Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/vgic/vgic-its.c
26532 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* GICv3 ITS emulation
4
*
5
* Copyright (C) 2015,2016 ARM Ltd.
6
* Author: Andre Przywara <[email protected]>
7
*/
8
9
#include <linux/cpu.h>
10
#include <linux/kvm.h>
11
#include <linux/kvm_host.h>
12
#include <linux/interrupt.h>
13
#include <linux/list.h>
14
#include <linux/uaccess.h>
15
#include <linux/list_sort.h>
16
17
#include <linux/irqchip/arm-gic-v3.h>
18
19
#include <asm/kvm_emulate.h>
20
#include <asm/kvm_arm.h>
21
#include <asm/kvm_mmu.h>
22
23
#include "vgic.h"
24
#include "vgic-mmio.h"
25
26
static struct kvm_device_ops kvm_arm_vgic_its_ops;
27
28
static int vgic_its_save_tables_v0(struct vgic_its *its);
29
static int vgic_its_restore_tables_v0(struct vgic_its *its);
30
static int vgic_its_commit_v0(struct vgic_its *its);
31
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
32
struct kvm_vcpu *filter_vcpu, bool needs_inv);
33
34
#define vgic_its_read_entry_lock(i, g, valp, t) \
35
({ \
36
int __sz = vgic_its_get_abi(i)->t##_esz; \
37
struct kvm *__k = (i)->dev->kvm; \
38
int __ret; \
39
\
40
BUILD_BUG_ON(NR_ITS_ABIS == 1 && \
41
sizeof(*(valp)) != ABI_0_ESZ); \
42
if (NR_ITS_ABIS > 1 && \
43
KVM_BUG_ON(__sz != sizeof(*(valp)), __k)) \
44
__ret = -EINVAL; \
45
else \
46
__ret = kvm_read_guest_lock(__k, (g), \
47
valp, __sz); \
48
__ret; \
49
})
50
51
#define vgic_its_write_entry_lock(i, g, val, t) \
52
({ \
53
int __sz = vgic_its_get_abi(i)->t##_esz; \
54
struct kvm *__k = (i)->dev->kvm; \
55
typeof(val) __v = (val); \
56
int __ret; \
57
\
58
BUILD_BUG_ON(NR_ITS_ABIS == 1 && \
59
sizeof(__v) != ABI_0_ESZ); \
60
if (NR_ITS_ABIS > 1 && \
61
KVM_BUG_ON(__sz != sizeof(__v), __k)) \
62
__ret = -EINVAL; \
63
else \
64
__ret = vgic_write_guest_lock(__k, (g), \
65
&__v, __sz); \
66
__ret; \
67
})
68
69
/*
70
* Creates a new (reference to a) struct vgic_irq for a given LPI.
71
* If this LPI is already mapped on another ITS, we increase its refcount
72
* and return a pointer to the existing structure.
73
* If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
74
* This function returns a pointer to the _unlocked_ structure.
75
*/
76
static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
77
struct kvm_vcpu *vcpu)
78
{
79
struct vgic_dist *dist = &kvm->arch.vgic;
80
struct vgic_irq *irq = vgic_get_irq(kvm, intid), *oldirq;
81
unsigned long flags;
82
int ret;
83
84
/* In this case there is no put, since we keep the reference. */
85
if (irq)
86
return irq;
87
88
irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
89
if (!irq)
90
return ERR_PTR(-ENOMEM);
91
92
ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT);
93
if (ret) {
94
kfree(irq);
95
return ERR_PTR(ret);
96
}
97
98
INIT_LIST_HEAD(&irq->ap_list);
99
raw_spin_lock_init(&irq->irq_lock);
100
101
irq->config = VGIC_CONFIG_EDGE;
102
kref_init(&irq->refcount);
103
irq->intid = intid;
104
irq->target_vcpu = vcpu;
105
irq->group = 1;
106
107
xa_lock_irqsave(&dist->lpi_xa, flags);
108
109
/*
110
* There could be a race with another vgic_add_lpi(), so we need to
111
* check that we don't add a second list entry with the same LPI.
112
*/
113
oldirq = xa_load(&dist->lpi_xa, intid);
114
if (vgic_try_get_irq_kref(oldirq)) {
115
/* Someone was faster with adding this LPI, lets use that. */
116
kfree(irq);
117
irq = oldirq;
118
119
goto out_unlock;
120
}
121
122
ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0));
123
if (ret) {
124
xa_release(&dist->lpi_xa, intid);
125
kfree(irq);
126
}
127
128
out_unlock:
129
xa_unlock_irqrestore(&dist->lpi_xa, flags);
130
131
if (ret)
132
return ERR_PTR(ret);
133
134
/*
135
* We "cache" the configuration table entries in our struct vgic_irq's.
136
* However we only have those structs for mapped IRQs, so we read in
137
* the respective config data from memory here upon mapping the LPI.
138
*
139
* Should any of these fail, behave as if we couldn't create the LPI
140
* by dropping the refcount and returning the error.
141
*/
142
ret = update_lpi_config(kvm, irq, NULL, false);
143
if (ret) {
144
vgic_put_irq(kvm, irq);
145
return ERR_PTR(ret);
146
}
147
148
ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
149
if (ret) {
150
vgic_put_irq(kvm, irq);
151
return ERR_PTR(ret);
152
}
153
154
return irq;
155
}
156
157
/**
158
* struct vgic_its_abi - ITS abi ops and settings
159
* @cte_esz: collection table entry size
160
* @dte_esz: device table entry size
161
* @ite_esz: interrupt translation table entry size
162
* @save_tables: save the ITS tables into guest RAM
163
* @restore_tables: restore the ITS internal structs from tables
164
* stored in guest RAM
165
* @commit: initialize the registers which expose the ABI settings,
166
* especially the entry sizes
167
*/
168
struct vgic_its_abi {
169
int cte_esz;
170
int dte_esz;
171
int ite_esz;
172
int (*save_tables)(struct vgic_its *its);
173
int (*restore_tables)(struct vgic_its *its);
174
int (*commit)(struct vgic_its *its);
175
};
176
177
#define ABI_0_ESZ 8
178
#define ESZ_MAX ABI_0_ESZ
179
180
static const struct vgic_its_abi its_table_abi_versions[] = {
181
[0] = {
182
.cte_esz = ABI_0_ESZ,
183
.dte_esz = ABI_0_ESZ,
184
.ite_esz = ABI_0_ESZ,
185
.save_tables = vgic_its_save_tables_v0,
186
.restore_tables = vgic_its_restore_tables_v0,
187
.commit = vgic_its_commit_v0,
188
},
189
};
190
191
#define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
192
193
inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
194
{
195
return &its_table_abi_versions[its->abi_rev];
196
}
197
198
static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
199
{
200
const struct vgic_its_abi *abi;
201
202
its->abi_rev = rev;
203
abi = vgic_its_get_abi(its);
204
return abi->commit(its);
205
}
206
207
/*
208
* Find and returns a device in the device table for an ITS.
209
* Must be called with the its_lock mutex held.
210
*/
211
static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
212
{
213
struct its_device *device;
214
215
list_for_each_entry(device, &its->device_list, dev_list)
216
if (device_id == device->device_id)
217
return device;
218
219
return NULL;
220
}
221
222
/*
223
* Find and returns an interrupt translation table entry (ITTE) for a given
224
* Device ID/Event ID pair on an ITS.
225
* Must be called with the its_lock mutex held.
226
*/
227
static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
228
u32 event_id)
229
{
230
struct its_device *device;
231
struct its_ite *ite;
232
233
device = find_its_device(its, device_id);
234
if (device == NULL)
235
return NULL;
236
237
list_for_each_entry(ite, &device->itt_head, ite_list)
238
if (ite->event_id == event_id)
239
return ite;
240
241
return NULL;
242
}
243
244
/* To be used as an iterator this macro misses the enclosing parentheses */
245
#define for_each_lpi_its(dev, ite, its) \
246
list_for_each_entry(dev, &(its)->device_list, dev_list) \
247
list_for_each_entry(ite, &(dev)->itt_head, ite_list)
248
249
#define GIC_LPI_OFFSET 8192
250
251
#define VITS_TYPER_IDBITS 16
252
#define VITS_MAX_EVENTID (BIT(VITS_TYPER_IDBITS) - 1)
253
#define VITS_TYPER_DEVBITS 16
254
#define VITS_MAX_DEVID (BIT(VITS_TYPER_DEVBITS) - 1)
255
#define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
256
#define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
257
258
/*
259
* Finds and returns a collection in the ITS collection table.
260
* Must be called with the its_lock mutex held.
261
*/
262
static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
263
{
264
struct its_collection *collection;
265
266
list_for_each_entry(collection, &its->collection_list, coll_list) {
267
if (coll_id == collection->collection_id)
268
return collection;
269
}
270
271
return NULL;
272
}
273
274
#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
275
#define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
276
277
/*
278
* Reads the configuration data for a given LPI from guest memory and
279
* updates the fields in struct vgic_irq.
280
* If filter_vcpu is not NULL, applies only if the IRQ is targeting this
281
* VCPU. Unconditionally applies if filter_vcpu is NULL.
282
*/
283
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
284
struct kvm_vcpu *filter_vcpu, bool needs_inv)
285
{
286
u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
287
u8 prop;
288
int ret;
289
unsigned long flags;
290
291
ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
292
&prop, 1);
293
294
if (ret)
295
return ret;
296
297
raw_spin_lock_irqsave(&irq->irq_lock, flags);
298
299
if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
300
irq->priority = LPI_PROP_PRIORITY(prop);
301
irq->enabled = LPI_PROP_ENABLE_BIT(prop);
302
303
if (!irq->hw) {
304
vgic_queue_irq_unlock(kvm, irq, flags);
305
return 0;
306
}
307
}
308
309
if (irq->hw)
310
ret = its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
311
312
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
313
return ret;
314
}
315
316
static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
317
{
318
struct its_vlpi_map map;
319
int ret;
320
321
guard(raw_spinlock_irqsave)(&irq->irq_lock);
322
irq->target_vcpu = vcpu;
323
324
if (!irq->hw)
325
return 0;
326
327
ret = its_get_vlpi(irq->host_irq, &map);
328
if (ret)
329
return ret;
330
331
if (map.vpe)
332
atomic_dec(&map.vpe->vlpi_count);
333
334
map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
335
atomic_inc(&map.vpe->vlpi_count);
336
return its_map_vlpi(irq->host_irq, &map);
337
}
338
339
static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
340
struct its_collection *col)
341
{
342
return kvm_get_vcpu_by_id(kvm, col->target_addr);
343
}
344
345
/*
346
* Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
347
* is targeting) to the VGIC's view, which deals with target VCPUs.
