Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/vgic/vgic-mmio-v3.c
26532 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* VGICv3 MMIO handling functions
4
*/
5
6
#include <linux/bitfield.h>
7
#include <linux/irqchip/arm-gic-v3.h>
8
#include <linux/kvm.h>
9
#include <linux/kvm_host.h>
10
#include <linux/interrupt.h>
11
#include <kvm/iodev.h>
12
#include <kvm/arm_vgic.h>
13
14
#include <asm/kvm_emulate.h>
15
#include <asm/kvm_arm.h>
16
#include <asm/kvm_mmu.h>
17
18
#include "vgic.h"
19
#include "vgic-mmio.h"
20
21
/* extract @num bytes at @offset bytes offset in data */
22
unsigned long extract_bytes(u64 data, unsigned int offset,
23
unsigned int num)
24
{
25
return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26
}
27
28
/* allows updates of any half of a 64-bit register (or the whole thing) */
29
u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30
unsigned long val)
31
{
32
int lower = (offset & 4) * 8;
33
int upper = lower + 8 * len - 1;
34
35
reg &= ~GENMASK_ULL(upper, lower);
36
val &= GENMASK_ULL(len * 8 - 1, 0);
37
38
return reg | ((u64)val << lower);
39
}
40
41
bool vgic_has_its(struct kvm *kvm)
42
{
43
struct vgic_dist *dist = &kvm->arch.vgic;
44
45
if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46
return false;
47
48
return dist->has_its;
49
}
50
51
bool vgic_supports_direct_msis(struct kvm *kvm)
52
{
53
/*
54
* Deliberately conflate vLPI and vSGI support on GICv4.1 hardware,
55
* indirectly allowing userspace to control whether or not vPEs are
56
* allocated for the VM.
57
*/
58
if (system_supports_direct_sgis() && !vgic_supports_direct_sgis(kvm))
59
return false;
60
61
return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
62
}
63
64
bool system_supports_direct_sgis(void)
65
{
66
return kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi();
67
}
68
69
bool vgic_supports_direct_sgis(struct kvm *kvm)
70
{
71
return kvm->arch.vgic.nassgicap;
72
}
73
74
/*
75
* The Revision field in the IIDR have the following meanings:
76
*
77
* Revision 2: Interrupt groups are guest-configurable and signaled using
78
* their configured groups.
79
*/
80
81
static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
82
gpa_t addr, unsigned int len)
83
{
84
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
85
u32 value = 0;
86
87
switch (addr & 0x0c) {
88
case GICD_CTLR:
89
if (vgic->enabled)
90
value |= GICD_CTLR_ENABLE_SS_G1;
91
value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
92
if (vgic->nassgireq)
93
value |= GICD_CTLR_nASSGIreq;
94
break;
95
case GICD_TYPER:
96
value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
97
value = (value >> 5) - 1;
98
if (vgic_has_its(vcpu->kvm)) {
99
value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
100
value |= GICD_TYPER_LPIS;
101
} else {
102
value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
103
}
104
break;
105
case GICD_TYPER2:
106
if (vgic_supports_direct_sgis(vcpu->kvm))
107
value = GICD_TYPER2_nASSGIcap;
108
break;
109
case GICD_IIDR:
110
value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
111
(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
112
(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
113
break;
114
default:
115
return 0;
116
}
117
118
return value;
119
}
120
121
static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
122
gpa_t addr, unsigned int len,
123
unsigned long val)
124
{
125
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
126
127
switch (addr & 0x0c) {
128
case GICD_CTLR: {
129
bool was_enabled, is_hwsgi;
130
131
mutex_lock(&vcpu->kvm->arch.config_lock);
132
133
was_enabled = dist->enabled;
134
is_hwsgi = dist->nassgireq;
135
136
dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
137
138
/* Not a GICv4.1? No HW SGIs */
139
if (!vgic_supports_direct_sgis(vcpu->kvm))
140
val &= ~GICD_CTLR_nASSGIreq;
141
142
/* Dist stays enabled? nASSGIreq is RO */
143
if (was_enabled && dist->enabled) {
144
val &= ~GICD_CTLR_nASSGIreq;
145
val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
146
}
147
148
/* Switching HW SGIs? */
149
