
167
reg = counter_index_to_reg(pmc->idx);
168
169
if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
170
!force) {
171
/*
172
* Even with PMUv3p5, AArch32 cannot write to the top
173
* 32bit of the counters. The only possible course of
174
* action is to use PMCR.P, which will reset them to
175
* 0 (the only use of the 'force' parameter).
176
*/
177
val = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
178
val |= lower_32_bits(val);
179
}
180
181
__vcpu_assign_sys_reg(vcpu, reg, val);
182
183
/* Recreate the perf event to reflect the updated sample_period */
184
kvm_pmu_create_perf_event(pmc);
185
}
186
187
/**
188
* kvm_pmu_set_counter_value - set PMU counter value
189
* @vcpu: The vcpu pointer
190
* @select_idx: The counter index
191
* @val: The counter value
192
*/
193
void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
194
{
195
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
196
}
197
198
/**
199
* kvm_pmu_set_counter_value_user - set PMU counter value from user
200
* @vcpu: The vcpu pointer
201
* @select_idx: The counter index
202
* @val: The counter value
203
*/
204
void kvm_pmu_set_counter_value_user(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
205
{
206
kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
207
__vcpu_assign_sys_reg(vcpu, counter_index_to_reg(select_idx), val);
208
kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
209
}
210
211
/**
212
* kvm_pmu_release_perf_event - remove the perf event
213
* @pmc: The PMU counter pointer
214
*/
215
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
216
{
217
if (pmc->perf_event) {
218
perf_event_disable(pmc->perf_event);
219
perf_event_release_kernel(pmc->perf_event);
220
pmc->perf_event = NULL;
221
}
222
}
223
224
/**
225
* kvm_pmu_stop_counter - stop PMU counter
226
* @pmc: The PMU counter pointer
227
*
228
* If this counter has been configured to monitor some event, release it here.
229
*/
230
static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
231
{
232
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
233
u64 reg, val;
234
235
if (!pmc->perf_event)
236
return;
237
238
val = kvm_pmu_get_pmc_value(pmc);
239
240
reg = counter_index_to_reg(pmc->idx);
241
242
__vcpu_assign_sys_reg(vcpu, reg, val);
243
244
kvm_pmu_release_perf_event(pmc);
245
}
246
247
/**
248
* kvm_pmu_vcpu_init - assign pmu counter idx for cpu
249
* @vcpu: The vcpu pointer
250
*
251
*/
252
void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
253
{
254
int i;
255
struct kvm_pmu *pmu = &vcpu->arch.pmu;
256
257
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
258
pmu->pmc[i].idx = i;
259
}
260
261
/**
262
* kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
263
* @vcpu: The vcpu pointer
264
*
265
*/
266
void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
267
{
268
int i;
269
270
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
271
kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
272
irq_work_sync(&vcpu->arch.pmu.overflow_work);
273
}
274
275
static u64 kvm_pmu_hyp_counter_mask(struct kvm_vcpu *vcpu)
276
{
277
unsigned int hpmn, n;
278
279
if (!vcpu_has_nv(vcpu))
280
return 0;
281
282
hpmn = SYS_FIELD_GET(MDCR_EL2, HPMN, __vcpu_sys_reg(vcpu, MDCR_EL2));
283
n = vcpu->kvm->arch.nr_pmu_counters;
284
285
/*
286
* Programming HPMN to a value greater than PMCR_EL0.N is
287
* CONSTRAINED UNPREDICTABLE. Make the implementation choice that an
288
* UNKNOWN number of counters (in our case, zero) are reserved for EL2.
289
*/
290
if (hpmn >= n)
291
return 0;
292
293
/*
294
* Programming HPMN=0 is CONSTRAINED UNPREDICTABLE if FEAT_HPMN0 isn't
295
* implemented. Since KVM's ability to emulate HPMN=0 does not directly
296
* depend on hardware (all PMU registers are trapped), make the
297
* implementation choice that all counters are included in the second
298
* range reserved for EL2/EL3.
