#include <linux/irqchip/arm-gic.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_mmu.h>
#include "vgic-mmio.h"
#include "vgic.h"
static inline void vgic_v2_write_lr(int lr, u32 val)
{
void __iomem *base = kvm_vgic_global_state.vctrl_base;
writel_relaxed(val, base + GICH_LR0 + (lr * 4));
}
void vgic_v2_init_lrs(void)
{
int i;
for (i = 0; i < kvm_vgic_global_state.nr_lr; i++)
vgic_v2_write_lr(i, 0);
}
void vgic_v2_configure_hcr(struct kvm_vcpu *vcpu,
struct ap_list_summary *als)
{
struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
cpuif->vgic_hcr = GICH_HCR_EN;
if (irqs_pending_outside_lrs(als))
cpuif->vgic_hcr |= GICH_HCR_NPIE;
if (irqs_active_outside_lrs(als))
cpuif->vgic_hcr |= GICH_HCR_LRENPIE;
if (irqs_outside_lrs(als))
cpuif->vgic_hcr |= GICH_HCR_UIE;
cpuif->vgic_hcr |= (cpuif->vgic_vmcr & GICH_VMCR_ENABLE_GRP0_MASK) ?
GICH_HCR_VGrp0DIE : GICH_HCR_VGrp0EIE;
cpuif->vgic_hcr |= (cpuif->vgic_vmcr & GICH_VMCR_ENABLE_GRP1_MASK) ?
GICH_HCR_VGrp1DIE : GICH_HCR_VGrp1EIE;
}
static bool lr_signals_eoi_mi(u32 lr_val)
{
return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
!(lr_val & GICH_LR_HW);
}
static void vgic_v2_fold_lr(struct kvm_vcpu *vcpu, u32 val)
{
u32 cpuid, intid = val & GICH_LR_VIRTUALID;
struct vgic_irq *irq;
bool deactivated;
cpuid = FIELD_GET(GICH_LR_PHYSID_CPUID, val) & 7;
if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
irq = vgic_get_vcpu_irq(vcpu, intid);
scoped_guard(raw_spinlock, &irq->irq_lock) {
deactivated = irq->active && !(val & GICH_LR_ACTIVE_BIT);
irq->active = !!(val & GICH_LR_ACTIVE_BIT);
if (irq->active && vgic_irq_is_sgi(intid))
irq->active_source = cpuid;
if (irq->config == VGIC_CONFIG_EDGE &&
(val & GICH_LR_PENDING_BIT)) {
irq->pending_latch = true;
if (vgic_irq_is_sgi(intid))
irq->source |= (1 << cpuid);
}
if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE))
irq->pending_latch = false;
vgic_irq_handle_resampling(irq, deactivated, val & GICH_LR_PENDING_BIT);
irq->on_lr = false;
}
vgic_put_irq(vcpu->kvm, irq);
}
static u32 vgic_v2_compute_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq);
void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
u32 eoicount = FIELD_GET(GICH_HCR_EOICOUNT, cpuif->vgic_hcr);
struct vgic_irq *irq;
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
for (int lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++)
vgic_v2_fold_lr(vcpu, cpuif->vgic_lr[lr]);
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
u32 lr;
if (!eoicount) {
break;
} else {
guard(raw_spinlock)(&irq->irq_lock);
if (!(likely(vgic_target_oracle(irq) == vcpu) &&
irq->active))
continue;
lr = vgic_v2_compute_lr(vcpu, irq) & ~GICH_LR_ACTIVE_BIT;
}
if (lr & GICH_LR_HW)
writel_relaxed(FIELD_GET(GICH_LR_PHYSID_CPUID, lr),
kvm_vgic_global_state.gicc_base + GIC_CPU_DEACTIVATE);
vgic_v2_fold_lr(vcpu, lr);
eoicount--;
}
cpuif->used_lrs = 0;
}
void vgic_v2_deactivate(struct kvm_vcpu *vcpu, u32 val)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
struct kvm_vcpu *target_vcpu = NULL;
bool mmio = false;
struct vgic_irq *irq;
unsigned long flags;
u64 lr = 0;
u8 cpuid;
cpuid = FIELD_GET(GENMASK_ULL(12, 10), val);
val &= ~GENMASK_ULL(12, 10);
if (!(cpuif->vgic_vmcr & GICH_VMCR_EOI_MODE_MASK))
return;
local_irq_save(flags);
irq = vgic_get_vcpu_irq(vcpu, val);
if (WARN_ON_ONCE(!irq))
goto out;
scoped_guard(raw_spinlock, &irq->irq_lock) {
target_vcpu = irq->vcpu;
if (!target_vcpu)
goto put;
if (irq->on_lr) {
mmio = true;
goto put;
}
if (val < VGIC_NR_SGIS && irq->active_source != cpuid) {
target_vcpu = NULL;
goto put;
}
lr = vgic_v2_compute_lr(vcpu, irq) & ~GICH_LR_ACTIVE_BIT;
}
if (lr & GICH_LR_HW)
writel_relaxed(FIELD_GET(GICH_LR_PHYSID_CPUID, lr),
kvm_vgic_global_state.gicc_base + GIC_CPU_DEACTIVATE);
vgic_v2_fold_lr(vcpu, lr);
put:
vgic_put_irq(vcpu->kvm, irq);
out:
local_irq_restore(flags);
if (mmio)
vgic_mmio_write_cactive(vcpu, (val / 32) * 4, 4, BIT(val % 32));
if (target_vcpu)
kvm_make_request(KVM_REQ_VGIC_PROCESS_UPDATE, target_vcpu);
}