dist->nassgireq = val & GICD_CTLR_nASSGIreq;
150
if (is_hwsgi != dist->nassgireq)
151
vgic_v4_configure_vsgis(vcpu->kvm);
152
153
if (vgic_supports_direct_sgis(vcpu->kvm) &&
154
was_enabled != dist->enabled)
155
kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
156
else if (!was_enabled && dist->enabled)
157
vgic_kick_vcpus(vcpu->kvm);
158
159
mutex_unlock(&vcpu->kvm->arch.config_lock);
160
break;
161
}
162
case GICD_TYPER:
163
case GICD_TYPER2:
164
case GICD_IIDR:
165
/* This is at best for documentation purposes... */
166
return;
167
}
168
}
169
170
static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
171
gpa_t addr, unsigned int len,
172
unsigned long val)
173
{
174
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
175
u32 reg;
176
177
switch (addr & 0x0c) {
178
case GICD_TYPER2:
179
reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
180
181
if (reg == val)
182
return 0;
183
if (vgic_initialized(vcpu->kvm))
184
return -EBUSY;
185
if ((reg ^ val) & ~GICD_TYPER2_nASSGIcap)
186
return -EINVAL;
187
if (!system_supports_direct_sgis() && val)
188
return -EINVAL;
189
190
dist->nassgicap = val & GICD_TYPER2_nASSGIcap;
191
return 0;
192
case GICD_IIDR:
193
reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
194
if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
195
return -EINVAL;
196
197
reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
198
switch (reg) {
199
case KVM_VGIC_IMP_REV_2:
200
case KVM_VGIC_IMP_REV_3:
201
dist->implementation_rev = reg;
202
return 0;
203
default:
204
return -EINVAL;
205
}
206
case GICD_CTLR:
207
/* Not a GICv4.1? No HW SGIs */
208
if (!vgic_supports_direct_sgis(vcpu->kvm))
209
val &= ~GICD_CTLR_nASSGIreq;
210
211
dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
212
dist->nassgireq = val & GICD_CTLR_nASSGIreq;
213
return 0;
214
}
215
216
vgic_mmio_write_v3_misc(vcpu, addr, len, val);
217
return 0;
218
}
219
220
static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
221
gpa_t addr, unsigned int len)
222
{
223
int intid = VGIC_ADDR_TO_INTID(addr, 64);
224
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, intid);
225
unsigned long ret = 0;
226
227
if (!irq)
228
return 0;
229
230
/* The upper word is RAZ for us. */
231
if (!(addr & 4))
232
ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
233
234
vgic_put_irq(vcpu->kvm, irq);
235
return ret;
236
}
237
238
static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
239
gpa_t addr, unsigned int len,
240
unsigned long val)
241
{
242
int intid = VGIC_ADDR_TO_INTID(addr, 64);
243
struct vgic_irq *irq;
244
unsigned long flags;
245
246
/* The upper word is WI for us since we don't implement Aff3. */
247
if (addr & 4)
248
return;
249
250
irq = vgic_get_irq(vcpu->kvm, intid);
251
252
if (!irq)
253
return;
254
255
raw_spin_lock_irqsave(&irq->irq_lock, flags);
256
257
/* We only care about and preserve Aff0, Aff1 and Aff2. */
258
irq->mpidr = val & GENMASK(23, 0);
259
irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
260
261
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
262
vgic_put_irq(vcpu->kvm, irq);
263
}
264
265
bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
266
{
267
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
268
269
return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
270
}
271
272
static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
273
gpa_t addr, unsigned int len)
274
{
275
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
276
unsigned long val;
277
278
val = atomic_read(&vgic_cpu->ctlr);
279
if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
280
val |= GICR_CTLR_IR | GICR_CTLR_CES;
281
282
return val;
283
}
284
285
static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
286
gpa_t addr, unsigned int len,
287
unsigned long val)
288
{
289
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
290
u32 ctlr;
291
292
if (!vgic_has_its(vcpu->kvm))
293
return;
294
295
if (!(val & GICR_CTLR_ENABLE_LPIS)) {
296
/*
297
* Don't disable if RWP is set, as there already an
298
* ongoing disable. Funky guest...
