#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/list.h>
#include <linux/perf_event.h>
#include <linux/perf/arm_pmu.h>
#include <linux/uaccess.h>
#include <asm/kvm_emulate.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_vgic.h>
#define PERF_ATTR_CFG1_COUNTER_64BIT BIT(0)
static LIST_HEAD(arm_pmus);
static DEFINE_MUTEX(arm_pmus_lock);
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc);
bool kvm_supports_guest_pmuv3(void)
{
guard(mutex)(&arm_pmus_lock);
return !list_empty(&arm_pmus);
}
static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
{
return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
}
static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
{
return &vcpu->arch.pmu.pmc[cnt_idx];
}
static u32 __kvm_pmu_event_mask(unsigned int pmuver)
{
switch (pmuver) {
case ID_AA64DFR0_EL1_PMUVer_IMP:
return GENMASK(9, 0);
case ID_AA64DFR0_EL1_PMUVer_V3P1:
case ID_AA64DFR0_EL1_PMUVer_V3P4:
case ID_AA64DFR0_EL1_PMUVer_V3P5:
case ID_AA64DFR0_EL1_PMUVer_V3P7:
return GENMASK(15, 0);
default:
WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
return 0;
}
}
static u32 kvm_pmu_event_mask(struct kvm *kvm)
{
u64 dfr0 = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
return __kvm_pmu_event_mask(pmuver);
}
u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
{
u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 |
kvm_pmu_event_mask(kvm);
if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL2, IMP))
mask |= ARMV8_PMU_INCLUDE_EL2;
if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
mask |= ARMV8_PMU_EXCLUDE_NS_EL0 |
ARMV8_PMU_EXCLUDE_NS_EL1 |
ARMV8_PMU_EXCLUDE_EL3;
return mask;
}
static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5));
}
static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
u64 val = kvm_vcpu_read_pmcr(vcpu);
if (kvm_pmu_counter_is_hyp(vcpu, pmc->idx))
return __vcpu_sys_reg(vcpu, MDCR_EL2) & MDCR_EL2_HLP;
return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
(pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
}
static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
{
return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
!kvm_pmc_has_64bit_overflow(pmc));
}
static u32 counter_index_to_reg(u64 idx)
{
return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
}
static u32 counter_index_to_evtreg(u64 idx)
{
return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
}
static u64 kvm_pmc_read_evtreg(const struct kvm_pmc *pmc)
{
return __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), counter_index_to_evtreg(pmc->idx));
}
static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
u64 counter, reg, enabled, running;
reg = counter_index_to_reg(pmc->idx);
counter = __vcpu_sys_reg(vcpu, reg);
if (pmc->perf_event)
counter += perf_event_read_value(pmc->perf_event, &enabled,
&running);
if (!kvm_pmc_is_64bit(pmc))
counter = lower_32_bits(counter);
return counter;
}
u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
{
return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
}
static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
u64 reg;
kvm_pmu_release_perf_event(pmc);
reg = counter_index_to_reg(pmc->idx);
if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
!force) {
val = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
val |= lower_32_bits(val);
}
__vcpu_assign_sys_reg(vcpu, reg, val);
kvm_pmu_create_perf_event(pmc);
}
void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
{
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
}
void kvm_pmu_set_counter_value_user(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
{
kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
__vcpu_assign_sys_reg(vcpu, counter_index_to_reg(select_idx), val);
kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