299
*/
300
return GENMASK(n - 1, hpmn);
301
}
302
303
bool kvm_pmu_counter_is_hyp(struct kvm_vcpu *vcpu, unsigned int idx)
304
{
305
return kvm_pmu_hyp_counter_mask(vcpu) & BIT(idx);
306
}
307
308
u64 kvm_pmu_accessible_counter_mask(struct kvm_vcpu *vcpu)
309
{
310
u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
311
312
if (!vcpu_has_nv(vcpu) || vcpu_is_el2(vcpu))
313
return mask;
314
315
return mask & ~kvm_pmu_hyp_counter_mask(vcpu);
316
}
317
318
u64 kvm_pmu_implemented_counter_mask(struct kvm_vcpu *vcpu)
319
{
320
u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu));
321
322
if (val == 0)
323
return BIT(ARMV8_PMU_CYCLE_IDX);
324
else
325
return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
326
}
327
328
static void kvm_pmc_enable_perf_event(struct kvm_pmc *pmc)
329
{
330
if (!pmc->perf_event) {
331
kvm_pmu_create_perf_event(pmc);
332
return;
333
}
334
335
perf_event_enable(pmc->perf_event);
336
if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
337
kvm_debug("fail to enable perf event\n");
338
}
339
340
static void kvm_pmc_disable_perf_event(struct kvm_pmc *pmc)
341
{
342
if (pmc->perf_event)
343
perf_event_disable(pmc->perf_event);
344
}
345
346
void kvm_pmu_reprogram_counter_mask(struct kvm_vcpu *vcpu, u64 val)
347
{
348
int i;
349
350
if (!val)
351
return;
352
353
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
354
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
355
356
if (!(val & BIT(i)))
357
continue;
358
359
if (kvm_pmu_counter_is_enabled(pmc))
360
kvm_pmc_enable_perf_event(pmc);
361
else
362
kvm_pmc_disable_perf_event(pmc);
363
}
364
365
kvm_vcpu_pmu_restore_guest(vcpu);
366
}
367
368
/*
369
* Returns the PMU overflow state, which is true if there exists an event
370
* counter where the values of the global enable control, PMOVSSET_EL0[n], and
371
* PMINTENSET_EL1[n] are all 1.
372
*/
373
static bool kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
374
{
375
u64 reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
376
377
reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
378
379
/*
380
* PMCR_EL0.E is the global enable control for event counters available
381
* to EL0 and EL1.
382
*/
383
if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
384
reg &= kvm_pmu_hyp_counter_mask(vcpu);
385
386
/*
387
* Otherwise, MDCR_EL2.HPME is the global enable control for event
388
* counters reserved for EL2.
389
*/
390
if (!(vcpu_read_sys_reg(vcpu, MDCR_EL2) & MDCR_EL2_HPME))
391
reg &= ~kvm_pmu_hyp_counter_mask(vcpu);
392
393
return reg;
394
}
395
396
static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
397
{
398
struct kvm_pmu *pmu = &vcpu->arch.pmu;
399
bool overflow;
400
401
overflow = kvm_pmu_overflow_status(vcpu);
402
if (pmu->irq_level == overflow)
403
return;
404
405
pmu->irq_level = overflow;
406
407
if (likely(irqchip_in_kernel(vcpu->kvm))) {
408
int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
409
pmu->irq_num, overflow, pmu);
410
WARN_ON(ret);
411
}
412
}
413
414
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
415
{
416
struct kvm_pmu *pmu = &vcpu->arch.pmu;
417
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
418
bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
419
420
if (likely(irqchip_in_kernel(vcpu->kvm)))
421
return false;
422
423
return pmu->irq_level != run_level;
424
}
425
426
/*
427
* Reflect the PMU overflow interrupt output level into the kvm_run structure
428
*/
429
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
430
{
431
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
432
433
/* Populate the timer bitmap for user space */
434
regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
435
if (vcpu->arch.pmu.irq_level)
436
regs->device_irq_level |= KVM_ARM_DEV_PMU;
437
}
438
439
/**
440
* kvm_pmu_flush_hwstate - flush pmu state to cpu
441
* @vcpu: The vcpu pointer
442
*
443
* Check if the PMU has overflowed while we were running in the host, and inject
444
* an interrupt if that was the case.
445
*/
446
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
447
{
448
kvm_pmu_update_state(vcpu);
449
}
450
451
/**
452
* kvm_pmu_sync_hwstate - sync pmu state from cpu
453
* @vcpu: The vcpu pointer
454
*
455
* Check if the PMU has overflowed while we were running in the guest, and
456
* inject an interrupt if that was the case.
457
*/
458
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
459
{
460
kvm_pmu_update_state(vcpu);
461
}
462
463
/*
464
* When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
465
* to the event.
466
* This is why we need a callback to do it once outside of the NMI context.
467
*/
468
static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
469
{
470
struct kvm_vcpu *vcpu;
471
472
vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
473
kvm_vcpu_kick(vcpu);
474
}
475
476
/*
477
* Perform an increment on any of the counters described in @mask,
478
* generating the overflow if required, and propagate it as a chained
479
* event if possible.