348
* Needs to be called whenever either the collection for a LPIs has
349
* changed or the collection itself got retargeted.
350
*/
351
static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
352
{
353
struct kvm_vcpu *vcpu;
354
355
if (!its_is_collection_mapped(ite->collection))
356
return;
357
358
vcpu = collection_to_vcpu(kvm, ite->collection);
359
update_affinity(ite->irq, vcpu);
360
}
361
362
/*
363
* Updates the target VCPU for every LPI targeting this collection.
364
* Must be called with the its_lock mutex held.
365
*/
366
static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
367
struct its_collection *coll)
368
{
369
struct its_device *device;
370
struct its_ite *ite;
371
372
for_each_lpi_its(device, ite, its) {
373
if (ite->collection != coll)
374
continue;
375
376
update_affinity_ite(kvm, ite);
377
}
378
}
379
380
static u32 max_lpis_propbaser(u64 propbaser)
381
{
382
int nr_idbits = (propbaser & 0x1f) + 1;
383
384
return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
385
}
386
387
/*
388
* Sync the pending table pending bit of LPIs targeting @vcpu
389
* with our own data structures. This relies on the LPI being
390
* mapped before.
391
*/
392
static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
393
{
394
gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
395
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
396
unsigned long intid, flags;
397
struct vgic_irq *irq;
398
int last_byte_offset = -1;
399
int ret = 0;
400
u8 pendmask;
401
402
xa_for_each(&dist->lpi_xa, intid, irq) {
403
int byte_offset, bit_nr;
404
405
byte_offset = intid / BITS_PER_BYTE;
406
bit_nr = intid % BITS_PER_BYTE;
407
408
/*
409
* For contiguously allocated LPIs chances are we just read
410
* this very same byte in the last iteration. Reuse that.
411
*/
412
if (byte_offset != last_byte_offset) {
413
ret = kvm_read_guest_lock(vcpu->kvm,
414
pendbase + byte_offset,
415
&pendmask, 1);
416
if (ret)
417
return ret;
418
419
last_byte_offset = byte_offset;
420
}
421
422
irq = vgic_get_irq(vcpu->kvm, intid);
423
if (!irq)
424
continue;
425
426
raw_spin_lock_irqsave(&irq->irq_lock, flags);
427
if (irq->target_vcpu == vcpu)
428
irq->pending_latch = pendmask & (1U << bit_nr);
429
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
430
vgic_put_irq(vcpu->kvm, irq);
431
}
432
433
return ret;
434
}
435
436
static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
437
struct vgic_its *its,
438
gpa_t addr, unsigned int len)
439
{
440
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
441
u64 reg = GITS_TYPER_PLPIS;
442
443
/*
444
* We use linear CPU numbers for redistributor addressing,
445
* so GITS_TYPER.PTA is 0.
446
* Also we force all PROPBASER registers to be the same, so
447
* CommonLPIAff is 0 as well.
448
* To avoid memory waste in the guest, we keep the number of IDBits and
449
* DevBits low - as least for the time being.
450
*/
451
reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
452
reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
453
reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
454
455
return extract_bytes(reg, addr & 7, len);
456
}
457
458
static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
459
struct vgic_its *its,
460
gpa_t addr, unsigned int len)
461
{
462
u32 val;
463
464
val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
465
val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
466
return val;
467
}
468
469
static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
470
struct vgic_its *its,
471
gpa_t addr, unsigned int len,
472
unsigned long val)
473
{
474
u32 rev = GITS_IIDR_REV(val);
475
476
if (rev >= NR_ITS_ABIS)
477
return -EINVAL;
478
return vgic_its_set_abi(its, rev);
479
}
480
481
static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
482
struct vgic_its *its,
483
gpa_t addr, unsigned int len)
484
{
485
switch (addr & 0xffff) {
486
case GITS_PIDR0:
487
return 0x92; /* part number, bits[7:0] */
488
case GITS_PIDR1:
489
return 0xb4; /* part number, bits[11:8] */
490
case GITS_PIDR2:
491
return GIC_PIDR2_ARCH_GICv3 | 0x0b;
492
case GITS_PIDR4:
493
return 0x40; /* This is a 64K software visible page */
494
/* The following are the ID registers for (any) GIC. */
495
case GITS_CIDR0:
496
return 0x0d;
497
case GITS_CIDR1:
498
return 0xf0;
499
case GITS_CIDR2:
500
return 0x05;
501
case GITS_CIDR3:
502
return 0xb1;
503
}
504
505
return 0;
506
}
507
508
static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db)
509
{
510
struct kvm_io_device *kvm_io_dev;
511
struct vgic_io_device *iodev;
512
513
kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db);
514
if (!kvm_io_dev)
515
return ERR_PTR(-EINVAL);
516
517
if (kvm_io_dev->ops != &kvm_io_gic_ops)
518
return ERR_PTR(-EINVAL);
519
520
iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
521
if (iodev->iodev_type != IODEV_ITS)
522
return ERR_PTR(-EINVAL);
523
524
return iodev->its;
525
}
526
527
static unsigned long vgic_its_cache_key(u32 devid, u32 eventid)
528
{
529
return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid;
530
531
}
532
533
static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
534
u32 devid, u32 eventid)
535
{
536
unsigned long cache_key = vgic_its_cache_key(devid, eventid);
537
struct vgic_its *its;
538
struct vgic_irq *irq;
539
540
if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID)
541
return NULL;
542
543
its = __vgic_doorbell_to_its(kvm, db);
544
if (IS_ERR(its))
545
return NULL;
546
547
rcu_read_lock();
548
549
irq = xa_load(&its->translation_cache, cache_key);
550
if (!vgic_try_get_irq_kref(irq))
551
irq = NULL;
552
553
rcu_read_unlock();
554
555
return irq;
556
}
557
558
static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
559
u32 devid, u32 eventid,
560
struct vgic_irq *irq)
561
{
562
unsigned long cache_key = vgic_its_cache_key(devid, eventid);
563
struct vgic_irq *old;
564
565
/* Do not cache a directly injected interrupt */
566
if (irq->hw)
567
return;
568
569
/*
570
* The irq refcount is guaranteed to be nonzero while holding the
571
* its_lock, as the ITE (and the reference it holds) cannot be freed.
572
*/
573
lockdep_assert_held(&its->its_lock);
574
vgic_get_irq_kref(irq);
575
576
old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT);
577
578
/*
579
* Put the reference taken on @irq if the store fails. Intentionally do
580
* not return the error as the translation cache is best effort.
581
*/
582
if (xa_is_err(old)) {
583
vgic_put_irq(kvm, irq);
584
return;
585
}
586
587
/*
588
* We could have raced with another CPU caching the same
589
* translation behind our back, ensure we don't leak a
590
* reference if that is the case.
591
*/
592
if (old)
593
vgic_put_irq(kvm, old);
594
}
595
596
static void vgic_its_invalidate_cache(struct vgic_its *its)
597
{
598
struct kvm *kvm = its->dev->kvm;
599
struct vgic_irq *irq;
600
unsigned long idx;
601
602
xa_for_each(&its->translation_cache, idx, irq) {
603
xa_erase(&its->translation_cache, idx);
604
vgic_put_irq(kvm, irq);
605
}
606
}
607
608
void vgic_its_invalidate_all_caches(struct kvm *kvm)
609
{
610
struct kvm_device *dev;
611
struct vgic_its *its;
612
613
rcu_read_lock();
614
615
list_for_each_entry_rcu(dev, &kvm->devices, vm_node) {
616
if (dev->ops != &kvm_arm_vgic_its_ops)
617
continue;
618
619
its = dev->private;
620
vgic_its_invalidate_cache(its);
621
}
622
623
rcu_read_unlock();
624
}
625
626
int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
627
u32 devid, u32 eventid, struct vgic_irq **irq)
628
{
629
struct kvm_vcpu *vcpu;
630
struct its_ite *ite;
631
632
if (!its->enabled)
633
return -EBUSY;
634
635
ite = find_ite(its, devid, eventid);
636
if (!ite || !its_is_collection_mapped(ite->collection))
637
return E_ITS_INT_UNMAPPED_INTERRUPT;
638
639
vcpu = collection_to_vcpu(kvm, ite->collection);
640
if (!vcpu)
641
return E_ITS_INT_UNMAPPED_INTERRUPT;
642
643
if (!vgic_lpis_enabled(vcpu))
644
return -EBUSY;
645
646
vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
647
648
*irq = ite->irq;
649
return 0;
650
}
651
652
struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
653
{
654
u64 address;
655
656
if (!vgic_has_its(kvm))
657
return ERR_PTR(-ENODEV);
658
659
if (!(msi->flags & KVM_MSI_VALID_DEVID))
660
return ERR_PTR(-EINVAL);
661
662
address = (u64)msi->address_hi << 32 | msi->address_lo;
663
664
return __vgic_doorbell_to_its(kvm, address);
665
}
666
667
/*
668
* Find the target VCPU and the LPI number for a given devid/eventid pair
669
* and make this IRQ pending, possibly injecting it.
670
* Must be called with the its_lock mutex held.
671
* Returns 0 on success, a positive error value for any ITS mapping
672
* related errors and negative error values for generic errors.
673
*/
674
static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
675
u32 devid, u32 eventid)
676
{
677
struct vgic_irq *irq = NULL;
678
unsigned long flags;
679
int err;
680
681
err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
682
if (err)
683
return err;
684
685
if (irq->hw)
686
return irq_set_irqchip_state(irq->host_irq,
687
IRQCHIP_STATE_PENDING, true);
688
689
raw_spin_lock_irqsave(&irq->irq_lock, flags);
690
irq->pending_latch = true;
691
vgic_queue_irq_unlock(kvm, irq, flags);
692
693
return 0;
694
}
695
696
int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
697
{
698
struct vgic_irq *irq;
699
unsigned long flags;
700
phys_addr_t db;
701
702
db = (u64)msi->address_hi << 32 | msi->address_lo;
703
irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
704
if (!irq)
705
return -EWOULDBLOCK;
706
707
raw_spin_lock_irqsave(&irq->irq_lock, flags);
708
irq->pending_latch = true;
709
vgic_queue_irq_unlock(kvm, irq, flags);
710
vgic_put_irq(kvm, irq);
711
712
return 0;
713
}
714
715
/*
716
* Queries the KVM IO bus framework to get the ITS pointer from the given
717
* doorbell address.