}
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
{
if (pmc->perf_event) {
perf_event_disable(pmc->perf_event);
perf_event_release_kernel(pmc->perf_event);
pmc->perf_event = NULL;
}
}
static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
u64 reg, val;
if (!pmc->perf_event)
return;
val = kvm_pmu_get_pmc_value(pmc);
reg = counter_index_to_reg(pmc->idx);
__vcpu_assign_sys_reg(vcpu, reg, val);
kvm_pmu_release_perf_event(pmc);
}
void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_pmu *pmu = &vcpu->arch.pmu;
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
pmu->pmc[i].idx = i;
}
void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
{
int i;
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
irq_work_sync(&vcpu->arch.pmu.overflow_work);
}
static u64 kvm_pmu_hyp_counter_mask(struct kvm_vcpu *vcpu)
{
unsigned int hpmn, n;
if (!vcpu_has_nv(vcpu))
return 0;
hpmn = SYS_FIELD_GET(MDCR_EL2, HPMN, __vcpu_sys_reg(vcpu, MDCR_EL2));
n = vcpu->kvm->arch.nr_pmu_counters;
if (hpmn >= n)
return 0;
return GENMASK(n - 1, hpmn);
}
bool kvm_pmu_counter_is_hyp(struct kvm_vcpu *vcpu, unsigned int idx)
{
return kvm_pmu_hyp_counter_mask(vcpu) & BIT(idx);
}
u64 kvm_pmu_accessible_counter_mask(struct kvm_vcpu *vcpu)
{
u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
if (!vcpu_has_nv(vcpu) || vcpu_is_el2(vcpu))
return mask;
return mask & ~kvm_pmu_hyp_counter_mask(vcpu);
}
u64 kvm_pmu_implemented_counter_mask(struct kvm_vcpu *vcpu)
{
u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu));
if (val == 0)
return BIT(ARMV8_PMU_CYCLE_IDX);
else
return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
}
static void kvm_pmc_enable_perf_event(struct kvm_pmc *pmc)
{
if (!pmc->perf_event) {
kvm_pmu_create_perf_event(pmc);
return;
}
perf_event_enable(pmc->perf_event);
if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
kvm_debug("fail to enable perf event\n");
}
static void kvm_pmc_disable_perf_event(struct kvm_pmc *pmc)
{
if (pmc->perf_event)
perf_event_disable(pmc->perf_event);
}
void kvm_pmu_reprogram_counter_mask(struct kvm_vcpu *vcpu, u64 val)
{
int i;
if (!val)
return;
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
if (!(val & BIT(i)))
continue;
if (kvm_pmu_counter_is_enabled(pmc))
kvm_pmc_enable_perf_event(pmc);
else
kvm_pmc_disable_perf_event(pmc);
}
kvm_vcpu_pmu_restore_guest(vcpu);
}
static bool kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
{
u64 reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
reg &= kvm_pmu_hyp_counter_mask(vcpu);
if (!(vcpu_read_sys_reg(vcpu, MDCR_EL2) & MDCR_EL2_HPME))
reg &= ~kvm_pmu_hyp_counter_mask(vcpu);
return reg;
}
static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = &vcpu->arch.pmu;
bool overflow;
overflow = kvm_pmu_overflow_status(vcpu);
if (pmu->irq_level == overflow)
return;
pmu->irq_level = overflow;
if (likely(irqchip_in_kernel(vcpu->kvm))) {
int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
pmu->irq_num, overflow, pmu);
WARN_ON(ret);
}
}
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = &vcpu->arch.pmu;
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
if (likely(irqchip_in_kernel(vcpu->kvm)))
return false;
return pmu->irq_level != run_level;
}
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
{
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
if (vcpu->arch.pmu.irq_level)
regs->device_irq_level |= KVM_ARM_DEV_PMU;
}
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
{
kvm_pmu_update_state(vcpu);
}
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
{
kvm_pmu_update_state(vcpu);
}
static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
{
struct kvm_vcpu *vcpu;
vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