480
*/
481
static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
482
unsigned long mask, u32 event)
483
{
484
int i;
485
486
if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
487
return;
488
489
/* Weed out disabled counters */
490
mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
491
492
for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
493
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
494
u64 type, reg;
495
496
/* Filter on event type */
497
type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
498
type &= kvm_pmu_event_mask(vcpu->kvm);
499
if (type != event)
500
continue;
501
502
/* Increment this counter */
503
reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
504
if (!kvm_pmc_is_64bit(pmc))
505
reg = lower_32_bits(reg);
506
__vcpu_assign_sys_reg(vcpu, counter_index_to_reg(i), reg);
507
508
/* No overflow? move on */
509
if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
510
continue;
511
512
/* Mark overflow */
513
__vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, BIT(i));
514
515
if (kvm_pmu_counter_can_chain(pmc))
516
kvm_pmu_counter_increment(vcpu, BIT(i + 1),
517
ARMV8_PMUV3_PERFCTR_CHAIN);
518
}
519
}
520
521
/* Compute the sample period for a given counter value */
522
static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
523
{
524
u64 val;
525
526
if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
527
val = (-counter) & GENMASK(63, 0);
528
else
529
val = (-counter) & GENMASK(31, 0);
530
531
return val;
532
}
533
534
/*
535
* When the perf event overflows, set the overflow status and inform the vcpu.
536
*/
537
static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
538
struct perf_sample_data *data,
539
struct pt_regs *regs)
540
{
541
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
542
struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
543
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
544
int idx = pmc->idx;
545
u64 period;
546
547
cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
548
549
/*
550
* Reset the sample period to the architectural limit,
551
* i.e. the point where the counter overflows.
552
*/
553
period = compute_period(pmc, local64_read(&perf_event->count));
554
555
local64_set(&perf_event->hw.period_left, 0);
556
perf_event->attr.sample_period = period;
557
perf_event->hw.sample_period = period;
558
559
__vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, BIT(idx));
560
561
if (kvm_pmu_counter_can_chain(pmc))
562
kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
563
ARMV8_PMUV3_PERFCTR_CHAIN);
564
565
if (kvm_pmu_overflow_status(vcpu)) {
566
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
567
568
if (!in_nmi())
569
kvm_vcpu_kick(vcpu);
570
else
571
irq_work_queue(&vcpu->arch.pmu.overflow_work);
572
}
573
574
cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
575
}
576
577
/**
578
* kvm_pmu_software_increment - do software increment
579
* @vcpu: The vcpu pointer
580
* @val: the value guest writes to PMSWINC register
581
*/
582
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
583
{
584
kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
585
}
586
587
/**
588
* kvm_pmu_handle_pmcr - handle PMCR register
589
* @vcpu: The vcpu pointer
590
* @val: the value guest writes to PMCR register
591
*/
592
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
593
{
594
int i;
595
596
/* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
597
if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
598
val &= ~ARMV8_PMU_PMCR_LP;
599
600
/* Request a reload of the PMU to enable/disable affected counters */
601
if ((__vcpu_sys_reg(vcpu, PMCR_EL0) ^ val) & ARMV8_PMU_PMCR_E)
602
kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
603
604
/* The reset bits don't indicate any state, and shouldn't be saved. */
605
__vcpu_assign_sys_reg(vcpu, PMCR_EL0, (val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P)));
606
607
if (val & ARMV8_PMU_PMCR_C)
608
kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
609
610
if (val & ARMV8_PMU_PMCR_P) {
611
unsigned long mask = kvm_pmu_implemented_counter_mask(vcpu) &
612
~BIT(ARMV8_PMU_CYCLE_IDX);
613
614
if (!vcpu_is_el2(vcpu))
615
mask &= ~kvm_pmu_hyp_counter_mask(vcpu);
616
617
for_each_set_bit(i, &mask, 32)
618
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
619
}
620
}
621
622
static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
623
{
624
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
625
unsigned int mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
626
627
if (!(__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx)))
628
return false;
629
630
if (kvm_pmu_counter_is_hyp(vcpu, pmc->idx))
631
return mdcr & MDCR_EL2_HPME;
632
633
return kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E;
634
}
635
636
static bool kvm_pmc_counts_at_el0(struct kvm_pmc *pmc)
637
{
638
u64 evtreg = kvm_pmc_read_evtreg(pmc);
639
bool nsu = evtreg & ARMV8_PMU_EXCLUDE_NS_EL0;
640
bool u = evtreg & ARMV8_PMU_EXCLUDE_EL0;
641
642
return u == nsu;
643
}
644
645
static bool kvm_pmc_counts_at_el1(struct kvm_pmc *pmc)
646
{
647
u64 evtreg = kvm_pmc_read_evtreg(pmc);
648
bool nsk = evtreg & ARMV8_PMU_EXCLUDE_NS_EL1;
649
bool p = evtreg & ARMV8_PMU_EXCLUDE_EL1;
650
651
return p == nsk;
652
}
653
654
static bool kvm_pmc_counts_at_el2(struct kvm_pmc *pmc)
655
{
656
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
657
u64 mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
658
659
if (!kvm_pmu_counter_is_hyp(vcpu, pmc->idx) && (mdcr & MDCR_EL2_HPMD))
660
return false;
661
662
return kvm_pmc_read_evtreg(pmc) & ARMV8_PMU_INCLUDE_EL2;
663
}
664
665
static int kvm_map_pmu_event(struct kvm *kvm, unsigned int eventsel)
666
{
667
struct arm_pmu *pmu = kvm->arch.arm_pmu;
668
669
/*
670
* The CPU PMU likely isn't PMUv3; let the driver provide a mapping
671
* for the guest's PMUv3 event ID.