718
* We then call vgic_its_trigger_msi() with the decoded data.
719
* According to the KVM_SIGNAL_MSI API description returns 1 on success.
720
*/
721
int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
722
{
723
struct vgic_its *its;
724
int ret;
725
726
if (!vgic_its_inject_cached_translation(kvm, msi))
727
return 1;
728
729
its = vgic_msi_to_its(kvm, msi);
730
if (IS_ERR(its))
731
return PTR_ERR(its);
732
733
mutex_lock(&its->its_lock);
734
ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
735
mutex_unlock(&its->its_lock);
736
737
if (ret < 0)
738
return ret;
739
740
/*
741
* KVM_SIGNAL_MSI demands a return value > 0 for success and 0
742
* if the guest has blocked the MSI. So we map any LPI mapping
743
* related error to that.
744
*/
745
if (ret)
746
return 0;
747
else
748
return 1;
749
}
750
751
/* Requires the its_lock to be held. */
752
static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
753
{
754
struct vgic_irq *irq = ite->irq;
755
list_del(&ite->ite_list);
756
757
/* This put matches the get in vgic_add_lpi. */
758
if (irq) {
759
scoped_guard(raw_spinlock_irqsave, &irq->irq_lock) {
760
if (irq->hw)
761
its_unmap_vlpi(ite->irq->host_irq);
762
763
irq->hw = false;
764
}
765
766
vgic_put_irq(kvm, ite->irq);
767
}
768
769
kfree(ite);
770
}
771
772
static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
773
{
774
return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
775
}
776
777
#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
778
#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
779
#define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
780
#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
781
#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
782
#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
783
#define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
784
#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
785
#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
786
787
/*
788
* The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
789
* Must be called with the its_lock mutex held.
790
*/
791
static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
792
u64 *its_cmd)
793
{
794
u32 device_id = its_cmd_get_deviceid(its_cmd);
795
u32 event_id = its_cmd_get_id(its_cmd);
796
struct its_ite *ite;
797
798
ite = find_ite(its, device_id, event_id);
799
if (ite && its_is_collection_mapped(ite->collection)) {
800
struct its_device *device = find_its_device(its, device_id);
801
int ite_esz = vgic_its_get_abi(its)->ite_esz;
802
gpa_t gpa = device->itt_addr + ite->event_id * ite_esz;
803
/*
804
* Though the spec talks about removing the pending state, we
805
* don't bother here since we clear the ITTE anyway and the
806
* pending state is a property of the ITTE struct.
807
*/
808
vgic_its_invalidate_cache(its);
809
810
its_free_ite(kvm, ite);
811
812
return vgic_its_write_entry_lock(its, gpa, 0ULL, ite);
813
}
814
815
return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
816
}
817
818
/*
819
* The MOVI command moves an ITTE to a different collection.
820
* Must be called with the its_lock mutex held.
821
*/
822
static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
823
u64 *its_cmd)
824
{
825
u32 device_id = its_cmd_get_deviceid(its_cmd);
826
u32 event_id = its_cmd_get_id(its_cmd);
827
u32 coll_id = its_cmd_get_collection(its_cmd);
828
struct kvm_vcpu *vcpu;
829
struct its_ite *ite;
830
struct its_collection *collection;
831
832
ite = find_ite(its, device_id, event_id);
833
if (!ite)
834
return E_ITS_MOVI_UNMAPPED_INTERRUPT;
835
836
if (!its_is_collection_mapped(ite->collection))
837
return E_ITS_MOVI_UNMAPPED_COLLECTION;
838
839
collection = find_collection(its, coll_id);
840
if (!its_is_collection_mapped(collection))
841
return E_ITS_MOVI_UNMAPPED_COLLECTION;
842
843
ite->collection = collection;
844
vcpu = collection_to_vcpu(kvm, collection);
845
846
vgic_its_invalidate_cache(its);
847
848
return update_affinity(ite->irq, vcpu);
849
}
850
851
static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
852
{
853
gfn_t gfn = gpa >> PAGE_SHIFT;
854
int idx;
855
bool ret;
856
857
idx = srcu_read_lock(&its->dev->kvm->srcu);
858
ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
859
srcu_read_unlock(&its->dev->kvm->srcu, idx);
860
return ret;
861
}
862
863
/*
864
* Check whether an ID can be stored into the corresponding guest table.
865
* For a direct table this is pretty easy, but gets a bit nasty for
866
* indirect tables. We check whether the resulting guest physical address
867
* is actually valid (covered by a memslot and guest accessible).
868
* For this we have to read the respective first level entry.
869
*/
870
static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
871
gpa_t *eaddr)
872
{
873
int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
874
u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
875
phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
876
int esz = GITS_BASER_ENTRY_SIZE(baser);
877
int index;
878
879
switch (type) {
880
case GITS_BASER_TYPE_DEVICE:
881
if (id > VITS_MAX_DEVID)
882
return false;
883
break;
884
case GITS_BASER_TYPE_COLLECTION:
885
/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
886
if (id >= BIT_ULL(16))
887
return false;
888
break;
889
default:
890
return false;
891
}
892
893
if (!(baser & GITS_BASER_INDIRECT)) {
894
phys_addr_t addr;
895
896
if (id >= (l1_tbl_size / esz))
897
return false;
898
899
addr = base + id * esz;
900
901
if (eaddr)
902
*eaddr = addr;
903
904
return __is_visible_gfn_locked(its, addr);
905
}
906
907
/* calculate and check the index into the 1st level */
908
index = id / (SZ_64K / esz);
909
if (index >= (l1_tbl_size / sizeof(u64)))
910
return false;
911
912
/* Each 1st level entry is represented by a 64-bit value. */
913
if (kvm_read_guest_lock(its->dev->kvm,
914
base + index * sizeof(indirect_ptr),
915
&indirect_ptr, sizeof(indirect_ptr)))
916
return false;
917
918
indirect_ptr = le64_to_cpu(indirect_ptr);
919
920
/* check the valid bit of the first level entry */
921
if (!(indirect_ptr & BIT_ULL(63)))
922
return false;
923
924
/* Mask the guest physical address and calculate the frame number. */
925
indirect_ptr &= GENMASK_ULL(51, 16);
926
927
/* Find the address of the actual entry */
928
index = id % (SZ_64K / esz);
929
indirect_ptr += index * esz;
930
931
if (eaddr)
932
*eaddr = indirect_ptr;
933
934
return __is_visible_gfn_locked(its, indirect_ptr);
935
}
936
937
/*
938
* Check whether an event ID can be stored in the corresponding Interrupt
939
* Translation Table, which starts at device->itt_addr.
940
*/
941
static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
942
u32 event_id)
943
{
944
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
945
int ite_esz = abi->ite_esz;
946
gpa_t gpa;
947
948
/* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
949
if (event_id >= BIT_ULL(device->num_eventid_bits))
950
return false;
951
952
gpa = device->itt_addr + event_id * ite_esz;
953
return __is_visible_gfn_locked(its, gpa);
954
}
955
956
/*
957
* Add a new collection into the ITS collection table.
958
* Returns 0 on success, and a negative error value for generic errors.
959
*/
960
static int vgic_its_alloc_collection(struct vgic_its *its,
961
struct its_collection **colp,
962
u32 coll_id)
963
{
964
struct its_collection *collection;
965
966
collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
967
if (!collection)
968
return -ENOMEM;
969
970
collection->collection_id = coll_id;
971
collection->target_addr = COLLECTION_NOT_MAPPED;
972
973
list_add_tail(&collection->coll_list, &its->collection_list);
974
*colp = collection;
975
976
return 0;
977
}
978
979
static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
980
{
981
struct its_collection *collection;
982
struct its_device *device;
983
struct its_ite *ite;
984
985
/*
986
* Clearing the mapping for that collection ID removes the
987
* entry from the list. If there wasn't any before, we can
988
* go home early.
989
*/
990
collection = find_collection(its, coll_id);
991
if (!collection)
992
return;
993
994
for_each_lpi_its(device, ite, its)
995
if (ite->collection &&
996
ite->collection->collection_id == coll_id)
997
ite->collection = NULL;
998
999
list_del(&collection->coll_list);
1000
kfree(collection);
1001
}
1002
1003
/* Must be called with its_lock mutex held */
1004
static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1005
struct its_collection *collection,
1006
u32 event_id)
1007
{
1008
struct its_ite *ite;
1009
1010
ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1011
if (!ite)
1012
return ERR_PTR(-ENOMEM);
1013
1014
ite->event_id = event_id;
1015
ite->collection = collection;
1016
1017
list_add_tail(&ite->ite_list, &device->itt_head);
1018
return ite;
1019
}
1020
1021
/*
1022
* The MAPTI and MAPI commands map LPIs to ITTEs.
1023
* Must be called with its_lock mutex held.