kvm_vcpu_kick(vcpu);
}
static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
unsigned long mask, u32 event)
{
int i;
if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
return;
mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
u64 type, reg;
type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
type &= kvm_pmu_event_mask(vcpu->kvm);
if (type != event)
continue;
reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
if (!kvm_pmc_is_64bit(pmc))
reg = lower_32_bits(reg);
__vcpu_assign_sys_reg(vcpu, counter_index_to_reg(i), reg);
if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
continue;
__vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, BIT(i));
if (kvm_pmu_counter_can_chain(pmc))
kvm_pmu_counter_increment(vcpu, BIT(i + 1),
ARMV8_PMUV3_PERFCTR_CHAIN);
}
}
static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
{
u64 val;
if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
val = (-counter) & GENMASK(63, 0);
else
val = (-counter) & GENMASK(31, 0);
return val;
}
static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
struct perf_sample_data *data,
struct pt_regs *regs)
{
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
int idx = pmc->idx;
u64 period;
cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
period = compute_period(pmc, local64_read(&perf_event->count));
local64_set(&perf_event->hw.period_left, 0);
perf_event->attr.sample_period = period;
perf_event->hw.sample_period = period;
__vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, BIT(idx));
if (kvm_pmu_counter_can_chain(pmc))
kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
ARMV8_PMUV3_PERFCTR_CHAIN);
if (kvm_pmu_overflow_status(vcpu)) {
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
if (!in_nmi())
kvm_vcpu_kick(vcpu);
else
irq_work_queue(&vcpu->arch.pmu.overflow_work);
}
cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
}
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
{
kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
}
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
{
int i;
if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
val &= ~ARMV8_PMU_PMCR_LP;
if ((__vcpu_sys_reg(vcpu, PMCR_EL0) ^ val) & ARMV8_PMU_PMCR_E)
kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
__vcpu_assign_sys_reg(vcpu, PMCR_EL0, (val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P)));
if (val & ARMV8_PMU_PMCR_C)
kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
if (val & ARMV8_PMU_PMCR_P) {
unsigned long mask = kvm_pmu_implemented_counter_mask(vcpu) &
~BIT(ARMV8_PMU_CYCLE_IDX);
if (!vcpu_is_el2(vcpu))
mask &= ~kvm_pmu_hyp_counter_mask(vcpu);
for_each_set_bit(i, &mask, 32)
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
}
}
static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
unsigned int mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
if (!(__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx)))
return false;
if (kvm_pmu_counter_is_hyp(vcpu, pmc->idx))
return mdcr & MDCR_EL2_HPME;
return kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E;
}
static bool kvm_pmc_counts_at_el0(struct kvm_pmc *pmc)
{
u64 evtreg = kvm_pmc_read_evtreg(pmc);
bool nsu = evtreg & ARMV8_PMU_EXCLUDE_NS_EL0;
bool u = evtreg & ARMV8_PMU_EXCLUDE_EL0;
return u == nsu;
}
static bool kvm_pmc_counts_at_el1(struct kvm_pmc *pmc)
{
u64 evtreg = kvm_pmc_read_evtreg(pmc);
bool nsk = evtreg & ARMV8_PMU_EXCLUDE_NS_EL1;
bool p = evtreg & ARMV8_PMU_EXCLUDE_EL1;
return p == nsk;
}
static bool kvm_pmc_counts_at_el2(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
u64 mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
if (!kvm_pmu_counter_is_hyp(vcpu, pmc->idx) && (mdcr & MDCR_EL2_HPMD))
return false;
return kvm_pmc_read_evtreg(pmc) & ARMV8_PMU_INCLUDE_EL2;