672
*/
673
if (unlikely(pmu->map_pmuv3_event))
674
return pmu->map_pmuv3_event(eventsel);
675
676
return eventsel;
677
}
678
679
/**
680
* kvm_pmu_create_perf_event - create a perf event for a counter
681
* @pmc: Counter context
682
*/
683
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
684
{
685
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
686
struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
687
struct perf_event *event;
688
struct perf_event_attr attr;
689
int eventsel;
690
u64 evtreg;
691
692
evtreg = kvm_pmc_read_evtreg(pmc);
693
694
kvm_pmu_stop_counter(pmc);
695
if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
696
eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
697
else
698
eventsel = evtreg & kvm_pmu_event_mask(vcpu->kvm);
699
700
/*
701
* Neither SW increment nor chained events need to be backed
702
* by a perf event.
703
*/
704
if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
705
eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
706
return;
707
708
/*
709
* If we have a filter in place and that the event isn't allowed, do
710
* not install a perf event either.
711
*/
712
if (vcpu->kvm->arch.pmu_filter &&
713
!test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
714
return;
715
716
/*
717
* Don't create an event if we're running on hardware that requires
718
* PMUv3 event translation and we couldn't find a valid mapping.
719
*/
720
eventsel = kvm_map_pmu_event(vcpu->kvm, eventsel);
721
if (eventsel < 0)
722
return;
723
724
memset(&attr, 0, sizeof(struct perf_event_attr));
725
attr.type = arm_pmu->pmu.type;
726
attr.size = sizeof(attr);
727
attr.pinned = 1;
728
attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
729
attr.exclude_user = !kvm_pmc_counts_at_el0(pmc);
730
attr.exclude_hv = 1; /* Don't count EL2 events */
731
attr.exclude_host = 1; /* Don't count host events */
732
attr.config = eventsel;
733
734
/*
735
* Filter events at EL1 (i.e. vEL2) when in a hyp context based on the
736
* guest's EL2 filter.
737
*/
738
if (unlikely(is_hyp_ctxt(vcpu)))
739
attr.exclude_kernel = !kvm_pmc_counts_at_el2(pmc);
740
else
741
attr.exclude_kernel = !kvm_pmc_counts_at_el1(pmc);
742
743
/*
744
* If counting with a 64bit counter, advertise it to the perf
745
* code, carefully dealing with the initial sample period
746
* which also depends on the overflow.
747
*/
748
if (kvm_pmc_is_64bit(pmc))
749
attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
750
751
attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
752
753
event = perf_event_create_kernel_counter(&attr, -1, current,
754
kvm_pmu_perf_overflow, pmc);
755
756
if (IS_ERR(event)) {
757
pr_err_once("kvm: pmu event creation failed %ld\n",
758
PTR_ERR(event));
759
return;
760
}
761
762
pmc->perf_event = event;
763
}
764
765
/**
766
* kvm_pmu_set_counter_event_type - set selected counter to monitor some event
767
* @vcpu: The vcpu pointer
768
* @data: The data guest writes to PMXEVTYPER_EL0
769
* @select_idx: The number of selected counter
770
*
771
* When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
772
* event with given hardware event number. Here we call perf_event API to
773
* emulate this action and create a kernel perf event for it.