1024
*/
1025
static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1026
u64 *its_cmd)
1027
{
1028
u32 device_id = its_cmd_get_deviceid(its_cmd);
1029
u32 event_id = its_cmd_get_id(its_cmd);
1030
u32 coll_id = its_cmd_get_collection(its_cmd);
1031
struct its_ite *ite;
1032
struct kvm_vcpu *vcpu = NULL;
1033
struct its_device *device;
1034
struct its_collection *collection, *new_coll = NULL;
1035
struct vgic_irq *irq;
1036
int lpi_nr;
1037
1038
device = find_its_device(its, device_id);
1039
if (!device)
1040
return E_ITS_MAPTI_UNMAPPED_DEVICE;
1041
1042
if (!vgic_its_check_event_id(its, device, event_id))
1043
return E_ITS_MAPTI_ID_OOR;
1044
1045
if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1046
lpi_nr = its_cmd_get_physical_id(its_cmd);
1047
else
1048
lpi_nr = event_id;
1049
if (lpi_nr < GIC_LPI_OFFSET ||
1050
lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1051
return E_ITS_MAPTI_PHYSICALID_OOR;
1052
1053
/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1054
if (find_ite(its, device_id, event_id))
1055
return 0;
1056
1057
collection = find_collection(its, coll_id);
1058
if (!collection) {
1059
int ret;
1060
1061
if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1062
return E_ITS_MAPC_COLLECTION_OOR;
1063
1064
ret = vgic_its_alloc_collection(its, &collection, coll_id);
1065
if (ret)
1066
return ret;
1067
new_coll = collection;
1068
}
1069
1070
ite = vgic_its_alloc_ite(device, collection, event_id);
1071
if (IS_ERR(ite)) {
1072
if (new_coll)
1073
vgic_its_free_collection(its, coll_id);
1074
return PTR_ERR(ite);
1075
}
1076
1077
if (its_is_collection_mapped(collection))
1078
vcpu = collection_to_vcpu(kvm, collection);
1079
1080
irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1081
if (IS_ERR(irq)) {
1082
if (new_coll)
1083
vgic_its_free_collection(its, coll_id);
1084
its_free_ite(kvm, ite);
1085
return PTR_ERR(irq);
1086
}
1087
ite->irq = irq;
1088
1089
return 0;
1090
}
1091
1092
/* Requires the its_lock to be held. */
1093
static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its,
1094
struct its_device *device)
1095
{
1096
struct its_ite *ite, *temp;
1097
1098
/*
1099
* The spec says that unmapping a device with still valid
1100
* ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1101
* since we cannot leave the memory unreferenced.
1102
*/
1103
list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1104
its_free_ite(kvm, ite);
1105
1106
vgic_its_invalidate_cache(its);
1107
1108
list_del(&device->dev_list);
1109
kfree(device);
1110
}
1111
1112
/* its lock must be held */
1113
static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1114
{
1115
struct its_device *cur, *temp;
1116
1117
list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1118
vgic_its_free_device(kvm, its, cur);
1119
}
1120
1121
/* its lock must be held */
1122
static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1123
{
1124
struct its_collection *cur, *temp;
1125
1126
list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1127
vgic_its_free_collection(its, cur->collection_id);
1128
}
1129
1130
/* Must be called with its_lock mutex held */
1131
static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1132
u32 device_id, gpa_t itt_addr,
1133
u8 num_eventid_bits)
1134
{
1135
struct its_device *device;
1136
1137
device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1138
if (!device)
1139
return ERR_PTR(-ENOMEM);
1140
1141
device->device_id = device_id;
1142
device->itt_addr = itt_addr;
1143
device->num_eventid_bits = num_eventid_bits;
1144
INIT_LIST_HEAD(&device->itt_head);
1145
1146
list_add_tail(&device->dev_list, &its->device_list);
1147
return device;
1148
}
1149
1150
/*
1151
* MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1152
* Must be called with the its_lock mutex held.
1153
*/
1154
static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1155
u64 *its_cmd)
1156
{
1157
u32 device_id = its_cmd_get_deviceid(its_cmd);
1158
bool valid = its_cmd_get_validbit(its_cmd);
1159
u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1160
gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1161
struct its_device *device;
1162
gpa_t gpa;
1163
1164
if (!vgic_its_check_id(its, its->baser_device_table, device_id, &gpa))
1165
return E_ITS_MAPD_DEVICE_OOR;
1166
1167
if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1168
return E_ITS_MAPD_ITTSIZE_OOR;
1169
1170
device = find_its_device(its, device_id);
1171
1172
/*
1173
* The spec says that calling MAPD on an already mapped device
1174
* invalidates all cached data for this device. We implement this
1175
* by removing the mapping and re-establishing it.
1176
*/
1177
if (device)
1178
vgic_its_free_device(kvm, its, device);
1179
1180
/*
1181
* The spec does not say whether unmapping a not-mapped device
1182
* is an error, so we are done in any case.
1183
*/
1184
if (!valid)
1185
return vgic_its_write_entry_lock(its, gpa, 0ULL, dte);
1186
1187
device = vgic_its_alloc_device(its, device_id, itt_addr,
1188
num_eventid_bits);
1189
1190
return PTR_ERR_OR_ZERO(device);
1191
}
1192
1193
/*
1194
* The MAPC command maps collection IDs to redistributors.
1195
* Must be called with the its_lock mutex held.
1196
*/
1197
static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1198
u64 *its_cmd)
1199
{
1200
u16 coll_id;
1201
struct its_collection *collection;
1202
bool valid;
1203
1204
valid = its_cmd_get_validbit(its_cmd);
1205
coll_id = its_cmd_get_collection(its_cmd);
1206
1207
if (!valid) {
1208
vgic_its_free_collection(its, coll_id);
1209
vgic_its_invalidate_cache(its);
1210
} else {
1211
struct kvm_vcpu *vcpu;
1212
1213
vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1214
if (!vcpu)
1215
return E_ITS_MAPC_PROCNUM_OOR;
1216
1217
collection = find_collection(its, coll_id);
1218
1219
if (!collection) {
1220
int ret;
1221
1222
if (!vgic_its_check_id(its, its->baser_coll_table,
1223
coll_id, NULL))
1224
return E_ITS_MAPC_COLLECTION_OOR;
1225
1226
ret = vgic_its_alloc_collection(its, &collection,
1227
coll_id);
1228
if (ret)
1229
return ret;
1230
collection->target_addr = vcpu->vcpu_id;
1231
} else {
1232
collection->target_addr = vcpu->vcpu_id;
1233
update_affinity_collection(kvm, its, collection);
1234
}
1235
}
1236
1237
return 0;
1238
}
1239
1240
/*
1241
* The CLEAR command removes the pending state for a particular LPI.
1242
* Must be called with the its_lock mutex held.
1243
*/
1244
static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1245
u64 *its_cmd)
1246
{
1247
u32 device_id = its_cmd_get_deviceid(its_cmd);
1248
u32 event_id = its_cmd_get_id(its_cmd);
1249
struct its_ite *ite;
1250
1251
1252
ite = find_ite(its, device_id, event_id);
1253
if (!ite)
1254
return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1255
1256
ite->irq->pending_latch = false;
1257
1258
if (ite->irq->hw)
1259
return irq_set_irqchip_state(ite->irq->host_irq,
1260
IRQCHIP_STATE_PENDING, false);
1261
1262
return 0;
1263
}
1264
1265
int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1266
{
1267
return update_lpi_config(kvm, irq, NULL, true);
1268
}
1269
1270
/*
1271
* The INV command syncs the configuration bits from the memory table.
1272
* Must be called with the its_lock mutex held.
1273
*/
1274
static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1275
u64 *its_cmd)
1276
{
1277
u32 device_id = its_cmd_get_deviceid(its_cmd);
1278
u32 event_id = its_cmd_get_id(its_cmd);
1279
struct its_ite *ite;
1280
1281
1282
ite = find_ite(its, device_id, event_id);
1283
if (!ite)
1284
return E_ITS_INV_UNMAPPED_INTERRUPT;
1285
1286
return vgic_its_inv_lpi(kvm, ite->irq);
1287
}
1288
1289
/**
1290
* vgic_its_invall - invalidate all LPIs targeting a given vcpu
1291
* @vcpu: the vcpu for which the RD is targeted by an invalidation
1292
*
1293
* Contrary to the INVALL command, this targets a RD instead of a
1294
* collection, and we don't need to hold the its_lock, since no ITS is
1295
* involved here.
1296
*/
1297
int vgic_its_invall(struct kvm_vcpu *vcpu)
1298
{
1299
struct kvm *kvm = vcpu->kvm;
1300
struct vgic_dist *dist = &kvm->arch.vgic;
1301
struct vgic_irq *irq;
1302
unsigned long intid;
1303
1304
xa_for_each(&dist->lpi_xa, intid, irq) {
1305
irq = vgic_get_irq(kvm, intid);
1306
if (!irq)
1307
continue;
1308
1309
update_lpi_config(kvm, irq, vcpu, false);
1310
vgic_put_irq(kvm, irq);
1311
}
1312
1313
if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1314
its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1315
1316
return 0;
1317
}
1318
1319
/*
1320
* The INVALL command requests flushing of all IRQ data in this collection.
1321
* Find the VCPU mapped to that collection, then iterate over the VM's list
1322
* of mapped LPIs and update the configuration for each IRQ which targets
1323
* the specified vcpu. The configuration will be read from the in-memory
1324
* configuration table.
1325
* Must be called with the its_lock mutex held.
1326
*/
1327
static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1328
u64 *its_cmd)
1329
{
1330
u32 coll_id = its_cmd_get_collection(its_cmd);
1331
struct its_collection *collection;
1332
struct kvm_vcpu *vcpu;
1333
1334
collection = find_collection(its, coll_id);
1335
if (!its_is_collection_mapped(collection))
1336
return E_ITS_INVALL_UNMAPPED_COLLECTION;
1337
1338
vcpu = collection_to_vcpu(kvm, collection);
1339
vgic_its_invall(vcpu);
1340
1341
return 0;
1342
}
1343
1344
/*
1345
* The MOVALL command moves the pending state of all IRQs targeting one
1346
* redistributor to another. We don't hold the pending state in the VCPUs,
1347
* but in the IRQs instead, so there is really not much to do for us here.
1348
* However the spec says that no IRQ must target the old redistributor
1349
* afterwards, so we make sure that no LPI is using the associated target_vcpu.
1350
* This command affects all LPIs in the system that target that redistributor.
1351
*/
1352
static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1353
u64 *its_cmd)
1354
{
1355
struct vgic_dist *dist = &kvm->arch.vgic;
1356
struct kvm_vcpu *vcpu1, *vcpu2;
1357
struct vgic_irq *irq;
1358
unsigned long intid;
1359
1360
/* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1361
vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1362
vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1363
1364
if (!vcpu1 || !vcpu2)
1365
return E_ITS_MOVALL_PROCNUM_OOR;
1366
1367
if (vcpu1 == vcpu2)
1368
return 0;
1369
1370
xa_for_each(&dist->lpi_xa, intid, irq) {
1371
irq = vgic_get_irq(kvm, intid);
1372
if (!irq)
1373
continue;
1374
1375
update_affinity(irq, vcpu2);
1376
1377
vgic_put_irq(kvm, irq);
1378
}
1379
1380
vgic_its_invalidate_cache(its);
1381
1382
return 0;
1383
}
1384
1385
/*
1386
* The INT command injects the LPI associated with that DevID/EvID pair.
1387
* Must be called with the its_lock mutex held.