}
static int kvm_map_pmu_event(struct kvm *kvm, unsigned int eventsel)
{
struct arm_pmu *pmu = kvm->arch.arm_pmu;
if (unlikely(pmu->map_pmuv3_event))
return pmu->map_pmuv3_event(eventsel);
return eventsel;
}
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
{
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
struct perf_event *event;
struct perf_event_attr attr;
int eventsel;
u64 evtreg;
evtreg = kvm_pmc_read_evtreg(pmc);
kvm_pmu_stop_counter(pmc);
if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
else
eventsel = evtreg & kvm_pmu_event_mask(vcpu->kvm);
if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
return;
if (vcpu->kvm->arch.pmu_filter &&
!test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
return;
eventsel = kvm_map_pmu_event(vcpu->kvm, eventsel);
if (eventsel < 0)
return;
memset(&attr, 0, sizeof(struct perf_event_attr));
attr.type = arm_pmu->pmu.type;
attr.size = sizeof(attr);
attr.pinned = 1;
attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
attr.exclude_user = !kvm_pmc_counts_at_el0(pmc);
attr.exclude_hv = 1;
attr.exclude_host = 1;
attr.config = eventsel;
if (unlikely(is_hyp_ctxt(vcpu)))
attr.exclude_kernel = !kvm_pmc_counts_at_el2(pmc);
else
attr.exclude_kernel = !kvm_pmc_counts_at_el1(pmc);
if (kvm_pmc_is_64bit(pmc))
attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
event = perf_event_create_kernel_counter(&attr, -1, current,
kvm_pmu_perf_overflow, pmc);
if (IS_ERR(event)) {
pr_err_once("kvm: pmu event creation failed %ld\n",
PTR_ERR(event));
return;
}
pmc->perf_event = event;
}
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
u64 select_idx)
{
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
u64 reg;
reg = counter_index_to_evtreg(pmc->idx);
__vcpu_assign_sys_reg(vcpu, reg, (data & kvm_pmu_evtyper_mask(vcpu->kvm)));
kvm_pmu_create_perf_event(pmc);
}
void kvm_host_pmu_init(struct arm_pmu *pmu)
{
struct arm_pmu_entry *entry;
if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
return;
guard(mutex)(&arm_pmus_lock);
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return;
entry->arm_pmu = pmu;
list_add_tail(&entry->entry, &arm_pmus);
}
static struct arm_pmu *kvm_pmu_probe_armpmu(void)
{
struct arm_pmu_entry *entry;
struct arm_pmu *pmu;
int cpu;
guard(mutex)(&arm_pmus_lock);
cpu = raw_smp_processor_id();
list_for_each_entry(entry, &arm_pmus, entry) {
pmu = entry->arm_pmu;
if (cpumask_test_cpu(cpu, &pmu->supported_cpus))
return pmu;
}
return NULL;
}
static u64 __compute_pmceid(struct arm_pmu *pmu, bool pmceid1)
{
u32 hi[2], lo[2];
bitmap_to_arr32(lo, pmu->pmceid_bitmap, ARMV8_PMUV3_MAX_COMMON_EVENTS);
bitmap_to_arr32(hi, pmu->pmceid_ext_bitmap, ARMV8_PMUV3_MAX_COMMON_EVENTS);
return ((u64)hi[pmceid1] << 32) | lo[pmceid1];
}
static u64 compute_pmceid0(struct arm_pmu *pmu)
{
u64 val = __compute_pmceid(pmu, 0);
val |= BIT(ARMV8_PMUV3_PERFCTR_SW_INCR);
val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
return val;
}
static u64 compute_pmceid1(struct arm_pmu *pmu)
{
u64 val = __compute_pmceid(pmu, 1);
val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
return val;
}
u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
{
struct arm_pmu *cpu_pmu = vcpu->kvm->arch.arm_pmu;
unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
u64 val, mask = 0;
int base, i, nr_events;
if (!pmceid1) {
val = compute_pmceid0(cpu_pmu);
base = 0;
} else {
val = compute_pmceid1(cpu_pmu);
base = 32;
}
if (!bmap)
return val;
nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
for (i = 0; i < 32; i += 8) {
u64 byte;
byte = bitmap_get_value8(bmap, base + i);
mask |= byte << i;
if (nr_events >= (0x4000 + base + 32)) {
byte = bitmap_get_value8(bmap, 0x4000 + base + i);
mask |= byte << (32 + i);
}
}