static u32 vgic_v2_compute_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
{
u32 val = irq->intid;
bool allow_pending = true;
WARN_ON(irq->on_lr);
if (irq->active) {
val |= GICH_LR_ACTIVE_BIT;
if (vgic_irq_is_sgi(irq->intid))
val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
if (vgic_irq_is_multi_sgi(irq)) {
allow_pending = false;
val |= GICH_LR_EOI;
}
}
if (irq->group)
val |= GICH_LR_GROUP1;
if (irq->hw && !vgic_irq_needs_resampling(irq)) {
val |= GICH_LR_HW;
val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
if (irq->active)
allow_pending = false;
} else {
if (irq->config == VGIC_CONFIG_LEVEL) {
val |= GICH_LR_EOI;
if (irq->active)
allow_pending = false;
}
}
if (allow_pending && irq_is_pending(irq)) {
val |= GICH_LR_PENDING_BIT;
if (vgic_irq_is_sgi(irq->intid)) {
u32 src = ffs(irq->source);
if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
irq->intid))
return 0;
val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
if (irq->source & ~BIT(src - 1))
val |= GICH_LR_EOI;
}
}
val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
return val;
}
void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
u32 val = vgic_v2_compute_lr(vcpu, irq);
vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
if (val & GICH_LR_PENDING_BIT) {
if (irq->config == VGIC_CONFIG_EDGE)
irq->pending_latch = false;
if (vgic_irq_is_sgi(irq->intid)) {
u32 src = ffs(irq->source);
irq->source &= ~BIT(src - 1);
if (irq->source)
irq->pending_latch = true;
}
}
if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT))
irq->line_level = false;
val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
irq->on_lr = true;
}
void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
}
void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u32 vmcr;
vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) &
GICH_VMCR_ENABLE_GRP0_MASK;
vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) &
GICH_VMCR_ENABLE_GRP1_MASK;
vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) &
GICH_VMCR_ACK_CTL_MASK;
vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) &
GICH_VMCR_FIQ_EN_MASK;
vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) &
GICH_VMCR_CBPR_MASK;
vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) &
GICH_VMCR_EOI_MODE_MASK;
vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
GICH_VMCR_ALIAS_BINPOINT_MASK;
vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
GICH_VMCR_BINPOINT_MASK;
vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) <<
GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK;
cpu_if->vgic_vmcr = vmcr;
}
void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u32 vmcr;
vmcr = cpu_if->vgic_vmcr;
vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >>
GICH_VMCR_ENABLE_GRP0_SHIFT;
vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >>
GICH_VMCR_ENABLE_GRP1_SHIFT;
vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >>
GICH_VMCR_ACK_CTL_SHIFT;
vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >>
GICH_VMCR_FIQ_EN_SHIFT;
vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >>
GICH_VMCR_CBPR_SHIFT;
vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >>
GICH_VMCR_EOI_MODE_SHIFT;
vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
GICH_VMCR_ALIAS_BINPOINT_SHIFT;
vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
GICH_VMCR_BINPOINT_SHIFT;
vmcrp->pmr = ((vmcr & GICH_VMCR_PRIMASK_MASK) >>
GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT;
}
void vgic_v2_reset(struct kvm_vcpu *vcpu)
{
vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
}
static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
{
if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
return false;
if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
return false;
if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
return true;
if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
return true;
return false;
}
int vgic_v2_map_resources(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
unsigned int len;
int ret = 0;