299
*/
300
ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
301
GICR_CTLR_ENABLE_LPIS,
302
GICR_CTLR_RWP);
303
if (ctlr != GICR_CTLR_ENABLE_LPIS)
304
return;
305
306
vgic_flush_pending_lpis(vcpu);
307
vgic_its_invalidate_all_caches(vcpu->kvm);
308
atomic_set_release(&vgic_cpu->ctlr, 0);
309
} else {
310
ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
311
GICR_CTLR_ENABLE_LPIS);
312
if (ctlr != 0)
313
return;
314
315
vgic_enable_lpis(vcpu);
316
}
317
}
318
319
static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
320
{
321
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
322
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
323
struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
324
325
if (!rdreg)
326
return false;
327
328
if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
329
return false;
330
} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
331
struct list_head *rd_regions = &vgic->rd_regions;
332
gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
333
334
/*
335
* the rdist is the last one of the redist region,
336
* check whether there is no other contiguous rdist region
337
*/
338
list_for_each_entry(iter, rd_regions, list) {
339
if (iter->base == end && iter->free_index > 0)
340
return false;
341
}
342
}
343
return true;
344
}
345
346
static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
347
gpa_t addr, unsigned int len)
348
{
349
unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
350
int target_vcpu_id = vcpu->vcpu_id;
351
u64 value;
352
353
value = (u64)(mpidr & GENMASK(23, 0)) << 32;
354
value |= ((target_vcpu_id & 0xffff) << 8);
355
356
if (vgic_has_its(vcpu->kvm))
357
value |= GICR_TYPER_PLPIS;
358
359
if (vgic_mmio_vcpu_rdist_is_last(vcpu))
360
value |= GICR_TYPER_LAST;
361
362
return extract_bytes(value, addr & 7, len);
363
}
364
365
static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
366
gpa_t addr, unsigned int len)
367
{
368
return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
369
}
370
371
static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
372
gpa_t addr, unsigned int len)
373
{
374
switch (addr & 0xffff) {
375
case GICD_PIDR2:
376
/* report a GICv3 compliant implementation */
377
return 0x3b;
378
}
379
380
return 0;
381
}
382
383
static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
384
gpa_t addr, unsigned int len,
385
unsigned long val)
386
{
387
int ret;
388
389
ret = vgic_uaccess_write_spending(vcpu, addr, len, val);
390
if (ret)
391
return ret;
392
393
return vgic_uaccess_write_cpending(vcpu, addr, len, ~val);
394
}
395
396
/* We want to avoid outer shareable. */
397
u64 vgic_sanitise_shareability(u64 field)
398
{
399
switch (field) {
400
case GIC_BASER_OuterShareable:
401
return GIC_BASER_InnerShareable;
402
default:
403
return field;
404
}
405
}
406
407
/* Avoid any inner non-cacheable mapping. */
408
u64 vgic_sanitise_inner_cacheability(u64 field)
409
{
410
switch (field) {
411
case GIC_BASER_CACHE_nCnB:
412
case GIC_BASER_CACHE_nC:
413
return GIC_BASER_CACHE_RaWb;
414
default:
415
return field;
416
}
417
}
418
419
/* Non-cacheable or same-as-inner are OK. */
420
u64 vgic_sanitise_outer_cacheability(u64 field)
421
{
422
switch (field) {
423
case GIC_BASER_CACHE_SameAsInner:
424
case GIC_BASER_CACHE_nC:
425
return field;
426
default:
427
return GIC_BASER_CACHE_SameAsInner;
428
}
429
}
430
431
u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
432
u64 (*sanitise_fn)(u64))
433
{
434
u64 field = (reg & field_mask) >> field_shift;
435
436
field = sanitise_fn(field) << field_shift;
437
return (reg & ~field_mask) | field;
438
}
439
440
#define PROPBASER_RES0_MASK \
441
(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
442
#define PENDBASER_RES0_MASK \
443
(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
444
GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
445
446
static u64 vgic_sanitise_pendbaser(u64 reg)
447
{
448
reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
449
GICR_PENDBASER_SHAREABILITY_SHIFT,
450
vgic_sanitise_shareability);
451
reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
452
GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
453
vgic_sanitise_inner_cacheability);
454
reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
455
GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
456