return val & mask;
}
void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
{
u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
__vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, &=, mask);
__vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, &=, mask);
__vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, &=, mask);
kvm_pmu_reprogram_counter_mask(vcpu, mask);
}
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
{
if (!vcpu->arch.pmu.created)
return -EINVAL;
if (irqchip_in_kernel(vcpu->kvm)) {
int irq = vcpu->arch.pmu.irq_num;
if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
return -EINVAL;
} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
return -EINVAL;
}
return 0;
}
static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
{
if (irqchip_in_kernel(vcpu->kvm)) {
int ret;
if (!vgic_initialized(vcpu->kvm))
return -ENODEV;
if (!kvm_arm_pmu_irq_initialized(vcpu))
return -ENXIO;
ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
&vcpu->arch.pmu);
if (ret)
return ret;
}
init_irq_work(&vcpu->arch.pmu.overflow_work,
kvm_pmu_perf_overflow_notify_vcpu);
vcpu->arch.pmu.created = true;
return 0;
}
static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
{
unsigned long i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!kvm_arm_pmu_irq_initialized(vcpu))
continue;
if (irq_is_ppi(irq)) {
if (vcpu->arch.pmu.irq_num != irq)
return false;
} else {
if (vcpu->arch.pmu.irq_num == irq)
return false;
}
}
return true;
}
u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
{
struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
if (cpus_have_final_cap(ARM64_WORKAROUND_PMUV3_IMPDEF_TRAPS))
return 1;
return bitmap_weight(arm_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS);
}
static void kvm_arm_set_nr_counters(struct kvm *kvm, unsigned int nr)
{
kvm->arch.nr_pmu_counters = nr;
if (test_bit(KVM_ARM_VCPU_HAS_EL2, kvm->arch.vcpu_features)) {
struct kvm_vcpu *vcpu;
unsigned long i;
kvm_for_each_vcpu(i, vcpu, kvm) {
u64 val = __vcpu_sys_reg(vcpu, MDCR_EL2);
val &= ~MDCR_EL2_HPMN;
val |= FIELD_PREP(MDCR_EL2_HPMN, kvm->arch.nr_pmu_counters);
__vcpu_assign_sys_reg(vcpu, MDCR_EL2, val);
}
}
}
static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
{
lockdep_assert_held(&kvm->arch.config_lock);
kvm->arch.arm_pmu = arm_pmu;
kvm_arm_set_nr_counters(kvm, kvm_arm_pmu_get_max_counters(kvm));
}
int kvm_arm_set_default_pmu(struct kvm *kvm)
{
struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
if (!arm_pmu)
return -ENODEV;
kvm_arm_set_pmu(kvm, arm_pmu);
return 0;
}
static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
{
struct kvm *kvm = vcpu->kvm;
struct arm_pmu_entry *entry;
struct arm_pmu *arm_pmu;
int ret = -ENXIO;
lockdep_assert_held(&kvm->arch.config_lock);
mutex_lock(&arm_pmus_lock);
list_for_each_entry(entry, &arm_pmus, entry) {
arm_pmu = entry->arm_pmu;
if (arm_pmu->pmu.type == pmu_id) {
if (kvm_vm_has_ran_once(kvm) ||
(kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
ret = -EBUSY;
break;
}
kvm_arm_set_pmu(kvm, arm_pmu);
cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
ret = 0;
break;
}
}
mutex_unlock(&arm_pmus_lock);
return ret;
}
static int kvm_arm_pmu_v3_set_nr_counters(struct kvm_vcpu *vcpu, unsigned int n)
{
struct kvm *kvm = vcpu->kvm;
if (!kvm->arch.arm_pmu)
return -EINVAL;
if (n > kvm_arm_pmu_get_max_counters(kvm))
return -EINVAL;
kvm_arm_set_nr_counters(kvm, n);
return 0;
}
int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
struct kvm *kvm = vcpu->kvm;
lockdep_assert_held(&kvm->arch.config_lock);
if (!kvm_vcpu_has_pmu(vcpu))
return -ENODEV;
if (vcpu->arch.pmu.created)
return -EBUSY;
switch (attr->attr) {
case KVM_ARM_VCPU_PMU_V3_IRQ: {
int __user *uaddr = (int __user *)(long)attr->addr;
int irq;