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
kvm_debug("Need to set vgic cpu and dist addresses first\n");
return -ENXIO;
}
if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
kvm_debug("VGIC CPU and dist frames overlap\n");
return -EINVAL;
}
ret = vgic_init(kvm);
if (ret) {
kvm_err("Unable to initialize VGIC dynamic data structures\n");
return ret;
}
len = vgic_v2_init_cpuif_iodev(&dist->cpuif_iodev);
dist->cpuif_iodev.base_addr = dist->vgic_cpu_base;
dist->cpuif_iodev.iodev_type = IODEV_CPUIF;
dist->cpuif_iodev.redist_vcpu = NULL;
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist->vgic_cpu_base,
len, &dist->cpuif_iodev.dev);
if (ret)
return ret;
if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
kvm_vgic_global_state.vcpu_base,
KVM_VGIC_V2_CPU_SIZE - SZ_4K, true);
if (ret) {
kvm_err("Unable to remap VGIC CPU to VCPU\n");
return ret;
}
}
return 0;
}
DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);
int vgic_v2_probe(const struct gic_kvm_info *info)
{
int ret;
u32 vtr;
if (is_protected_kvm_enabled()) {
kvm_err("GICv2 not supported in protected mode\n");
return -ENXIO;
}
if (!info->vctrl.start) {
kvm_err("GICH not present in the firmware table\n");
return -ENXIO;
}
if (!PAGE_ALIGNED(info->vcpu.start) ||
!PAGE_ALIGNED(resource_size(&info->vcpu))) {
kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
ret = create_hyp_io_mappings(info->vcpu.start,
resource_size(&info->vcpu),
&kvm_vgic_global_state.vcpu_base_va,
&kvm_vgic_global_state.vcpu_hyp_va);
if (ret) {
kvm_err("Cannot map GICV into hyp\n");
goto out;
}
static_branch_enable(&vgic_v2_cpuif_trap);
}
ret = create_hyp_io_mappings(info->vctrl.start,
resource_size(&info->vctrl),
&kvm_vgic_global_state.vctrl_base,
&kvm_vgic_global_state.vctrl_hyp);
if (ret) {
kvm_err("Cannot map VCTRL into hyp\n");
goto out;
}
vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device\n");
goto out;
}
kvm_vgic_global_state.can_emulate_gicv2 = true;
kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.gicc_base = info->gicc_base;
kvm_vgic_global_state.type = VGIC_V2;
kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;
kvm_debug("vgic-v2@%llx\n", info->vctrl.start);
return 0;
out:
if (kvm_vgic_global_state.vctrl_base)
iounmap(kvm_vgic_global_state.vctrl_base);
if (kvm_vgic_global_state.vcpu_base_va)
iounmap(kvm_vgic_global_state.vcpu_base_va);
return ret;
}
static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u64 used_lrs = cpu_if->used_lrs;
u64 elrsr;
int i;
elrsr = readl_relaxed(base + GICH_ELRSR0);
if (unlikely(used_lrs > 32))
elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32;
for (i = 0; i < used_lrs; i++) {
if (elrsr & (1UL << i))
cpu_if->vgic_lr[i] &= ~GICH_LR_STATE;
else
cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4));
writel_relaxed(0, base + GICH_LR0 + (i * 4));
}
}
void vgic_v2_save_state(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
void __iomem *base = kvm_vgic_global_state.vctrl_base;
u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
if (!base)
return;
cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
if (used_lrs)
save_lrs(vcpu, base);
if (cpu_if->vgic_hcr & GICH_HCR_LRENPIE) {
u32 val = readl_relaxed(base + GICH_HCR);
cpu_if->vgic_hcr &= ~GICH_HCR_EOICOUNT;
cpu_if->vgic_hcr |= val & GICH_HCR_EOICOUNT;
}
writel_relaxed(0, base + GICH_HCR);
}
void vgic_v2_restore_state(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
void __iomem *base = kvm_vgic_global_state.vctrl_base;
u64 used_lrs = cpu_if->used_lrs;
int i;
if (!base)
return;
writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR);
for (i = 0; i < used_lrs; i++)
writel_relaxed(cpu_if->vgic_lr[i], base + GICH_LR0 + (i * 4));
}
void vgic_v2_load(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
writel_relaxed(cpu_if->vgic_vmcr,
kvm_vgic_global_state.vctrl_base + GICH_VMCR);
writel_relaxed(cpu_if->vgic_apr,
kvm_vgic_global_state.vctrl_base + GICH_APR);
}
void vgic_v2_put(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR);
}