vgic_sanitise_outer_cacheability);
457
458
reg &= ~PENDBASER_RES0_MASK;
459
460
return reg;
461
}
462
463
static u64 vgic_sanitise_propbaser(u64 reg)
464
{
465
reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
466
GICR_PROPBASER_SHAREABILITY_SHIFT,
467
vgic_sanitise_shareability);
468
reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
469
GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
470
vgic_sanitise_inner_cacheability);
471
reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
472
GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
473
vgic_sanitise_outer_cacheability);
474
475
reg &= ~PROPBASER_RES0_MASK;
476
return reg;
477
}
478
479
static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
480
gpa_t addr, unsigned int len)
481
{
482
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
483
484
return extract_bytes(dist->propbaser, addr & 7, len);
485
}
486
487
static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
488
gpa_t addr, unsigned int len,
489
unsigned long val)
490
{
491
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
492
u64 old_propbaser, propbaser;
493
494
/* Storing a value with LPIs already enabled is undefined */
495
if (vgic_lpis_enabled(vcpu))
496
return;
497
498
do {
499
old_propbaser = READ_ONCE(dist->propbaser);
500
propbaser = old_propbaser;
501
propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
502
propbaser = vgic_sanitise_propbaser(propbaser);
503
} while (cmpxchg64(&dist->propbaser, old_propbaser,
504
propbaser) != old_propbaser);
505
}
506
507
static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
508
gpa_t addr, unsigned int len)
509
{
510
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
511
u64 value = vgic_cpu->pendbaser;
512
513
value &= ~GICR_PENDBASER_PTZ;
514
515
return extract_bytes(value, addr & 7, len);
516
}
517
518
static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
519
gpa_t addr, unsigned int len,
520
unsigned long val)
521
{
522
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
523
u64 old_pendbaser, pendbaser;
524
525
/* Storing a value with LPIs already enabled is undefined */
526
if (vgic_lpis_enabled(vcpu))
527
return;
528
529
do {
530
old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
531
pendbaser = old_pendbaser;
532
pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
533
pendbaser = vgic_sanitise_pendbaser(pendbaser);
534
} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
535
pendbaser) != old_pendbaser);
536
}
537
538
static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
539
gpa_t addr, unsigned int len)
540
{
541
return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
542
}
543
544
static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
545
{
546
if (busy) {
547
atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
548
smp_mb__after_atomic();
549
} else {
550
smp_mb__before_atomic();
551
atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
552
}
553
}
554
555
static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
556
gpa_t addr, unsigned int len,
557
unsigned long val)
558
{
559
struct vgic_irq *irq;
560
u32 intid;
561
562
/*
563
* If the guest wrote only to the upper 32bit part of the
564
* register, drop the write on the floor, as it is only for
565
* vPEs (which we don't support for obvious reasons).
566
*
567
* Also discard the access if LPIs are not enabled.
568
*/
569
if ((addr & 4) || !vgic_lpis_enabled(vcpu))
570
return;
571
572
intid = lower_32_bits(val);
573
if (intid < VGIC_MIN_LPI)
574
return;
575
576
vgic_set_rdist_busy(vcpu, true);
577
578
irq = vgic_get_irq(vcpu->kvm, intid);
579
if (irq) {
580
vgic_its_inv_lpi(vcpu->kvm, irq);
581
vgic_put_irq(vcpu->kvm, irq);
582
}
583
584
vgic_set_rdist_busy(vcpu, false);
585
}
586
587
static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
588
gpa_t addr, unsigned int len,
589
unsigned long val)
590
{
591
/* See vgic_mmio_write_invlpi() for the early return rationale */
592
if ((addr & 4) || !vgic_lpis_enabled(vcpu))
593
return;
594
595
vgic_set_rdist_busy(vcpu, true);
596
vgic_its_invall(vcpu);
597
vgic_set_rdist_busy(vcpu, false);
598
}
599
600
/*
601
* The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
602
* redistributors, while SPIs are covered by registers in the distributor
603
* block. Trying to set private IRQs in this block gets ignored.