1388
*/
1389
static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1390
u64 *its_cmd)
1391
{
1392
u32 msi_data = its_cmd_get_id(its_cmd);
1393
u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1394
1395
return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1396
}
1397
1398
/*
1399
* This function is called with the its_cmd lock held, but the ITS data
1400
* structure lock dropped.
1401
*/
1402
static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1403
u64 *its_cmd)
1404
{
1405
int ret = -ENODEV;
1406
1407
mutex_lock(&its->its_lock);
1408
switch (its_cmd_get_command(its_cmd)) {
1409
case GITS_CMD_MAPD:
1410
ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1411
break;
1412
case GITS_CMD_MAPC:
1413
ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1414
break;
1415
case GITS_CMD_MAPI:
1416
ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1417
break;
1418
case GITS_CMD_MAPTI:
1419
ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1420
break;
1421
case GITS_CMD_MOVI:
1422
ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1423
break;
1424
case GITS_CMD_DISCARD:
1425
ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1426
break;
1427
case GITS_CMD_CLEAR:
1428
ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1429
break;
1430
case GITS_CMD_MOVALL:
1431
ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1432
break;
1433
case GITS_CMD_INT:
1434
ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1435
break;
1436
case GITS_CMD_INV:
1437
ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1438
break;
1439
case GITS_CMD_INVALL:
1440
ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1441
break;
1442
case GITS_CMD_SYNC:
1443
/* we ignore this command: we are in sync all of the time */
1444
ret = 0;
1445
break;
1446
}
1447
mutex_unlock(&its->its_lock);
1448
1449
return ret;
1450
}
1451
1452
static u64 vgic_sanitise_its_baser(u64 reg)
1453
{
1454
reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1455
GITS_BASER_SHAREABILITY_SHIFT,
1456
vgic_sanitise_shareability);
1457
reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1458
GITS_BASER_INNER_CACHEABILITY_SHIFT,
1459
vgic_sanitise_inner_cacheability);
1460
reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1461
GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1462
vgic_sanitise_outer_cacheability);
1463
1464
/* We support only one (ITS) page size: 64K */
1465
reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1466
1467
return reg;
1468
}
1469
1470
static u64 vgic_sanitise_its_cbaser(u64 reg)
1471
{
1472
reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1473
GITS_CBASER_SHAREABILITY_SHIFT,
1474
vgic_sanitise_shareability);
1475
reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1476
GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1477
vgic_sanitise_inner_cacheability);
1478
reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1479
GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1480
vgic_sanitise_outer_cacheability);
1481
1482
/* Sanitise the physical address to be 64k aligned. */
1483
reg &= ~GENMASK_ULL(15, 12);
1484
1485
return reg;
1486
}
1487
1488
static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1489
struct vgic_its *its,
1490
gpa_t addr, unsigned int len)
1491
{
1492
return extract_bytes(its->cbaser, addr & 7, len);
1493
}
1494
1495
static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1496
gpa_t addr, unsigned int len,
1497
unsigned long val)
1498
{
1499
/* When GITS_CTLR.Enable is 1, this register is RO. */
1500
if (its->enabled)
1501
return;
1502
1503
mutex_lock(&its->cmd_lock);
1504
its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1505
its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1506
its->creadr = 0;
1507
/*
1508
* CWRITER is architecturally UNKNOWN on reset, but we need to reset
1509
* it to CREADR to make sure we start with an empty command buffer.
1510
*/
1511
its->cwriter = its->creadr;
1512
mutex_unlock(&its->cmd_lock);
1513
}
1514
1515
#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1516
#define ITS_CMD_SIZE 32
1517
#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1518
1519
/* Must be called with the cmd_lock held. */
1520
static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1521
{
1522
gpa_t cbaser;
1523
u64 cmd_buf[4];
1524
1525
/* Commands are only processed when the ITS is enabled. */
1526
if (!its->enabled)
1527
return;
1528
1529
cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1530
1531
while (its->cwriter != its->creadr) {
1532
int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1533
cmd_buf, ITS_CMD_SIZE);
1534
/*
1535
* If kvm_read_guest() fails, this could be due to the guest
1536
* programming a bogus value in CBASER or something else going
1537
* wrong from which we cannot easily recover.
1538
* According to section 6.3.2 in the GICv3 spec we can just
1539
* ignore that command then.
1540
*/
1541
if (!ret)
1542
vgic_its_handle_command(kvm, its, cmd_buf);
1543
1544
its->creadr += ITS_CMD_SIZE;
1545
if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1546
its->creadr = 0;
1547
}
1548
}
1549
1550
/*
1551
* By writing to CWRITER the guest announces new commands to be processed.
1552
* To avoid any races in the first place, we take the its_cmd lock, which
1553
* protects our ring buffer variables, so that there is only one user
1554
* per ITS handling commands at a given time.
1555
*/
1556
static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1557
gpa_t addr, unsigned int len,
1558
unsigned long val)
1559
{
1560
u64 reg;
1561
1562
if (!its)
1563
return;
1564
1565
mutex_lock(&its->cmd_lock);
1566
1567
reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1568
reg = ITS_CMD_OFFSET(reg);
1569
if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1570
mutex_unlock(&its->cmd_lock);
1571
return;
1572
}
1573
its->cwriter = reg;
1574
1575
vgic_its_process_commands(kvm, its);
1576
1577
mutex_unlock(&its->cmd_lock);
1578
}
1579
1580
static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1581
struct vgic_its *its,
1582
gpa_t addr, unsigned int len)
1583
{
1584
return extract_bytes(its->cwriter, addr & 0x7, len);
1585
}
1586
1587
static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1588
struct vgic_its *its,
1589
gpa_t addr, unsigned int len)
1590
{
1591
return extract_bytes(its->creadr, addr & 0x7, len);
1592
}
1593
1594
static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1595
struct vgic_its *its,
1596
gpa_t addr, unsigned int len,
1597
unsigned long val)
1598
{
1599
u32 cmd_offset;
1600
int ret = 0;
1601
1602
mutex_lock(&its->cmd_lock);
1603
1604
if (its->enabled) {
1605
ret = -EBUSY;
1606
goto out;
1607
}
1608
1609
cmd_offset = ITS_CMD_OFFSET(val);
1610
if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1611
ret = -EINVAL;
1612
goto out;
1613
}
1614
1615
its->creadr = cmd_offset;
1616
out:
1617
mutex_unlock(&its->cmd_lock);
1618
return ret;
1619
}
1620
1621
#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1622
static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1623
struct vgic_its *its,
1624
gpa_t addr, unsigned int len)
1625
{
1626
u64 reg;
1627
1628
switch (BASER_INDEX(addr)) {
1629
case 0:
1630
reg = its->baser_device_table;
1631
break;
1632
case 1:
1633
reg = its->baser_coll_table;
1634
break;
1635
default:
1636
reg = 0;
1637
break;
1638
}
1639
1640
return extract_bytes(reg, addr & 7, len);
1641
}
1642
1643
#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1644
static void vgic_mmio_write_its_baser(struct kvm *kvm,
1645
struct vgic_its *its,
1646
gpa_t addr, unsigned int len,
1647
unsigned long val)
1648
{
1649
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1650
u64 entry_size, table_type;
1651
u64 reg, *regptr, clearbits = 0;
1652
1653
/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1654
if (its->enabled)
1655
return;
1656
1657
switch (BASER_INDEX(addr)) {
1658
case 0:
1659
regptr = &its->baser_device_table;
1660
entry_size = abi->dte_esz;
1661
table_type = GITS_BASER_TYPE_DEVICE;
1662
break;
1663
case 1:
1664
regptr = &its->baser_coll_table;
1665
entry_size = abi->cte_esz;
1666
table_type = GITS_BASER_TYPE_COLLECTION;
1667
clearbits = GITS_BASER_INDIRECT;
1668
break;
1669
default:
1670
return;
1671
}
1672
1673
reg = update_64bit_reg(*regptr, addr & 7, len, val);
1674
reg &= ~GITS_BASER_RO_MASK;
1675
reg &= ~clearbits;
1676
1677
reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1678
reg |= table_type << GITS_BASER_TYPE_SHIFT;
1679
reg = vgic_sanitise_its_baser(reg);
1680
1681
*regptr = reg;
1682
1683
if (!(reg & GITS_BASER_VALID)) {
1684
/* Take the its_lock to prevent a race with a save/restore */
1685
mutex_lock(&its->its_lock);
1686
switch (table_type) {
1687
case GITS_BASER_TYPE_DEVICE:
1688
vgic_its_free_device_list(kvm, its);
1689
break;
1690
case GITS_BASER_TYPE_COLLECTION:
1691
vgic_its_free_collection_list(kvm, its);
1692
break;
1693
}
1694
mutex_unlock(&its->its_lock);
1695
}
1696
}
1697
1698
static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1699
struct vgic_its *its,
1700
gpa_t addr, unsigned int len)
1701
{
1702
u32 reg = 0;
1703
1704
mutex_lock(&its->cmd_lock);
1705
if (its->creadr == its->cwriter)
1706
reg |= GITS_CTLR_QUIESCENT;
1707
if (its->enabled)
1708
reg |= GITS_CTLR_ENABLE;
1709
mutex_unlock(&its->cmd_lock);
1710
1711
return reg;
1712
}
1713
1714
static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1715
gpa_t addr, unsigned int len,
1716
unsigned long val)
1717
{
1718
mutex_lock(&its->cmd_lock);
1719
1720
/*
1721
* It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1722
* device/collection BASER are invalid
1723
*/
1724
if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1725
(!(its->baser_device_table & GITS_BASER_VALID) ||
1726
!(its->baser_coll_table & GITS_BASER_VALID) ||
1727
!(its->cbaser & GITS_CBASER_VALID)))
1728
goto out;
1729
1730
its->enabled = !!(val & GITS_CTLR_ENABLE);
1731
if (!its->enabled)
1732
vgic_its_invalidate_cache(its);
1733
1734
/*
1735
* Try to process any pending commands. This function bails out early
1736
* if the ITS is disabled or no commands have been queued.
