Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/vgic/vgic-v3-nested.c
26530 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
3
#include <linux/cpu.h>
4
#include <linux/kvm.h>
5
#include <linux/kvm_host.h>
6
#include <linux/interrupt.h>
7
#include <linux/io.h>
8
#include <linux/uaccess.h>
9
10
#include <kvm/arm_vgic.h>
11
12
#include <asm/kvm_arm.h>
13
#include <asm/kvm_emulate.h>
14
#include <asm/kvm_nested.h>
15
16
#include "vgic.h"
17
18
#define ICH_LRN(n) (ICH_LR0_EL2 + (n))
19
#define ICH_AP0RN(n) (ICH_AP0R0_EL2 + (n))
20
#define ICH_AP1RN(n) (ICH_AP1R0_EL2 + (n))
21
22
struct mi_state {
23
u16 eisr;
24
u16 elrsr;
25
bool pend;
26
};
27
28
/*
29
* The shadow registers loaded to the hardware when running a L2 guest
30
* with the virtual IMO/FMO bits set.
31
*/
32
struct shadow_if {
33
struct vgic_v3_cpu_if cpuif;
34
unsigned long lr_map;
35
};
36
37
static DEFINE_PER_CPU(struct shadow_if, shadow_if);
38
39
static int lr_map_idx_to_shadow_idx(struct shadow_if *shadow_if, int idx)
40
{
41
return hweight16(shadow_if->lr_map & (BIT(idx) - 1));
42
}
43
44
/*
45
* Nesting GICv3 support
46
*
47
* On a non-nesting VM (only running at EL0/EL1), the host hypervisor
48
* completely controls the interrupts injected via the list registers.
49
* Consequently, most of the state that is modified by the guest (by ACK-ing
50
* and EOI-ing interrupts) is synced by KVM on each entry/exit, so that we
51
* keep a semi-consistent view of the interrupts.
52
*
53
* This still applies for a NV guest, but only while "InHost" (either
54
* running at EL2, or at EL0 with HCR_EL2.{E2H.TGE}=={1,1}.
55
*
56
* When running a L2 guest ("not InHost"), things are radically different,
57
* as the L1 guest is in charge of provisioning the interrupts via its own
58
* view of the ICH_LR*_EL2 registers, which conveniently live in the VNCR
59
* page. This means that the flow described above does work (there is no
60
* state to rebuild in the L0 hypervisor), and that most things happed on L2
61
* load/put:
62
*
63
* - on L2 load: move the in-memory L1 vGIC configuration into a shadow,
64
* per-CPU data structure that is used to populate the actual LRs. This is
65
* an extra copy that we could avoid, but life is short. In the process,
66
* we remap any interrupt that has the HW bit set to the mapped interrupt
67
* on the host, should the host consider it a HW one. This allows the HW
68
* deactivation to take its course, such as for the timer.
69
*
70
* - on L2 put: perform the inverse transformation, so that the result of L2
71
* running becomes visible to L1 in the VNCR-accessible registers.
72
*
73
* - there is nothing to do on L2 entry, as everything will have happened
74
* on load. However, this is the point where we detect that an interrupt
75
* targeting L1 and prepare the grand switcheroo.
76
*
77
* - on L2 exit: emulate the HW bit, and deactivate corresponding the L1
78
* interrupt. The L0 active state will be cleared by the HW if the L1
79
* interrupt was itself backed by a HW interrupt.
80
*
81
* Maintenance Interrupt (MI) management:
82
*
83
* Since the L2 guest runs the vgic in its full glory, MIs get delivered and
84
* used as a handover point between L2 and L1.
85
*
86
* - on delivery of a MI to L0 while L2 is running: make the L1 MI pending,
87
* and let it rip. This will initiate a vcpu_put() on L2, and allow L1 to
88
* run and process the MI.
89
*
90
* - L1 MI is a fully virtual interrupt, not linked to the host's MI. Its
91
* state must be computed at each entry/exit of the guest, much like we do
92
* it for the PMU interrupt.
93
*
94
* - because most of the ICH_*_EL2 registers live in the VNCR page, the
95
* quality of emulation is poor: L1 can setup the vgic so that an MI would
96
* immediately fire, and not observe anything until the next exit. Trying
97
* to read ICH_MISR_EL2 would do the trick, for example.