604
* We take some special care here to fix the calculation of the register
605
* offset.
606
*/
607
#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
608
{ \
609
.reg_offset = off, \
610
.bits_per_irq = bpi, \
611
.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
612
.access_flags = acc, \
613
.read = vgic_mmio_read_raz, \
614
.write = vgic_mmio_write_wi, \
615
}, { \
616
.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
617
.bits_per_irq = bpi, \
618
.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
619
.access_flags = acc, \
620
.read = rd, \
621
.write = wr, \
622
.uaccess_read = ur, \
623
.uaccess_write = uw, \
624
}
625
626
static const struct vgic_register_region vgic_v3_dist_registers[] = {
627
REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
628
vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
629
NULL, vgic_mmio_uaccess_write_v3_misc,
630
16, VGIC_ACCESS_32bit),
631
REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
632
vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
633
VGIC_ACCESS_32bit),
634
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
635
vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
636
VGIC_ACCESS_32bit),
637
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
638
vgic_mmio_read_enable, vgic_mmio_write_senable,
639
NULL, vgic_uaccess_write_senable, 1,
640
VGIC_ACCESS_32bit),
641
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
642
vgic_mmio_read_enable, vgic_mmio_write_cenable,
643
NULL, vgic_uaccess_write_cenable, 1,
644
VGIC_ACCESS_32bit),
645
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
646
vgic_mmio_read_pending, vgic_mmio_write_spending,
647
vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
648
VGIC_ACCESS_32bit),
649
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
650
vgic_mmio_read_pending, vgic_mmio_write_cpending,
651
vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
652
VGIC_ACCESS_32bit),
653
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
654
vgic_mmio_read_active, vgic_mmio_write_sactive,
655
vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
656
VGIC_ACCESS_32bit),
657
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
658
vgic_mmio_read_active, vgic_mmio_write_cactive,
659
vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
660
1, VGIC_ACCESS_32bit),
661
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
662
vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
663
8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
664
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
665
vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
666
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
667
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
668
vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
669
VGIC_ACCESS_32bit),
670
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
671
vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
672
VGIC_ACCESS_32bit),
673
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
674
vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
675
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
676
REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
677
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
678
VGIC_ACCESS_32bit),
679
};
680
681
static const struct vgic_register_region vgic_v3_rd_registers[] = {
682
/* RD_base registers */
683
REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
684
vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
685
VGIC_ACCESS_32bit),
686
REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
687
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
688
VGIC_ACCESS_32bit),
689
REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
690
vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
691
VGIC_ACCESS_32bit),
692
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
693
vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
694
NULL, vgic_mmio_uaccess_write_wi, 8,
695
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
696
REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
697
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
698
VGIC_ACCESS_32bit),
699
REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
700
vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
701
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
702
REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
703
vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
704
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
705
REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
706
vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
707
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
708
REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
709
vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
710
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
711
REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
712
vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
713
VGIC_ACCESS_32bit),
714
REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
715
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
716
VGIC_ACCESS_32bit),
717
/* SGI_base registers */
718
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
719
vgic_mmio_read_group, vgic_mmio_write_group, 4,
720
VGIC_ACCESS_32bit),
721
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
722
vgic_mmio_read_enable, vgic_mmio_write_senable,
723
NULL, vgic_uaccess_write_senable, 4,
724
VGIC_ACCESS_32bit),
725
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
726
vgic_mmio_read_enable, vgic_mmio_write_cenable,
727
NULL, vgic_uaccess_write_cenable, 4,
728
VGIC_ACCESS_32bit),
729
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
730
vgic_mmio_read_pending, vgic_mmio_write_spending,
731
vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
732
VGIC_ACCESS_32bit),
733
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
734
vgic_mmio_read_pending, vgic_mmio_write_cpending,
735
vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
736
VGIC_ACCESS_32bit),
737
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
738
vgic_mmio_read_active, vgic_mmio_write_sactive,
739
vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
740
VGIC_ACCESS_32bit),
741
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
742
vgic_mmio_read_active, vgic_mmio_write_cactive,
743
vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
744
VGIC_ACCESS_32bit),
745
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
746
vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
747
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
748
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
749
vgic_mmio_read_config, vgic_mmio_write_config, 8,
750
VGIC_ACCESS_32bit),
751
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
752
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
753
VGIC_ACCESS_32bit),
754
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
755
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
756
VGIC_ACCESS_32bit),
757
};
758
759
unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
760
{
761
dev->regions = vgic_v3_dist_registers;
762
dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
763
764
kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
765
766
return SZ_64K;
767
}
768
769
/**
770
* vgic_register_redist_iodev - register a single redist iodev
771
* @vcpu: The VCPU to which the redistributor belongs
772
*
773
* Register a KVM iodev for this VCPU's redistributor using the address
774
* provided.