1737
*/
1738
vgic_its_process_commands(kvm, its);
1739
1740
out:
1741
mutex_unlock(&its->cmd_lock);
1742
}
1743
1744
#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1745
{ \
1746
.reg_offset = off, \
1747
.len = length, \
1748
.access_flags = acc, \
1749
.its_read = rd, \
1750
.its_write = wr, \
1751
}
1752
1753
#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1754
{ \
1755
.reg_offset = off, \
1756
.len = length, \
1757
.access_flags = acc, \
1758
.its_read = rd, \
1759
.its_write = wr, \
1760
.uaccess_its_write = uwr, \
1761
}
1762
1763
static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1764
gpa_t addr, unsigned int len, unsigned long val)
1765
{
1766
/* Ignore */
1767
}
1768
1769
static struct vgic_register_region its_registers[] = {
1770
REGISTER_ITS_DESC(GITS_CTLR,
1771
vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1772
VGIC_ACCESS_32bit),
1773
REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1774
vgic_mmio_read_its_iidr, its_mmio_write_wi,
1775
vgic_mmio_uaccess_write_its_iidr, 4,
1776
VGIC_ACCESS_32bit),
1777
REGISTER_ITS_DESC(GITS_TYPER,
1778
vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1779
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1780
REGISTER_ITS_DESC(GITS_CBASER,
1781
vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1782
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1783
REGISTER_ITS_DESC(GITS_CWRITER,
1784
vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1785
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1786
REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1787
vgic_mmio_read_its_creadr, its_mmio_write_wi,
1788
vgic_mmio_uaccess_write_its_creadr, 8,
1789
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1790
REGISTER_ITS_DESC(GITS_BASER,
1791
vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1792
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1793
REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1794
vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1795
VGIC_ACCESS_32bit),
1796
};
1797
1798
/* This is called on setting the LPI enable bit in the redistributor. */
1799
void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1800
{
1801
if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1802
its_sync_lpi_pending_table(vcpu);
1803
}
1804
1805
static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1806
u64 addr)
1807
{
1808
struct vgic_io_device *iodev = &its->iodev;
1809
int ret;
1810
1811
mutex_lock(&kvm->slots_lock);
1812
if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1813
ret = -EBUSY;
1814
goto out;
1815
}
1816
1817
its->vgic_its_base = addr;
1818
iodev->regions = its_registers;
1819
iodev->nr_regions = ARRAY_SIZE(its_registers);
1820
kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1821
1822
iodev->base_addr = its->vgic_its_base;
1823
iodev->iodev_type = IODEV_ITS;
1824
iodev->its = its;
1825
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1826
KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1827
out:
1828
mutex_unlock(&kvm->slots_lock);
1829
1830
return ret;
1831
}
1832
1833
#define INITIAL_BASER_VALUE \
1834
(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1835
GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1836
GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1837
GITS_BASER_PAGE_SIZE_64K)
1838
1839
#define INITIAL_PROPBASER_VALUE \
1840
(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1841
GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1842
GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1843
1844
static int vgic_its_create(struct kvm_device *dev, u32 type)
1845
{
1846
int ret;
1847
struct vgic_its *its;
1848
1849
if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1850
return -ENODEV;
1851
1852
its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1853
if (!its)
1854
return -ENOMEM;
1855
1856
mutex_lock(&dev->kvm->arch.config_lock);
1857
1858
if (vgic_initialized(dev->kvm)) {
1859
ret = vgic_v4_init(dev->kvm);
1860
if (ret < 0) {
1861
mutex_unlock(&dev->kvm->arch.config_lock);
1862
kfree(its);
1863
return ret;
1864
}
1865
}
1866
1867
mutex_init(&its->its_lock);
1868
mutex_init(&its->cmd_lock);
1869
1870
/* Yep, even more trickery for lock ordering... */
1871
#ifdef CONFIG_LOCKDEP
1872
mutex_lock(&its->cmd_lock);
1873
mutex_lock(&its->its_lock);
1874
mutex_unlock(&its->its_lock);
1875
mutex_unlock(&its->cmd_lock);
1876
#endif
1877
1878
its->vgic_its_base = VGIC_ADDR_UNDEF;
1879
1880
INIT_LIST_HEAD(&its->device_list);
1881
INIT_LIST_HEAD(&its->collection_list);
1882
xa_init(&its->translation_cache);
1883
1884
dev->kvm->arch.vgic.msis_require_devid = true;
1885
dev->kvm->arch.vgic.has_its = true;
1886
its->enabled = false;
1887
its->dev = dev;
1888
1889
its->baser_device_table = INITIAL_BASER_VALUE |
1890
((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1891
its->baser_coll_table = INITIAL_BASER_VALUE |
1892
((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1893
dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1894
1895
dev->private = its;
1896
1897
ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1898
1899
mutex_unlock(&dev->kvm->arch.config_lock);
1900
1901
return ret;
1902
}
1903
1904
static void vgic_its_destroy(struct kvm_device *kvm_dev)
1905
{
1906
struct kvm *kvm = kvm_dev->kvm;
1907
struct vgic_its *its = kvm_dev->private;
1908
1909
mutex_lock(&its->its_lock);
1910
1911
vgic_its_debug_destroy(kvm_dev);
1912
1913
vgic_its_free_device_list(kvm, its);
1914
vgic_its_free_collection_list(kvm, its);
1915
vgic_its_invalidate_cache(its);
1916
xa_destroy(&its->translation_cache);
1917
1918
mutex_unlock(&its->its_lock);
1919
kfree(its);
1920
kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1921
}
1922
1923
static int vgic_its_has_attr_regs(struct kvm_device *dev,
1924
struct kvm_device_attr *attr)
1925
{
1926
const struct vgic_register_region *region;
1927
gpa_t offset = attr->attr;
1928
int align;
1929
1930
align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1931
1932
if (offset & align)
1933
return -EINVAL;
1934
1935
region = vgic_find_mmio_region(its_registers,
1936
ARRAY_SIZE(its_registers),
1937
offset);
1938
if (!region)
1939
return -ENXIO;
1940
1941
return 0;
1942
}
1943
1944
static int vgic_its_attr_regs_access(struct kvm_device *dev,
1945
struct kvm_device_attr *attr,
1946
u64 *reg, bool is_write)
1947
{
1948
const struct vgic_register_region *region;
1949
struct vgic_its *its;
1950
gpa_t addr, offset;
1951
unsigned int len;
1952
int align, ret = 0;
1953
1954
its = dev->private;
1955
offset = attr->attr;
1956
1957
/*
1958
* Although the spec supports upper/lower 32-bit accesses to
1959
* 64-bit ITS registers, the userspace ABI requires 64-bit
1960
* accesses to all 64-bit wide registers. We therefore only
1961
* support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1962
* registers
1963
*/
1964
if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1965
align = 0x3;
1966
else
1967
align = 0x7;
1968
1969
if (offset & align)
1970
return -EINVAL;
1971
1972
mutex_lock(&dev->kvm->lock);
1973
1974
if (kvm_trylock_all_vcpus(dev->kvm)) {
1975
mutex_unlock(&dev->kvm->lock);
1976
return -EBUSY;
1977
}
1978
1979
mutex_lock(&dev->kvm->arch.config_lock);
1980
1981
if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1982
ret = -ENXIO;
1983
goto out;
1984
}
1985
1986
region = vgic_find_mmio_region(its_registers,
1987
ARRAY_SIZE(its_registers),
1988
offset);
1989
if (!region) {
1990
ret = -ENXIO;
1991
goto out;
1992
}
1993
1994
addr = its->vgic_its_base + offset;
1995
1996
len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1997
1998
if (is_write) {
1999
if (region->uaccess_its_write)
2000
ret = region->uaccess_its_write(dev->kvm, its, addr,
2001
len, *reg);
2002
else
2003
region->its_write(dev->kvm, its, addr, len, *reg);
2004
} else {
2005
*reg = region->its_read(dev->kvm, its, addr, len);
2006
}
2007
out:
2008
mutex_unlock(&dev->kvm->arch.config_lock);
2009
kvm_unlock_all_vcpus(dev->kvm);
2010
mutex_unlock(&dev->kvm->lock);
2011
return ret;
2012
}
2013
2014
static u32 compute_next_devid_offset(struct list_head *h,
2015
struct its_device *dev)
2016
{
2017
struct its_device *next;
2018
u32 next_offset;
2019
2020
if (list_is_last(&dev->dev_list, h))
2021
return 0;
2022
next = list_next_entry(dev, dev_list);
2023
next_offset = next->device_id - dev->device_id;
2024
2025
return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2026
}
2027
2028
static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2029
{
2030
struct its_ite *next;
2031
u32 next_offset;
2032
2033
if (list_is_last(&ite->ite_list, h))
2034
return 0;
2035
next = list_next_entry(ite, ite_list);
2036
next_offset = next->event_id - ite->event_id;
2037
2038
return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2039
}
2040
2041
/**
2042
* typedef entry_fn_t - Callback called on a table entry restore path
2043
* @its: its handle
2044
* @id: id of the entry
2045
* @entry: pointer to the entry
2046
* @opaque: pointer to an opaque data
2047
*
2048
* Return: < 0 on error, 0 if last element was identified, id offset to next
2049
* element otherwise
2050
*/
2051
typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2052
void *opaque);
2053
2054
/**
2055
* scan_its_table - Scan a contiguous table in guest RAM and applies a function
2056
* to each entry
2057
*
2058
* @its: its handle
2059
* @base: base gpa of the table
2060
* @size: size of the table in bytes
2061
* @esz: entry size in bytes
2062
* @start_id: the ID of the first entry in the table
2063
* (non zero for 2d level tables)
2064
* @fn: function to apply on each entry
2065
* @opaque: pointer to opaque data
2066
*
2067
* Return: < 0 on error, 0 if last element was identified, 1 otherwise
2068
* (the last element may not be found on second level tables)
2069
*/
2070
static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2071
int start_id, entry_fn_t fn, void *opaque)
2072
{
2073
struct kvm *kvm = its->dev->kvm;
2074
unsigned long len = size;
2075
int id = start_id;
2076
gpa_t gpa = base;
2077
char entry[ESZ_MAX];
2078
int ret;
2079
2080
memset(entry, 0, esz);
2081
2082
while (true) {
2083
int next_offset;
2084
size_t byte_offset;
2085
2086
ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2087
if (ret)
2088
return ret;
2089
2090
next_offset = fn(its, id, entry, opaque);
2091
if (next_offset <= 0)
2092
return next_offset;
2093
2094
