Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/vgic/vgic-mmio-v2.c
53644 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* VGICv2 MMIO handling functions
4
*/
5
6
#include <linux/irqchip/arm-gic.h>
7
#include <linux/kvm.h>
8
#include <linux/kvm_host.h>
9
#include <linux/nospec.h>
10
11
#include <kvm/iodev.h>
12
#include <kvm/arm_vgic.h>
13
14
#include "vgic.h"
15
#include "vgic-mmio.h"
16
17
/*
18
* The Revision field in the IIDR have the following meanings:
19
*
20
* Revision 1: Report GICv2 interrupts as group 0 instead of group 1
21
* Revision 2: Interrupt groups are guest-configurable and signaled using
22
* their configured groups.
23
*/
24
25
static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
26
gpa_t addr, unsigned int len)
27
{
28
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
29
u32 value;
30
31
switch (addr & 0x0c) {
32
case GIC_DIST_CTRL:
33
value = vgic->enabled ? GICD_ENABLE : 0;
34
break;
35
case GIC_DIST_CTR:
36
value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
37
value = (value >> 5) - 1;
38
value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
39
break;
40
case GIC_DIST_IIDR:
41
value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
42
(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
43
(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
44
break;
45
default:
46
return 0;
47
}
48
49
return value;
50
}
51
52
static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
53
gpa_t addr, unsigned int len,
54
unsigned long val)
55
{
56
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
57
bool was_enabled = dist->enabled;
58
59
switch (addr & 0x0c) {
60
case GIC_DIST_CTRL:
61
dist->enabled = val & GICD_ENABLE;
62
if (!was_enabled && dist->enabled)
63
vgic_kick_vcpus(vcpu->kvm);
64
break;
65
case GIC_DIST_CTR:
66
case GIC_DIST_IIDR:
67
/* Nothing to do */
68
return;
69
}
70
}
71
72
static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
73
gpa_t addr, unsigned int len,
74
unsigned long val)
75
{
76
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
77
u32 reg;
78
79
switch (addr & 0x0c) {
80
case GIC_DIST_IIDR:
81
reg = vgic_mmio_read_v2_misc(vcpu, addr, len);
82
if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
83
return -EINVAL;
84
85
/*
86
* If we observe a write to GICD_IIDR we know that userspace
87
* has been updated and has had a chance to cope with older
88
* kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
89
* interrupts as group 1, and therefore we now allow groups to
90
* be user writable. Doing this by default would break
91
* migration from old kernels to new kernels with legacy
92
* userspace.
93
*/
94
reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
95
switch (reg) {
96
case KVM_VGIC_IMP_REV_2:
97
case KVM_VGIC_IMP_REV_3:
98
vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
99
dist->implementation_rev = reg;
100
return 0;
101
default:
102
return -EINVAL;
103
}
104
}
105
106
vgic_mmio_write_v2_misc(vcpu, addr, len, val);
107
return 0;
108
}
109
110
static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
111
gpa_t addr, unsigned int len,
112
unsigned long val)
113
{
114
if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
115
vgic_mmio_write_group(vcpu, addr, len, val);
116
117
return 0;
118
}
119
120
static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
121
gpa_t addr, unsigned int len,
122
unsigned long val)
123
{
124
int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
125
int intid = val & 0xf;
126
int targets = (val >> 16) & 0xff;
127
int mode = (val >> 24) & 0x03;
128
struct kvm_vcpu *vcpu;
129
unsigned long flags, c;
130
131
switch (mode) {
132
case 0x0: /* as specified by targets */
133
break;
134
case 0x1:
135
targets = (1U << nr_vcpus) - 1; /* all, ... */
136
targets &= ~(1U << source_vcpu->vcpu_id); /* but self */
137
break;
138
case 0x2: /* this very vCPU only */
139
targets = (1U << source_vcpu->vcpu_id);
140
break;
141
case 0x3: /* reserved */
142
return;
143
}
144
145
kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
146
struct vgic_irq *irq;
147
148
if (!(targets & (1U << c)))
149
continue;