774
*/
775
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
776
u64 select_idx)
777
{
778
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
779
u64 reg;
780
781
reg = counter_index_to_evtreg(pmc->idx);
782
__vcpu_assign_sys_reg(vcpu, reg, (data & kvm_pmu_evtyper_mask(vcpu->kvm)));
783
784
kvm_pmu_create_perf_event(pmc);
785
}
786
787
void kvm_host_pmu_init(struct arm_pmu *pmu)
788
{
789
struct arm_pmu_entry *entry;
790
791
/*
792
* Check the sanitised PMU version for the system, as KVM does not
793
* support implementations where PMUv3 exists on a subset of CPUs.
794
*/
795
if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
796
return;
797
798
guard(mutex)(&arm_pmus_lock);
799
800
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
801
if (!entry)
802
return;
803
804
entry->arm_pmu = pmu;
805
list_add_tail(&entry->entry, &arm_pmus);
806
}
807
808
static struct arm_pmu *kvm_pmu_probe_armpmu(void)
809
{
810
struct arm_pmu_entry *entry;
811
struct arm_pmu *pmu;
812
int cpu;
813
814
guard(mutex)(&arm_pmus_lock);
815
816
/*
817
* It is safe to use a stale cpu to iterate the list of PMUs so long as
818
* the same value is used for the entirety of the loop. Given this, and
819
* the fact that no percpu data is used for the lookup there is no need
820
* to disable preemption.
821
*
822
* It is still necessary to get a valid cpu, though, to probe for the
823
* default PMU instance as userspace is not required to specify a PMU
824
* type. In order to uphold the preexisting behavior KVM selects the
825
* PMU instance for the core during vcpu init. A dependent use
826
* case would be a user with disdain of all things big.LITTLE that
827
* affines the VMM to a particular cluster of cores.
828
*
829
* In any case, userspace should just do the sane thing and use the UAPI
830
* to select a PMU type directly. But, be wary of the baggage being
831
* carried here.
832
*/
833
cpu = raw_smp_processor_id();
834
list_for_each_entry(entry, &arm_pmus, entry) {
835
pmu = entry->arm_pmu;
836
837
if (cpumask_test_cpu(cpu, &pmu->supported_cpus))
838
return pmu;
839
}
840
841
return NULL;
842
}
843
844
static u64 __compute_pmceid(struct arm_pmu *pmu, bool pmceid1)
845
{
846
u32 hi[2], lo[2];
847
848
bitmap_to_arr32(lo, pmu->pmceid_bitmap, ARMV8_PMUV3_MAX_COMMON_EVENTS);
849
bitmap_to_arr32(hi, pmu->pmceid_ext_bitmap, ARMV8_PMUV3_MAX_COMMON_EVENTS);
850
851
return ((u64)hi[pmceid1] << 32) | lo[pmceid1];
852
}
853
854
static u64 compute_pmceid0(struct arm_pmu *pmu)
855
{
856
u64 val = __compute_pmceid(pmu, 0);
857
858
/* always support SW_INCR */
859
val |= BIT(ARMV8_PMUV3_PERFCTR_SW_INCR);
860
/* always support CHAIN */
861
val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
862
return val;
863
}
864
865
static u64 compute_pmceid1(struct arm_pmu *pmu)
866
{
867
u64 val = __compute_pmceid(pmu, 1);
868
869
/*
870
* Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
871
* as RAZ
872
*/
873
val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
874
BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
875
BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
876
return val;
877
}
878
879
u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
880
{
881
struct arm_pmu *cpu_pmu = vcpu->kvm->arch.arm_pmu;
882
unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
883
u64 val, mask = 0;
884
int base, i, nr_events;
885
886
if (!pmceid1) {
887
val = compute_pmceid0(cpu_pmu);
888
base = 0;
889
} else {
890
val = compute_pmceid1(cpu_pmu);
891
base = 32;
892
}
893
894
if (!bmap)
895
return val;
896
897
nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
898
899
for (i = 0; i < 32; i += 8) {
900
u64 byte;
901
902
byte = bitmap_get_value8(bmap, base + i);
903
mask |= byte << i;
904
if (nr_events >= (0x4000 + base + 32)) {
905
byte = bitmap_get_value8(bmap, 0x4000 + base + i);
906
mask |= byte << (32 + i);
907
}
908
}
909
910
return val & mask;
911
}
912
913
void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
914
{
915
u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
916
917
__vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, &=, mask);
918
__vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, &=, mask);
919
__vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, &=, mask);
920
921
kvm_pmu_reprogram_counter_mask(vcpu, mask);
922
}
923
924
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
925
{
926
if (!vcpu->arch.pmu.created)
927
return -EINVAL;
928
929
/*
930
* A valid interrupt configuration for the PMU is either to have a
931
* properly configured interrupt number and using an in-kernel
932
* irqchip, or to not have an in-kernel GIC and not set an IRQ.