byte_offset = next_offset * esz;
2095
if (byte_offset >= len)
2096
break;
2097
2098
id += next_offset;
2099
gpa += byte_offset;
2100
len -= byte_offset;
2101
}
2102
return 1;
2103
}
2104
2105
/*
2106
* vgic_its_save_ite - Save an interrupt translation entry at @gpa
2107
*/
2108
static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2109
struct its_ite *ite, gpa_t gpa)
2110
{
2111
u32 next_offset;
2112
u64 val;
2113
2114
next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2115
val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2116
((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2117
ite->collection->collection_id;
2118
val = cpu_to_le64(val);
2119
2120
return vgic_its_write_entry_lock(its, gpa, val, ite);
2121
}
2122
2123
/**
2124
* vgic_its_restore_ite - restore an interrupt translation entry
2125
*
2126
* @its: its handle
2127
* @event_id: id used for indexing
2128
* @ptr: pointer to the ITE entry
2129
* @opaque: pointer to the its_device
2130
*/
2131
static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2132
void *ptr, void *opaque)
2133
{
2134
struct its_device *dev = opaque;
2135
struct its_collection *collection;
2136
struct kvm *kvm = its->dev->kvm;
2137
struct kvm_vcpu *vcpu = NULL;
2138
u64 val;
2139
u64 *p = (u64 *)ptr;
2140
struct vgic_irq *irq;
2141
u32 coll_id, lpi_id;
2142
struct its_ite *ite;
2143
u32 offset;
2144
2145
val = *p;
2146
2147
val = le64_to_cpu(val);
2148
2149
coll_id = val & KVM_ITS_ITE_ICID_MASK;
2150
lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2151
2152
if (!lpi_id)
2153
return 1; /* invalid entry, no choice but to scan next entry */
2154
2155
if (lpi_id < VGIC_MIN_LPI)
2156
return -EINVAL;
2157
2158
offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2159
if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2160
return -EINVAL;
2161
2162
collection = find_collection(its, coll_id);
2163
if (!collection)
2164
return -EINVAL;
2165
2166
if (!vgic_its_check_event_id(its, dev, event_id))
2167
return -EINVAL;
2168
2169
ite = vgic_its_alloc_ite(dev, collection, event_id);
2170
if (IS_ERR(ite))
2171
return PTR_ERR(ite);
2172
2173
if (its_is_collection_mapped(collection))
2174
vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2175
2176
irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2177
if (IS_ERR(irq)) {
2178
its_free_ite(kvm, ite);
2179
return PTR_ERR(irq);
2180
}
2181
ite->irq = irq;
2182
2183
return offset;
2184
}
2185
2186
static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2187
const struct list_head *b)
2188
{
2189
struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2190
struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2191
2192
if (itea->event_id < iteb->event_id)
2193
return -1;
2194
else
2195
return 1;
2196
}
2197
2198
static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2199
{
2200
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2201
gpa_t base = device->itt_addr;
2202
struct its_ite *ite;
2203
int ret;
2204
int ite_esz = abi->ite_esz;
2205
2206
list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2207
2208
list_for_each_entry(ite, &device->itt_head, ite_list) {
2209
gpa_t gpa = base + ite->event_id * ite_esz;
2210
2211
/*
2212
* If an LPI carries the HW bit, this means that this
2213
* interrupt is controlled by GICv4, and we do not
2214
* have direct access to that state without GICv4.1.
2215
* Let's simply fail the save operation...
2216
*/
2217
if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2218
return -EACCES;
2219
2220
ret = vgic_its_save_ite(its, device, ite, gpa);
2221
if (ret)
2222
return ret;
2223
}
2224
return 0;
2225
}
2226
2227
/**
2228
* vgic_its_restore_itt - restore the ITT of a device
2229
*
2230
* @its: its handle
2231
* @dev: device handle
2232
*
2233
* Return 0 on success, < 0 on error
2234
*/
2235
static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2236
{
2237
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2238
gpa_t base = dev->itt_addr;
2239
int ret;
2240
int ite_esz = abi->ite_esz;
2241
size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2242
2243
ret = scan_its_table(its, base, max_size, ite_esz, 0,
2244
vgic_its_restore_ite, dev);
2245
2246
/* scan_its_table returns +1 if all ITEs are invalid */
2247
if (ret > 0)
2248
ret = 0;
2249
2250
return ret;
2251
}
2252
2253
/**
2254
* vgic_its_save_dte - Save a device table entry at a given GPA
2255
*
2256
* @its: ITS handle
2257
* @dev: ITS device
2258
* @ptr: GPA
2259
*/
2260
static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2261
gpa_t ptr)
2262
{
2263
u64 val, itt_addr_field;
2264
u32 next_offset;
2265
2266
itt_addr_field = dev->itt_addr >> 8;
2267
next_offset = compute_next_devid_offset(&its->device_list, dev);
2268
val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2269
((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2270
(itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2271
(dev->num_eventid_bits - 1));
2272
val = cpu_to_le64(val);
2273
2274
return vgic_its_write_entry_lock(its, ptr, val, dte);
2275
}
2276
2277
/**
2278
* vgic_its_restore_dte - restore a device table entry
2279
*
2280
* @its: its handle
2281
* @id: device id the DTE corresponds to
2282
* @ptr: kernel VA where the 8 byte DTE is located
2283
* @opaque: unused
2284
*
2285
* Return: < 0 on error, 0 if the dte is the last one, id offset to the
2286
* next dte otherwise
2287
*/
2288
static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2289
void *ptr, void *opaque)
2290
{
2291
struct its_device *dev;
2292
u64 baser = its->baser_device_table;
2293
gpa_t itt_addr;
2294
u8 num_eventid_bits;
2295
u64 entry = *(u64 *)ptr;
2296
bool valid;
2297
u32 offset;
2298
int ret;
2299
2300
entry = le64_to_cpu(entry);
2301
2302
valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2303
num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2304
itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2305
>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2306
2307
if (!valid)
2308
return 1;
2309
2310
/* dte entry is valid */
2311
offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2312
2313
if (!vgic_its_check_id(its, baser, id, NULL))
2314
return -EINVAL;
2315
2316
dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2317
if (IS_ERR(dev))
2318
return PTR_ERR(dev);
2319
2320
ret = vgic_its_restore_itt(its, dev);
2321
if (ret) {
2322
vgic_its_free_device(its->dev->kvm, its, dev);
2323
return ret;
2324
}
2325
2326
return offset;
2327
}
2328
2329
static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2330
const struct list_head *b)
2331
{
2332
struct its_device *deva = container_of(a, struct its_device, dev_list);
2333
struct its_device *devb = container_of(b, struct its_device, dev_list);
2334
2335
if (deva->device_id < devb->device_id)
2336
return -1;
2337
else
2338
return 1;
2339
}
2340
2341
/*
2342
* vgic_its_save_device_tables - Save the device table and all ITT
2343
* into guest RAM
2344
*
2345
* L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2346
* returns the GPA of the device entry
2347
*/
2348
static int vgic_its_save_device_tables(struct vgic_its *its)
2349
{
2350
u64 baser = its->baser_device_table;
2351
struct its_device *dev;
2352
2353
if (!(baser & GITS_BASER_VALID))
2354
return 0;
2355
2356
list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2357
2358
list_for_each_entry(dev, &its->device_list, dev_list) {
2359
int ret;
2360
gpa_t eaddr;
2361
2362
if (!vgic_its_check_id(its, baser,
2363
dev->device_id, &eaddr))
2364
return -EINVAL;
2365
2366
ret = vgic_its_save_itt(its, dev);
2367
if (ret)
2368
return ret;
2369
2370
ret = vgic_its_save_dte(its, dev, eaddr);
2371
if (ret)
2372
return ret;
2373
}
2374
return 0;
2375
}
2376
2377
/**
2378
* handle_l1_dte - callback used for L1 device table entries (2 stage case)
2379
*
2380
* @its: its handle
2381
* @id: index of the entry in the L1 table
2382
* @addr: kernel VA
2383
* @opaque: unused
2384
*
2385
* L1 table entries are scanned by steps of 1 entry
2386
* Return < 0 if error, 0 if last dte was found when scanning the L2
2387
* table, +1 otherwise (meaning next L1 entry must be scanned)
2388
*/
2389
static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2390
void *opaque)
2391
{
2392
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2393
int l2_start_id = id * (SZ_64K / abi->dte_esz);
2394
u64 entry = *(u64 *)addr;
2395
int dte_esz = abi->dte_esz;
2396
gpa_t gpa;
2397
int ret;
2398
2399
entry = le64_to_cpu(entry);
2400
2401
if (!(entry & KVM_ITS_L1E_VALID_MASK))
2402
return 1;
2403
2404
gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2405
2406
ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2407
l2_start_id, vgic_its_restore_dte, NULL);
2408
2409
return ret;
2410
}
2411
2412
/*
2413
* vgic_its_restore_device_tables - Restore the device table and all ITT
2414
* from guest RAM to internal data structs
2415
*/
2416
static int vgic_its_restore_device_tables(struct vgic_its *its)
2417
{
2418
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2419
u64 baser = its->baser_device_table;
2420
int l1_esz, ret;
2421
int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2422
gpa_t l1_gpa;
2423
2424
if (!(baser & GITS_BASER_VALID))
2425
return 0;
2426
2427
l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2428
2429
if (baser & GITS_BASER_INDIRECT) {
2430
l1_esz = GITS_LVL1_ENTRY_SIZE;
2431
ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2432
handle_l1_dte, NULL);
2433
} else {
2434
l1_esz = abi->dte_esz;
2435
ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2436
vgic_its_restore_dte, NULL);
2437
}
2438
2439
/* scan_its_table returns +1 if all entries are invalid */
2440
if (ret > 0)
2441
ret = 0;
2442
2443
if (ret < 0)
2444
vgic_its_free_device_list(its->dev->kvm, its);
2445
2446
return ret;
2447
}
2448
2449
static int vgic_its_save_cte(struct vgic_its *its,
2450
struct its_collection *collection,
2451
gpa_t gpa)
2452
{
2453
u64 val;
2454
2455
val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2456
((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2457
collection->collection_id);
2458
val = cpu_to_le64(val);
2459
2460
return vgic_its_write_entry_lock(its, gpa, val, cte);
2461
}
2462
2463
/*
2464
* Restore a collection entry into the ITS collection table.
2465
* Return +1 on success, 0 if the entry was invalid (which should be
2466
* interpreted as end-of-table), and a negative error value for generic errors.