150
151
irq = vgic_get_vcpu_irq(vcpu, intid);
152
153
raw_spin_lock_irqsave(&irq->irq_lock, flags);
154
irq->pending_latch = true;
155
irq->source |= 1U << source_vcpu->vcpu_id;
156
157
vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
158
vgic_put_irq(source_vcpu->kvm, irq);
159
}
160
}
161
162
static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
163
gpa_t addr, unsigned int len)
164
{
165
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
166
int i;
167
u64 val = 0;
168
169
for (i = 0; i < len; i++) {
170
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
171
172
val |= (u64)irq->targets << (i * 8);
173
174
vgic_put_irq(vcpu->kvm, irq);
175
}
176
177
return val;
178
}
179
180
static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
181
gpa_t addr, unsigned int len,
182
unsigned long val)
183
{
184
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
185
u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
186
int i;
187
unsigned long flags;
188
189
/* GICD_ITARGETSR[0-7] are read-only */
190
if (intid < VGIC_NR_PRIVATE_IRQS)
191
return;
192
193
for (i = 0; i < len; i++) {
194
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, intid + i);
195
int target;
196
197
raw_spin_lock_irqsave(&irq->irq_lock, flags);
198
199
irq->targets = (val >> (i * 8)) & cpu_mask;
200
target = irq->targets ? __ffs(irq->targets) : 0;
201
irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
202
203
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
204
vgic_put_irq(vcpu->kvm, irq);
205
}
206
}
207
208
static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
209
gpa_t addr, unsigned int len)
210
{
211
u32 intid = addr & 0x0f;
212
int i;
213
u64 val = 0;
214
215
for (i = 0; i < len; i++) {
216
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
217
218
val |= (u64)irq->source << (i * 8);
219
220
vgic_put_irq(vcpu->kvm, irq);
221
}
222
return val;
223
}
224
225
static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
226
gpa_t addr, unsigned int len,
227
unsigned long val)
228
{
229
u32 intid = addr & 0x0f;
230
int i;
231
unsigned long flags;
232
233
for (i = 0; i < len; i++) {
234
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
235
236
raw_spin_lock_irqsave(&irq->irq_lock, flags);
237
238
irq->source &= ~((val >> (i * 8)) & 0xff);
239
if (!irq->source)
240
irq->pending_latch = false;
241
242
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
243
vgic_put_irq(vcpu->kvm, irq);
244
}
245
}
246
247
static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
248
gpa_t addr, unsigned int len,
249
unsigned long val)
250
{
251
u32 intid = addr & 0x0f;
252
int i;
253
unsigned long flags;
254
255
for (i = 0; i < len; i++) {
256
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
257
258
raw_spin_lock_irqsave(&irq->irq_lock, flags);
259
260
irq->source |= (val >> (i * 8)) & 0xff;
261
262
if (irq->source) {
263
irq->pending_latch = true;
264
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
265
} else {
266
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
267
}
268
vgic_put_irq(vcpu->kvm, irq);
269
}
270
}
271
272
#define GICC_ARCH_VERSION_V2 0x2
273
274
/* These are for userland accesses only, there is no guest-facing emulation. */
275
static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
276
gpa_t addr, unsigned int len)
277
{
278
struct vgic_vmcr vmcr;
279
u32 val;
280
281
vgic_get_vmcr(vcpu, &vmcr);
282
283
switch (addr & 0xff) {
284
case GIC_CPU_CTRL:
285
val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
286
val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
287
val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
288
val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
289
val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
290
val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
291
292
break;
293
case GIC_CPU_PRIMASK:
294
/*
295
* Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
296
* PMR field as GICH_VMCR.VMPriMask rather than
297
* GICC_PMR.Priority, so we expose the upper five bits of
298
* priority mask to userspace using the lower bits in the
299
* unsigned long.