933
*/
934
if (irqchip_in_kernel(vcpu->kvm)) {
935
int irq = vcpu->arch.pmu.irq_num;
936
/*
937
* If we are using an in-kernel vgic, at this point we know
938
* the vgic will be initialized, so we can check the PMU irq
939
* number against the dimensions of the vgic and make sure
940
* it's valid.
941
*/
942
if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
943
return -EINVAL;
944
} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
945
return -EINVAL;
946
}
947
948
return 0;
949
}
950
951
static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
952
{
953
if (irqchip_in_kernel(vcpu->kvm)) {
954
int ret;
955
956
/*
957
* If using the PMU with an in-kernel virtual GIC
958
* implementation, we require the GIC to be already
959
* initialized when initializing the PMU.
960
*/
961
if (!vgic_initialized(vcpu->kvm))
962
return -ENODEV;
963
964
if (!kvm_arm_pmu_irq_initialized(vcpu))
965
return -ENXIO;
966
967
ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
968
&vcpu->arch.pmu);
969
if (ret)
970
return ret;
971
}
972
973
init_irq_work(&vcpu->arch.pmu.overflow_work,
974
kvm_pmu_perf_overflow_notify_vcpu);
975
976
vcpu->arch.pmu.created = true;
977
return 0;
978
}
979
980
/*
981
* For one VM the interrupt type must be same for each vcpu.
982
* As a PPI, the interrupt number is the same for all vcpus,
983
* while as an SPI it must be a separate number per vcpu.
984
*/
985
static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
986
{
987
unsigned long i;
988
struct kvm_vcpu *vcpu;
989
990
kvm_for_each_vcpu(i, vcpu, kvm) {
991
if (!kvm_arm_pmu_irq_initialized(vcpu))
992
continue;
993
994
if (irq_is_ppi(irq)) {
995
if (vcpu->arch.pmu.irq_num != irq)
996
return false;
997
} else {
998
if (vcpu->arch.pmu.irq_num == irq)
999
return false;
1000
}
1001
}
1002
1003
return true;
1004
}
1005
1006
/**
1007
* kvm_arm_pmu_get_max_counters - Return the max number of PMU counters.
1008
* @kvm: The kvm pointer
1009
*/
1010
u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
1011
{
1012
struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
1013
1014
/*
1015
* PMUv3 requires that all event counters are capable of counting any
1016
* event, though the same may not be true of non-PMUv3 hardware.
1017
*/
1018
if (cpus_have_final_cap(ARM64_WORKAROUND_PMUV3_IMPDEF_TRAPS))
1019
return 1;
1020
1021
/*
1022
* The arm_pmu->cntr_mask considers the fixed counter(s) as well.
1023
* Ignore those and return only the general-purpose counters.
1024
*/
1025
return bitmap_weight(arm_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS);
1026
}
1027
1028
static void kvm_arm_set_nr_counters(struct kvm *kvm, unsigned int nr)
1029
{
1030
kvm->arch.nr_pmu_counters = nr;
1031
1032
/* Reset MDCR_EL2.HPMN behind the vcpus' back... */
1033
if (test_bit(KVM_ARM_VCPU_HAS_EL2, kvm->arch.vcpu_features)) {
1034
struct kvm_vcpu *vcpu;
1035
unsigned long i;
1036
1037
kvm_for_each_vcpu(i, vcpu, kvm) {
1038
u64 val = __vcpu_sys_reg(vcpu, MDCR_EL2);
1039
val &= ~MDCR_EL2_HPMN;
1040
val |= FIELD_PREP(MDCR_EL2_HPMN, kvm->arch.nr_pmu_counters);
1041
__vcpu_assign_sys_reg(vcpu, MDCR_EL2, val);
1042
}
1043
}
1044
}
1045
1046
static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
1047
{
1048
lockdep_assert_held(&kvm->arch.config_lock);
1049
1050
kvm->arch.arm_pmu = arm_pmu;
1051
kvm_arm_set_nr_counters(kvm, kvm_arm_pmu_get_max_counters(kvm));
1052
}
1053
1054
/**
1055
* kvm_arm_set_default_pmu - No PMU set, get the default one.
1056
* @kvm: The kvm pointer
1057
*
1058
* The observant among you will notice that the supported_cpus
1059
* mask does not get updated for the default PMU even though it
1060
* is quite possible the selected instance supports only a
1061
* subset of cores in the system. This is intentional, and
1062
* upholds the preexisting behavior on heterogeneous systems
1063
* where vCPUs can be scheduled on any core but the guest
1064
* counters could stop working.