775
*
776
* Return 0 on success, -ERRNO otherwise.
777
*/
778
int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
779
{
780
struct kvm *kvm = vcpu->kvm;
781
struct vgic_dist *vgic = &kvm->arch.vgic;
782
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
783
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
784
struct vgic_redist_region *rdreg;
785
gpa_t rd_base;
786
int ret = 0;
787
788
lockdep_assert_held(&kvm->slots_lock);
789
mutex_lock(&kvm->arch.config_lock);
790
791
if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
792
goto out_unlock;
793
794
/*
795
* We may be creating VCPUs before having set the base address for the
796
* redistributor region, in which case we will come back to this
797
* function for all VCPUs when the base address is set. Just return
798
* without doing any work for now.
799
*/
800
rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
801
if (!rdreg)
802
goto out_unlock;
803
804
if (!vgic_v3_check_base(kvm)) {
805
ret = -EINVAL;
806
goto out_unlock;
807
}
808
809
vgic_cpu->rdreg = rdreg;
810
vgic_cpu->rdreg_index = rdreg->free_index;
811
812
rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
813
814
kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
815
rd_dev->base_addr = rd_base;
816
rd_dev->iodev_type = IODEV_REDIST;
817
rd_dev->regions = vgic_v3_rd_registers;
818
rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
819
rd_dev->redist_vcpu = vcpu;
820
821
mutex_unlock(&kvm->arch.config_lock);
822
823
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
824
2 * SZ_64K, &rd_dev->dev);
825
if (ret)
826
return ret;
827
828
/* Protected by slots_lock */
829
rdreg->free_index++;
830
return 0;
831
832
out_unlock:
833
mutex_unlock(&kvm->arch.config_lock);
834
return ret;
835
}
836
837
void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
838
{
839
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
840
841
kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
842
}
843
844
static int vgic_register_all_redist_iodevs(struct kvm *kvm)
845
{
846
struct kvm_vcpu *vcpu;
847
unsigned long c;
848
int ret = 0;
849
850
lockdep_assert_held(&kvm->slots_lock);
851
852
kvm_for_each_vcpu(c, vcpu, kvm) {
853
ret = vgic_register_redist_iodev(vcpu);
854
if (ret)
855
break;
856
}
857
858
if (ret) {
859
/* The current c failed, so iterate over the previous ones. */
860
int i;
861
862
for (i = 0; i < c; i++) {
863
vcpu = kvm_get_vcpu(kvm, i);
864
vgic_unregister_redist_iodev(vcpu);
865
}
866
}
867
868
return ret;
869
}
870
871
/**
872
* vgic_v3_alloc_redist_region - Allocate a new redistributor region
873
*
874
* Performs various checks before inserting the rdist region in the list.
875
* Those tests depend on whether the size of the rdist region is known
876
* (ie. count != 0). The list is sorted by rdist region index.