if (!irqchip_in_kernel(kvm))
return -EINVAL;
if (get_user(irq, uaddr))
return -EFAULT;
if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
return -EINVAL;
if (!pmu_irq_is_valid(kvm, irq))
return -EINVAL;
if (kvm_arm_pmu_irq_initialized(vcpu))
return -EBUSY;
kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
vcpu->arch.pmu.irq_num = irq;
return 0;
}
case KVM_ARM_VCPU_PMU_V3_FILTER: {
u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
struct kvm_pmu_event_filter __user *uaddr;
struct kvm_pmu_event_filter filter;
int nr_events;
nr_events = __kvm_pmu_event_mask(pmuver) + 1;
uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
if (copy_from_user(&filter, uaddr, sizeof(filter)))
return -EFAULT;
if (((u32)filter.base_event + filter.nevents) > nr_events ||
(filter.action != KVM_PMU_EVENT_ALLOW &&
filter.action != KVM_PMU_EVENT_DENY))
return -EINVAL;
if (kvm_vm_has_ran_once(kvm))
return -EBUSY;
if (!kvm->arch.pmu_filter) {
kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
if (!kvm->arch.pmu_filter)
return -ENOMEM;
if (filter.action == KVM_PMU_EVENT_ALLOW)
bitmap_zero(kvm->arch.pmu_filter, nr_events);
else
bitmap_fill(kvm->arch.pmu_filter, nr_events);
}
if (filter.action == KVM_PMU_EVENT_ALLOW)
bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
else
bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
return 0;
}
case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
int __user *uaddr = (int __user *)(long)attr->addr;
int pmu_id;
if (get_user(pmu_id, uaddr))
return -EFAULT;
return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
}
case KVM_ARM_VCPU_PMU_V3_SET_NR_COUNTERS: {
unsigned int __user *uaddr = (unsigned int __user *)(long)attr->addr;
unsigned int n;
if (get_user(n, uaddr))
return -EFAULT;
return kvm_arm_pmu_v3_set_nr_counters(vcpu, n);
}
case KVM_ARM_VCPU_PMU_V3_INIT:
return kvm_arm_pmu_v3_init(vcpu);
}
return -ENXIO;
}
int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
switch (attr->attr) {
case KVM_ARM_VCPU_PMU_V3_IRQ: {
int __user *uaddr = (int __user *)(long)attr->addr;
int irq;
if (!irqchip_in_kernel(vcpu->kvm))
return -EINVAL;
if (!kvm_vcpu_has_pmu(vcpu))
return -ENODEV;
if (!kvm_arm_pmu_irq_initialized(vcpu))
return -ENXIO;
irq = vcpu->arch.pmu.irq_num;
return put_user(irq, uaddr);
}
}
return -ENXIO;
}
int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
switch (attr->attr) {
case KVM_ARM_VCPU_PMU_V3_IRQ:
case KVM_ARM_VCPU_PMU_V3_INIT:
case KVM_ARM_VCPU_PMU_V3_FILTER:
case KVM_ARM_VCPU_PMU_V3_SET_PMU:
case KVM_ARM_VCPU_PMU_V3_SET_NR_COUNTERS:
if (kvm_vcpu_has_pmu(vcpu))
return 0;
}
return -ENXIO;
}
u8 kvm_arm_pmu_get_pmuver_limit(void)
{
unsigned int pmuver;
pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer,
read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1));
if (cpus_have_final_cap(ARM64_WORKAROUND_PMUV3_IMPDEF_TRAPS))
return ID_AA64DFR0_EL1_PMUVer_IMP;
if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
return 0;
return min(pmuver, ID_AA64DFR0_EL1_PMUVer_V3P5);
}
u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
{
u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
u64 n = vcpu->kvm->arch.nr_pmu_counters;
if (vcpu_has_nv(vcpu) && !vcpu_is_el2(vcpu))
n = FIELD_GET(MDCR_EL2_HPMN, __vcpu_sys_reg(vcpu, MDCR_EL2));
return u64_replace_bits(pmcr, n, ARMV8_PMU_PMCR_N);
}
void kvm_pmu_nested_transition(struct kvm_vcpu *vcpu)
{
bool reprogrammed = false;
unsigned long mask;
int i;
mask = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
for_each_set_bit(i, &mask, 32) {
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
if (kvm_pmc_counts_at_el1(pmc) == kvm_pmc_counts_at_el2(pmc))
continue;
kvm_pmu_create_perf_event(pmc);
reprogrammed = true;
}
if (reprogrammed)
kvm_vcpu_pmu_restore_guest(vcpu);
}