300
*/
301
val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
302
GICV_PMR_PRIORITY_SHIFT;
303
break;
304
case GIC_CPU_BINPOINT:
305
val = vmcr.bpr;
306
break;
307
case GIC_CPU_ALIAS_BINPOINT:
308
val = vmcr.abpr;
309
break;
310
case GIC_CPU_IDENT:
311
val = ((PRODUCT_ID_KVM << 20) |
312
(GICC_ARCH_VERSION_V2 << 16) |
313
IMPLEMENTER_ARM);
314
break;
315
default:
316
return 0;
317
}
318
319
return val;
320
}
321
322
static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
323
gpa_t addr, unsigned int len,
324
unsigned long val)
325
{
326
struct vgic_vmcr vmcr;
327
328
vgic_get_vmcr(vcpu, &vmcr);
329
330
switch (addr & 0xff) {
331
case GIC_CPU_CTRL:
332
vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
333
vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
334
vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
335
vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
336
vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
337
vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
338
339
break;
340
case GIC_CPU_PRIMASK:
341
/*
342
* Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
343
* PMR field as GICH_VMCR.VMPriMask rather than
344
* GICC_PMR.Priority, so we expose the upper five bits of
345
* priority mask to userspace using the lower bits in the
346
* unsigned long.
347
*/
348
vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
349
GICV_PMR_PRIORITY_MASK;
350
break;
351
case GIC_CPU_BINPOINT:
352
vmcr.bpr = val;
353
break;
354
case GIC_CPU_ALIAS_BINPOINT:
355
vmcr.abpr = val;
356
break;
357
}
358
359
vgic_set_vmcr(vcpu, &vmcr);
360
}
361
362
static void vgic_mmio_write_dir(struct kvm_vcpu *vcpu,
363
gpa_t addr, unsigned int len,
364
unsigned long val)
365
{
366
if (kvm_vgic_global_state.type == VGIC_V2)
367
vgic_v2_deactivate(vcpu, val);
368
else
369
vgic_v3_deactivate(vcpu, val);
370
}
371
372
static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
373
gpa_t addr, unsigned int len)
374
{
375
int n; /* which APRn is this */
376
377
n = (addr >> 2) & 0x3;
378
379
if (kvm_vgic_global_state.type == VGIC_V2) {
380
/* GICv2 hardware systems support max. 32 groups */
381
if (n != 0)
382
return 0;
383
return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
384
} else {
385
struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
386
387
if (n > vgic_v3_max_apr_idx(vcpu))
388
return 0;
389
390
n = array_index_nospec(n, 4);
391
392
/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
393
return vgicv3->vgic_ap1r[n];
394
}
395
}
396
397
static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
398
gpa_t addr, unsigned int len,
399
unsigned long val)
400
{
401
int n; /* which APRn is this */
402
403
n = (addr >> 2) & 0x3;
404
405
if (kvm_vgic_global_state.type == VGIC_V2) {
406
/* GICv2 hardware systems support max. 32 groups */
407
if (n != 0)
408
return;
409
vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
410
} else {
411
struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
412
413
if (n > vgic_v3_max_apr_idx(vcpu))
414
return;
415
416
n = array_index_nospec(n, 4);
417
418
/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
419
vgicv3->vgic_ap1r[n] = val;
420
}
421
}
422
423
static const struct vgic_register_region vgic_v2_dist_registers[] = {
424
REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
425
vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
426
NULL, vgic_mmio_uaccess_write_v2_misc,
427
12, VGIC_ACCESS_32bit),
428
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
429
vgic_mmio_read_group, vgic_mmio_write_group,
430
NULL, vgic_mmio_uaccess_write_v2_group, 1,
431
VGIC_ACCESS_32bit),
432
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
433
vgic_mmio_read_enable, vgic_mmio_write_senable,
434
NULL, vgic_uaccess_write_senable, 1,
435
VGIC_ACCESS_32bit),
436
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
437
vgic_mmio_read_enable, vgic_mmio_write_cenable,
438
NULL, vgic_uaccess_write_cenable, 1,
439
VGIC_ACCESS_32bit),
440
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
441
vgic_mmio_read_pending, vgic_mmio_write_spending,
442
vgic_uaccess_read_pending, vgic_uaccess_write_spending, 1,
443
VGIC_ACCESS_32bit),
444
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
445
vgic_mmio_read_pending, vgic_mmio_write_cpending,
446
vgic_uaccess_read_pending, vgic_uaccess_write_cpending, 1,
447
VGIC_ACCESS_32bit),
448
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
449
vgic_mmio_read_active, vgic_mmio_write_sactive,
450
vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
451
VGIC_ACCESS_32bit),
452
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