1065
*/
1066
int kvm_arm_set_default_pmu(struct kvm *kvm)
1067
{
1068
struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
1069
1070
if (!arm_pmu)
1071
return -ENODEV;
1072
1073
kvm_arm_set_pmu(kvm, arm_pmu);
1074
return 0;
1075
}
1076
1077
static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
1078
{
1079
struct kvm *kvm = vcpu->kvm;
1080
struct arm_pmu_entry *entry;
1081
struct arm_pmu *arm_pmu;
1082
int ret = -ENXIO;
1083
1084
lockdep_assert_held(&kvm->arch.config_lock);
1085
mutex_lock(&arm_pmus_lock);
1086
1087
list_for_each_entry(entry, &arm_pmus, entry) {
1088
arm_pmu = entry->arm_pmu;
1089
if (arm_pmu->pmu.type == pmu_id) {
1090
if (kvm_vm_has_ran_once(kvm) ||
1091
(kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
1092
ret = -EBUSY;
1093
break;
1094
}
1095
1096
kvm_arm_set_pmu(kvm, arm_pmu);
1097
cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
1098
ret = 0;
1099
break;
1100
}
1101
}
1102
1103
mutex_unlock(&arm_pmus_lock);
1104
return ret;
1105
}
1106
1107
static int kvm_arm_pmu_v3_set_nr_counters(struct kvm_vcpu *vcpu, unsigned int n)
1108
{
1109
struct kvm *kvm = vcpu->kvm;
1110
1111
if (!kvm->arch.arm_pmu)
1112
return -EINVAL;
1113
1114
if (n > kvm_arm_pmu_get_max_counters(kvm))
1115
return -EINVAL;
1116
1117
kvm_arm_set_nr_counters(kvm, n);
1118
return 0;
1119
}
1120
1121
int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1122
{
1123
struct kvm *kvm = vcpu->kvm;
1124
1125
lockdep_assert_held(&kvm->arch.config_lock);
1126
1127
if (!kvm_vcpu_has_pmu(vcpu))
1128
return -ENODEV;
1129
1130
if (vcpu->arch.pmu.created)
1131
return -EBUSY;
1132
1133
switch (attr->attr) {
1134
case KVM_ARM_VCPU_PMU_V3_IRQ: {
1135
int __user *uaddr = (int __user *)(long)attr->addr;
1136
int irq;
1137
1138
if (!irqchip_in_kernel(kvm))
1139
return -EINVAL;
1140
1141
if (get_user(irq, uaddr))
1142
return -EFAULT;
1143
1144
/* The PMU overflow interrupt can be a PPI or a valid SPI. */
1145
if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
1146
return -EINVAL;
1147
1148
if (!pmu_irq_is_valid(kvm, irq))
1149
return -EINVAL;
1150
1151
if (kvm_arm_pmu_irq_initialized(vcpu))
1152
return -EBUSY;
1153
1154
kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
1155
vcpu->arch.pmu.irq_num = irq;
1156
return 0;
1157
}
1158
case KVM_ARM_VCPU_PMU_V3_FILTER: {
1159
u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
1160
struct kvm_pmu_event_filter __user *uaddr;
1161
struct kvm_pmu_event_filter filter;
1162
int nr_events;
1163
1164
/*
1165
* Allow userspace to specify an event filter for the entire
1166
* event range supported by PMUVer of the hardware, rather
1167
* than the guest's PMUVer for KVM backward compatibility.
1168
*/
1169
nr_events = __kvm_pmu_event_mask(pmuver) + 1;
1170
1171
uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
1172
1173
if (copy_from_user(&filter, uaddr, sizeof(filter)))
1174
return -EFAULT;
1175
1176
if (((u32)filter.base_event + filter.nevents) > nr_events ||
1177
(filter.action != KVM_PMU_EVENT_ALLOW &&
1178
filter.action != KVM_PMU_EVENT_DENY))
1179
return -EINVAL;
1180
1181
if (kvm_vm_has_ran_once(kvm))
1182
return -EBUSY;
1183
1184
if (!kvm->arch.pmu_filter) {
1185
kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
1186
if (!kvm->arch.pmu_filter)
1187
return -ENOMEM;
1188
1189
/*
1190
* The default depends on the first applied filter.
1191
* If it allows events, the default is to deny.
1192
* Conversely, if the first filter denies a set of
1193
* events, the default is to allow.