877
*
878
* @kvm: kvm handle
879
* @index: redist region index
880
* @base: base of the new rdist region
881
* @count: number of redistributors the region is made of (0 in the old style
882
* single region, whose size is induced from the number of vcpus)
883
*
884
* Return 0 on success, < 0 otherwise
885
*/
886
static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
887
gpa_t base, uint32_t count)
888
{
889
struct vgic_dist *d = &kvm->arch.vgic;
890
struct vgic_redist_region *rdreg;
891
struct list_head *rd_regions = &d->rd_regions;
892
int nr_vcpus = atomic_read(&kvm->online_vcpus);
893
size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
894
: nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
895
int ret;
896
897
/* cross the end of memory ? */
898
if (base + size < base)
899
return -EINVAL;
900
901
if (list_empty(rd_regions)) {
902
if (index != 0)
903
return -EINVAL;
904
} else {
905
rdreg = list_last_entry(rd_regions,
906
struct vgic_redist_region, list);
907
908
/* Don't mix single region and discrete redist regions */
909
if (!count && rdreg->count)
910
return -EINVAL;
911
912
if (!count)
913
return -EEXIST;
914
915
if (index != rdreg->index + 1)
916
return -EINVAL;
917
}
918
919
/*
920
* For legacy single-region redistributor regions (!count),
921
* check that the redistributor region does not overlap with the
922
* distributor's address space.
923
*/
924
if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
925
vgic_dist_overlap(kvm, base, size))
926
return -EINVAL;
927
928
/* collision with any other rdist region? */
929
if (vgic_v3_rdist_overlap(kvm, base, size))
930
return -EINVAL;
931
932
rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
933
if (!rdreg)
934
return -ENOMEM;
935
936
rdreg->base = VGIC_ADDR_UNDEF;
937
938
ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
939
if (ret)
940
goto free;
941
942
rdreg->base = base;
943
rdreg->count = count;
944
rdreg->free_index = 0;
945
rdreg->index = index;
946
947
list_add_tail(&rdreg->list, rd_regions);
948
return 0;
949
free:
950
kfree(rdreg);
951
return ret;
952
}
953
954
void vgic_v3_free_redist_region(struct kvm *kvm, struct vgic_redist_region *rdreg)
955
{
956
struct kvm_vcpu *vcpu;
957
unsigned long c;
958
959
lockdep_assert_held(&kvm->arch.config_lock);
960
961
/* Garbage collect the region */
962
kvm_for_each_vcpu(c, vcpu, kvm) {
963
if (vcpu->arch.vgic_cpu.rdreg == rdreg)
964
vcpu->arch.vgic_cpu.rdreg = NULL;
965
}
966
967
list_del(&rdreg->list);
968
kfree(rdreg);
969
}
970
971
int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
972
{
973
int ret;
974
975
mutex_lock(&kvm->arch.config_lock);
976
ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
977
mutex_unlock(&kvm->arch.config_lock);
978
if (ret)
979
return ret;
980
981
/*
982
* Register iodevs for each existing VCPU. Adding more VCPUs
983
* afterwards will register the iodevs when needed.
984
*/
985
ret = vgic_register_all_redist_iodevs(kvm);
986
if (ret) {
987
struct vgic_redist_region *rdreg;
988
989
mutex_lock(&kvm->arch.config_lock);
990
rdreg = vgic_v3_rdist_region_from_index(kvm, index);
991
vgic_v3_free_redist_region(kvm, rdreg);
992
mutex_unlock(&kvm->arch.config_lock);
993
return ret;
994
}
995
996
return 0;
997
}
998
999
int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
1000
{
1001
const struct vgic_register_region *region;
1002
struct vgic_io_device iodev;
1003
struct vgic_reg_attr reg_attr;
1004
struct kvm_vcpu *vcpu;
1005
gpa_t addr;
1006
int ret;
1007
1008
ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
1009
if (ret)
1010
return ret;
1011
1012
vcpu = reg_attr.vcpu;
1013
addr = reg_attr.addr;
1014
1015
switch (attr->group) {
1016
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1017
iodev.regions = vgic_v3_dist_registers;
1018
iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
1019
iodev.base_addr = 0;
1020
break;
1021
case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
1022
iodev.regions = vgic_v3_rd_registers;
1023
iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
1024
iodev.base_addr = 0;
1025
break;
1026
}
1027
case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
1028
return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
1029
default:
1030
return -ENXIO;
1031
}
1032
1033
/* We only support aligned 32-bit accesses. */
1034
if (addr & 3)
1035
return -ENXIO;
1036
1037
region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1038
if (!region)
1039
return -ENXIO;
1040
1041
return 0;
1042
}
1043
1044
/*
1045
* The ICC_SGI* registers encode the affinity differently from the MPIDR,
1046
* so provide a wrapper to use the existing defines to isolate a certain
1047
* affinity level.