453
vgic_mmio_read_active, vgic_mmio_write_cactive,
454
vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
455
VGIC_ACCESS_32bit),
456
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
457
vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
458
8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
459
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
460
vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
461
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
462
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
463
vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
464
VGIC_ACCESS_32bit),
465
REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
466
vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
467
VGIC_ACCESS_32bit),
468
REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
469
vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
470
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
471
REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
472
vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
473
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
474
};
475
476
static const struct vgic_register_region vgic_v2_cpu_registers[] = {
477
REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
478
vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
479
VGIC_ACCESS_32bit),
480
REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
481
vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
482
VGIC_ACCESS_32bit),
483
REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
484
vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
485
VGIC_ACCESS_32bit),
486
REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
487
vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
488
VGIC_ACCESS_32bit),
489
REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
490
vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
491
VGIC_ACCESS_32bit),
492
REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
493
vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
494
VGIC_ACCESS_32bit),
495
REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_CPU_DEACTIVATE,
496
vgic_mmio_read_raz, vgic_mmio_write_dir,
497
vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi,
498
4, VGIC_ACCESS_32bit),
499
};
500
501
unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
502
{
503
dev->regions = vgic_v2_dist_registers;
504
dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
505
506
kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
507
508
return SZ_4K;
509
}
510
511
unsigned int vgic_v2_init_cpuif_iodev(struct vgic_io_device *dev)
512
{
513
dev->regions = vgic_v2_cpu_registers;
514
dev->nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
515
516
kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
517
518
return KVM_VGIC_V2_CPU_SIZE;
519
}
520
521
int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
522
{
523
const struct vgic_register_region *region;
524
struct vgic_io_device iodev;
525
struct vgic_reg_attr reg_attr;
526
struct kvm_vcpu *vcpu;
527
gpa_t addr;
528
int ret;
529
530
ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
531
if (ret)
532
return ret;
533
534
vcpu = reg_attr.vcpu;
535
addr = reg_attr.addr;
536
537
switch (attr->group) {
538
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
539
iodev.regions = vgic_v2_dist_registers;
540
iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
541
iodev.base_addr = 0;
542
break;
543
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
544
iodev.regions = vgic_v2_cpu_registers;
545
iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
546
iodev.base_addr = 0;
547
break;
548
default:
549
return -ENXIO;
550
}
551
552
/* We only support aligned 32-bit accesses. */
553
if (addr & 3)
554
return -ENXIO;
555
556
region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
557
if (!region)
558
return -ENXIO;
559
560
return 0;
561
}
562
563
int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
564
int offset, u32 *val)
565
{
566
struct vgic_io_device dev = {
567
.regions = vgic_v2_cpu_registers,
568
.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
569
.iodev_type = IODEV_CPUIF,
570
};
571
572
return vgic_uaccess(vcpu, &dev, is_write, offset, val);
573
}
574
575
int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
576
int offset, u32 *val)
577
{
578
struct vgic_io_device dev = {
579
.regions = vgic_v2_dist_registers,
580
.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
581
.iodev_type = IODEV_DIST,
582
};
583
584
return vgic_uaccess(vcpu, &dev, is_write, offset, val);
585
}
586
587