1194
*/
1195
if (filter.action == KVM_PMU_EVENT_ALLOW)
1196
bitmap_zero(kvm->arch.pmu_filter, nr_events);
1197
else
1198
bitmap_fill(kvm->arch.pmu_filter, nr_events);
1199
}
1200
1201
if (filter.action == KVM_PMU_EVENT_ALLOW)
1202
bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1203
else
1204
bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1205
1206
return 0;
1207
}
1208
case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1209
int __user *uaddr = (int __user *)(long)attr->addr;
1210
int pmu_id;
1211
1212
if (get_user(pmu_id, uaddr))
1213
return -EFAULT;
1214
1215
return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1216
}
1217
case KVM_ARM_VCPU_PMU_V3_SET_NR_COUNTERS: {
1218
unsigned int __user *uaddr = (unsigned int __user *)(long)attr->addr;
1219
unsigned int n;
1220
1221
if (get_user(n, uaddr))
1222
return -EFAULT;
1223
1224
return kvm_arm_pmu_v3_set_nr_counters(vcpu, n);
1225
}
1226
case KVM_ARM_VCPU_PMU_V3_INIT:
1227
return kvm_arm_pmu_v3_init(vcpu);
1228
}
1229
1230
return -ENXIO;
1231
}
1232
1233
int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1234
{
1235
switch (attr->attr) {
1236
case KVM_ARM_VCPU_PMU_V3_IRQ: {
1237
int __user *uaddr = (int __user *)(long)attr->addr;
1238
int irq;
1239
1240
if (!irqchip_in_kernel(vcpu->kvm))
1241
return -EINVAL;
1242
1243
if (!kvm_vcpu_has_pmu(vcpu))
1244
return -ENODEV;
1245
1246
if (!kvm_arm_pmu_irq_initialized(vcpu))
1247
return -ENXIO;
1248
1249
irq = vcpu->arch.pmu.irq_num;
1250
return put_user(irq, uaddr);
1251
}
1252
}
1253
1254
return -ENXIO;
1255
}
1256
1257
int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1258
{
1259
switch (attr->attr) {
1260
case KVM_ARM_VCPU_PMU_V3_IRQ:
1261
case KVM_ARM_VCPU_PMU_V3_INIT:
1262
case KVM_ARM_VCPU_PMU_V3_FILTER:
1263
case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1264
case KVM_ARM_VCPU_PMU_V3_SET_NR_COUNTERS:
1265
if (kvm_vcpu_has_pmu(vcpu))
1266
return 0;
1267
}
1268
1269
return -ENXIO;
1270
}
1271
1272
u8 kvm_arm_pmu_get_pmuver_limit(void)
1273
{
1274
unsigned int pmuver;
1275
1276
pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer,
1277
read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1));
1278
1279
/*
1280
* Spoof a barebones PMUv3 implementation if the system supports IMPDEF
1281
* traps of the PMUv3 sysregs
1282
*/
1283
if (cpus_have_final_cap(ARM64_WORKAROUND_PMUV3_IMPDEF_TRAPS))
1284
return ID_AA64DFR0_EL1_PMUVer_IMP;
1285
1286
/*
1287
* Otherwise, treat IMPLEMENTATION DEFINED functionality as
1288
* unimplemented
1289
*/
1290
if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1291
return 0;
1292
1293
return min(pmuver, ID_AA64DFR0_EL1_PMUVer_V3P5);
1294
}
1295
1296
/**
1297
* kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU
1298
* @vcpu: The vcpu pointer
1299
*/
1300
u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
1301
{
1302
u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
1303
u64 n = vcpu->kvm->arch.nr_pmu_counters;
1304
1305
if (vcpu_has_nv(vcpu) && !vcpu_is_el2(vcpu))
1306
n = FIELD_GET(MDCR_EL2_HPMN, __vcpu_sys_reg(vcpu, MDCR_EL2));
1307
1308
return u64_replace_bits(pmcr, n, ARMV8_PMU_PMCR_N);
1309
}
1310
1311
void kvm_pmu_nested_transition(struct kvm_vcpu *vcpu)
1312
{
1313
bool reprogrammed = false;
1314
unsigned long mask;
1315
int i;
1316
1317
mask = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1318
for_each_set_bit(i, &mask, 32) {
1319
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
1320
1321
/*
1322
* We only need to reconfigure events where the filter is
1323
* different at EL1 vs. EL2, as we're multiplexing the true EL1
1324
* event filter bit for nested.
1325
*/
1326
if (kvm_pmc_counts_at_el1(pmc) == kvm_pmc_counts_at_el2(pmc))
1327
continue;
1328
1329
kvm_pmu_create_perf_event(pmc);
1330
reprogrammed = true;
1331
}
1332
1333
if (reprogrammed)
1334
kvm_vcpu_pmu_restore_guest(vcpu);
1335
}
1336
1337