1048
*/
1049
#define SGI_AFFINITY_LEVEL(reg, level) \
1050
((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1051
>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1052
1053
static void vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, u32 sgi, bool allow_group1)
1054
{
1055
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, sgi);
1056
unsigned long flags;
1057
1058
raw_spin_lock_irqsave(&irq->irq_lock, flags);
1059
1060
/*
1061
* An access targeting Group0 SGIs can only generate
1062
* those, while an access targeting Group1 SGIs can
1063
* generate interrupts of either group.
1064
*/
1065
if (!irq->group || allow_group1) {
1066
if (!irq->hw) {
1067
irq->pending_latch = true;
1068
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1069
} else {
1070
/* HW SGI? Ask the GIC to inject it */
1071
int err;
1072
err = irq_set_irqchip_state(irq->host_irq,
1073
IRQCHIP_STATE_PENDING,
1074
true);
1075
WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1076
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1077
}
1078
} else {
1079
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1080
}
1081
1082
vgic_put_irq(vcpu->kvm, irq);
1083
}
1084
1085
/**
1086
* vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1087
* @vcpu: The VCPU requesting a SGI
1088
* @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1089
* @allow_group1: Does the sysreg access allow generation of G1 SGIs
1090
*
1091
* With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1092
* This will trap in sys_regs.c and call this function.
1093
* This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1094
* target processors as well as a bitmask of 16 Aff0 CPUs.
1095
*
1096
* If the interrupt routing mode bit is not set, we iterate over the Aff0
1097
* bits and signal the VCPUs matching the provided Aff{3,2,1}.
1098
*
1099
* If this bit is set, we signal all, but not the calling VCPU.
1100
*/
1101
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1102
{
1103
struct kvm *kvm = vcpu->kvm;
1104
struct kvm_vcpu *c_vcpu;
1105
unsigned long target_cpus;
1106
u64 mpidr;
1107
u32 sgi, aff0;
1108
unsigned long c;
1109
1110
sgi = FIELD_GET(ICC_SGI1R_SGI_ID_MASK, reg);
1111
1112
/* Broadcast */
1113
if (unlikely(reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT))) {
1114
kvm_for_each_vcpu(c, c_vcpu, kvm) {
1115
/* Don't signal the calling VCPU */
1116
if (c_vcpu == vcpu)
1117
continue;
1118
1119
vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1120
}
1121
1122
return;
1123
}
1124
1125
/* We iterate over affinities to find the corresponding vcpus */
1126
mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1127
mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1128
mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1129
target_cpus = FIELD_GET(ICC_SGI1R_TARGET_LIST_MASK, reg);
1130
1131
for_each_set_bit(aff0, &target_cpus, hweight_long(ICC_SGI1R_TARGET_LIST_MASK)) {
1132
c_vcpu = kvm_mpidr_to_vcpu(kvm, mpidr | aff0);
1133
if (c_vcpu)
1134
vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1135
}
1136
}
1137
1138
int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1139
int offset, u32 *val)
1140
{
1141
struct vgic_io_device dev = {
1142
.regions = vgic_v3_dist_registers,
1143
.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1144
};
1145
1146
return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1147
}
1148
1149
int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1150
int offset, u32 *val)
1151
{
1152
struct vgic_io_device rd_dev = {
1153
.regions = vgic_v3_rd_registers,
1154
.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1155
};
1156
1157
return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1158
}
1159
1160
int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1161
u32 intid, u32 *val)
1162
{
1163
if (intid % 32)
1164
return -EINVAL;
1165
1166
if (is_write)
1167
vgic_write_irq_line_level_info(vcpu, intid, *val);
1168
else
1169
*val = vgic_read_irq_line_level_info(vcpu, intid);
1170
1171
return 0;
1172
}
1173
1174