2467
*/
2468
static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa)
2469
{
2470
struct its_collection *collection;
2471
struct kvm *kvm = its->dev->kvm;
2472
u32 target_addr, coll_id;
2473
u64 val;
2474
int ret;
2475
2476
ret = vgic_its_read_entry_lock(its, gpa, &val, cte);
2477
if (ret)
2478
return ret;
2479
val = le64_to_cpu(val);
2480
if (!(val & KVM_ITS_CTE_VALID_MASK))
2481
return 0;
2482
2483
target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2484
coll_id = val & KVM_ITS_CTE_ICID_MASK;
2485
2486
if (target_addr != COLLECTION_NOT_MAPPED &&
2487
!kvm_get_vcpu_by_id(kvm, target_addr))
2488
return -EINVAL;
2489
2490
collection = find_collection(its, coll_id);
2491
if (collection)
2492
return -EEXIST;
2493
2494
if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2495
return -EINVAL;
2496
2497
ret = vgic_its_alloc_collection(its, &collection, coll_id);
2498
if (ret)
2499
return ret;
2500
collection->target_addr = target_addr;
2501
return 1;
2502
}
2503
2504
/*
2505
* vgic_its_save_collection_table - Save the collection table into
2506
* guest RAM
2507
*/
2508
static int vgic_its_save_collection_table(struct vgic_its *its)
2509
{
2510
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2511
u64 baser = its->baser_coll_table;
2512
gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2513
struct its_collection *collection;
2514
size_t max_size, filled = 0;
2515
int ret, cte_esz = abi->cte_esz;
2516
2517
if (!(baser & GITS_BASER_VALID))
2518
return 0;
2519
2520
max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2521
2522
list_for_each_entry(collection, &its->collection_list, coll_list) {
2523
ret = vgic_its_save_cte(its, collection, gpa);
2524
if (ret)
2525
return ret;
2526
gpa += cte_esz;
2527
filled += cte_esz;
2528
}
2529
2530
if (filled == max_size)
2531
return 0;
2532
2533
/*
2534
* table is not fully filled, add a last dummy element
2535
* with valid bit unset
2536
*/
2537
return vgic_its_write_entry_lock(its, gpa, 0ULL, cte);
2538
}
2539
2540
/*
2541
* vgic_its_restore_collection_table - reads the collection table
2542
* in guest memory and restores the ITS internal state. Requires the
2543
* BASER registers to be restored before.
2544
*/
2545
static int vgic_its_restore_collection_table(struct vgic_its *its)
2546
{
2547
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2548
u64 baser = its->baser_coll_table;
2549
int cte_esz = abi->cte_esz;
2550
size_t max_size, read = 0;
2551
gpa_t gpa;
2552
int ret;
2553
2554
if (!(baser & GITS_BASER_VALID))
2555
return 0;
2556
2557
gpa = GITS_BASER_ADDR_48_to_52(baser);
2558
2559
max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2560
2561
while (read < max_size) {
2562
ret = vgic_its_restore_cte(its, gpa);
2563
if (ret <= 0)
2564
break;
2565
gpa += cte_esz;
2566
read += cte_esz;
2567
}
2568
2569
if (ret > 0)
2570
return 0;
2571
2572
if (ret < 0)
2573
vgic_its_free_collection_list(its->dev->kvm, its);
2574
2575
return ret;
2576
}
2577
2578
/*
2579
* vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2580
* according to v0 ABI
2581
*/
2582
static int vgic_its_save_tables_v0(struct vgic_its *its)
2583
{
2584
int ret;
2585
2586
ret = vgic_its_save_device_tables(its);
2587
if (ret)
2588
return ret;
2589
2590
return vgic_its_save_collection_table(its);
2591
}
2592
2593
/*
2594
* vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2595
* to internal data structs according to V0 ABI
2596
*
2597
*/
2598
static int vgic_its_restore_tables_v0(struct vgic_its *its)
2599
{
2600
int ret;
2601
2602
ret = vgic_its_restore_collection_table(its);
2603
if (ret)
2604
return ret;
2605
2606
ret = vgic_its_restore_device_tables(its);
2607
if (ret)
2608
vgic_its_free_collection_list(its->dev->kvm, its);
2609
return ret;
2610
}
2611
2612
static int vgic_its_commit_v0(struct vgic_its *its)
2613
{
2614
const struct vgic_its_abi *abi;
2615
2616
abi = vgic_its_get_abi(its);
2617
its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2618
its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2619
2620
its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2621
<< GITS_BASER_ENTRY_SIZE_SHIFT);
2622
2623
its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2624
<< GITS_BASER_ENTRY_SIZE_SHIFT);
2625
return 0;
2626
}
2627
2628
static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2629
{
2630
/* We need to keep the ABI specific field values */
2631
its->baser_coll_table &= ~GITS_BASER_VALID;
2632
its->baser_device_table &= ~GITS_BASER_VALID;
2633
its->cbaser = 0;
2634
its->creadr = 0;
2635
its->cwriter = 0;
2636
its->enabled = 0;
2637
vgic_its_free_device_list(kvm, its);
2638
vgic_its_free_collection_list(kvm, its);
2639
}
2640
2641
static int vgic_its_has_attr(struct kvm_device *dev,
2642
struct kvm_device_attr *attr)
2643
{
2644
switch (attr->group) {
2645
case KVM_DEV_ARM_VGIC_GRP_ADDR:
2646
switch (attr->attr) {
2647
case KVM_VGIC_ITS_ADDR_TYPE:
2648
return 0;
2649
}
2650
break;
2651
case KVM_DEV_ARM_VGIC_GRP_CTRL:
2652
switch (attr->attr) {
2653
case KVM_DEV_ARM_VGIC_CTRL_INIT:
2654
return 0;
2655
case KVM_DEV_ARM_ITS_CTRL_RESET:
2656
return 0;
2657
case KVM_DEV_ARM_ITS_SAVE_TABLES:
2658
return 0;
2659
case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2660
return 0;
2661
}
2662
break;
2663
case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2664
return vgic_its_has_attr_regs(dev, attr);
2665
}
2666
return -ENXIO;
2667
}
2668
2669
static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2670
{
2671
const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2672
int ret = 0;
2673
2674
if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2675
return 0;
2676
2677
mutex_lock(&kvm->lock);
2678
2679
if (kvm_trylock_all_vcpus(kvm)) {
2680
mutex_unlock(&kvm->lock);
2681
return -EBUSY;
2682
}
2683
2684
mutex_lock(&kvm->arch.config_lock);
2685
mutex_lock(&its->its_lock);
2686
2687
switch (attr) {
2688
case KVM_DEV_ARM_ITS_CTRL_RESET:
2689
vgic_its_reset(kvm, its);
2690
break;
2691
case KVM_DEV_ARM_ITS_SAVE_TABLES:
2692
ret = abi->save_tables(its);
2693
break;
2694
case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2695
ret = abi->restore_tables(its);
2696
break;
2697
default:
2698
ret = -ENXIO;
2699
break;
2700
}
2701
2702
mutex_unlock(&its->its_lock);
2703
mutex_unlock(&kvm->arch.config_lock);
2704
kvm_unlock_all_vcpus(kvm);
2705
mutex_unlock(&kvm->lock);
2706
return ret;
2707
}
2708
2709
/*
2710
* kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2711
* without the running VCPU when dirty ring is enabled.
2712
*
2713
* The running VCPU is required to track dirty guest pages when dirty ring
2714
* is enabled. Otherwise, the backup bitmap should be used to track the
2715
* dirty guest pages. When vgic/its tables are being saved, the backup
2716
* bitmap is used to track the dirty guest pages due to the missed running
2717
* VCPU in the period.
2718
*/
2719
bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2720
{
2721
struct vgic_dist *dist = &kvm->arch.vgic;
2722
2723
return dist->table_write_in_progress;
2724
}
2725
2726
static int vgic_its_set_attr(struct kvm_device *dev,
2727
struct kvm_device_attr *attr)
2728
{
2729
struct vgic_its *its = dev->private;
2730
int ret;
2731
2732
switch (attr->group) {
2733
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2734
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2735
unsigned long type = (unsigned long)attr->attr;
2736
u64 addr;
2737
2738
if (type != KVM_VGIC_ITS_ADDR_TYPE)
2739
return -ENODEV;
2740
2741
if (copy_from_user(&addr, uaddr, sizeof(addr)))
2742
return -EFAULT;
2743
2744
ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2745
addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2746
if (ret)
2747
return ret;
2748
2749
ret = vgic_register_its_iodev(dev->kvm, its, addr);
2750
if (ret)
2751
return ret;
2752
2753
return vgic_its_debug_init(dev);
2754
2755
}
2756
case KVM_DEV_ARM_VGIC_GRP_CTRL:
2757
return vgic_its_ctrl(dev->kvm, its, attr->attr);
2758
case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2759
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2760
u64 reg;
2761
2762
if (get_user(reg, uaddr))
2763
return -EFAULT;
2764
2765
return vgic_its_attr_regs_access(dev, attr, &reg, true);
2766
}
2767
}
2768
return -ENXIO;
2769
}
2770
2771
static int vgic_its_get_attr(struct kvm_device *dev,
2772
struct kvm_device_attr *attr)
2773
{
2774
switch (attr->group) {
2775
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2776
struct vgic_its *its = dev->private;
2777
u64 addr = its->vgic_its_base;
2778
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2779
unsigned long type = (unsigned long)attr->attr;
2780
2781
if (type != KVM_VGIC_ITS_ADDR_TYPE)
2782
return -ENODEV;
2783
2784
if (copy_to_user(uaddr, &addr, sizeof(addr)))
2785
return -EFAULT;
2786
break;
2787
}
2788
case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2789
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2790
u64 reg;
2791
int ret;
2792
2793
ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2794
if (ret)
2795
return ret;
2796
return put_user(reg, uaddr);
2797
}
2798
default:
2799
return -ENXIO;
2800
}
2801
2802
return 0;
2803
}
2804
2805
static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2806
.name = "kvm-arm-vgic-its",
2807
.create = vgic_its_create,
2808
.destroy = vgic_its_destroy,
2809
.set_attr = vgic_its_set_attr,
2810
.get_attr = vgic_its_get_attr,
2811
.has_attr = vgic_its_has_attr,
2812
};
2813
2814
int kvm_vgic_register_its_device(void)
2815
{
2816
return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2817
KVM_DEV_TYPE_ARM_VGIC_ITS);
2818
}
2819
2820