98
*
99
* System register emulation:
100
*
101
* We get two classes of registers:
102
*
103
* - those backed by memory (LRs, APRs, HCR, VMCR): L1 can freely access
104
* them, and L0 doesn't see a thing.
105
*
106
* - those that always trap (ELRSR, EISR, MISR): these are status registers
107
* that are built on the fly based on the in-memory state.
108
*
109
* Only L1 can access the ICH_*_EL2 registers. A non-NV L2 obviously cannot,
110
* and a NV L2 would either access the VNCR page provided by L1 (memory
111
* based registers), or see the access redirected to L1 (registers that
112
* trap) thanks to NV being set by L1.
113
*/
114
115
bool vgic_state_is_nested(struct kvm_vcpu *vcpu)
116
{
117
u64 xmo;
118
119
if (is_nested_ctxt(vcpu)) {
120
xmo = __vcpu_sys_reg(vcpu, HCR_EL2) & (HCR_IMO | HCR_FMO);
121
WARN_ONCE(xmo && xmo != (HCR_IMO | HCR_FMO),
122
"Separate virtual IRQ/FIQ settings not supported\n");
123
124
return !!xmo;
125
}
126
127
return false;
128
}
129
130
static struct shadow_if *get_shadow_if(void)
131
{
132
return this_cpu_ptr(&shadow_if);
133
}
134
135
static bool lr_triggers_eoi(u64 lr)
136
{
137
return !(lr & (ICH_LR_STATE | ICH_LR_HW)) && (lr & ICH_LR_EOI);
138
}
139
140
static void vgic_compute_mi_state(struct kvm_vcpu *vcpu, struct mi_state *mi_state)
141
{
142
u16 eisr = 0, elrsr = 0;
143
bool pend = false;
144
145
for (int i = 0; i < kvm_vgic_global_state.nr_lr; i++) {
146
u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
147
148
if (lr_triggers_eoi(lr))
149
eisr |= BIT(i);
150
if (!(lr & ICH_LR_STATE))
151
elrsr |= BIT(i);
152
pend |= (lr & ICH_LR_PENDING_BIT);
153
}
154
155
mi_state->eisr = eisr;
156
mi_state->elrsr = elrsr;
157
mi_state->pend = pend;
158
}
159
160
u16 vgic_v3_get_eisr(struct kvm_vcpu *vcpu)
161
{
162
struct mi_state mi_state;
163
164
vgic_compute_mi_state(vcpu, &mi_state);
165
return mi_state.eisr;
166
}
167
168
u16 vgic_v3_get_elrsr(struct kvm_vcpu *vcpu)
169
{
170
struct mi_state mi_state;
171
172
vgic_compute_mi_state(vcpu, &mi_state);
173
return mi_state.elrsr;
174
}
175
176
u64 vgic_v3_get_misr(struct kvm_vcpu *vcpu)
177
{
178
struct mi_state mi_state;
179
u64 reg = 0, hcr, vmcr;
180
181
hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
182
vmcr = __vcpu_sys_reg(vcpu, ICH_VMCR_EL2);
183
184
vgic_compute_mi_state(vcpu, &mi_state);
185
186
if (mi_state.eisr)
187
reg |= ICH_MISR_EL2_EOI;
188
189
if (__vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_UIE) {
190
int used_lrs = kvm_vgic_global_state.nr_lr;
191
192
used_lrs -= hweight16(mi_state.elrsr);
193
reg |= (used_lrs <= 1) ? ICH_MISR_EL2_U : 0;
194
}
195
196
if ((hcr & ICH_HCR_EL2_LRENPIE) && FIELD_GET(ICH_HCR_EL2_EOIcount_MASK, hcr))
197
reg |= ICH_MISR_EL2_LRENP;
198
199
if ((hcr & ICH_HCR_EL2_NPIE) && !mi_state.pend)
200
reg |= ICH_MISR_EL2_NP;
201
202
if ((hcr & ICH_HCR_EL2_VGrp0EIE) && (vmcr & ICH_VMCR_ENG0_MASK))
203
reg |= ICH_MISR_EL2_VGrp0E;
204
205
if ((hcr & ICH_HCR_EL2_VGrp0DIE) && !(vmcr & ICH_VMCR_ENG0_MASK))
206
reg |= ICH_MISR_EL2_VGrp0D;
207
208
if ((hcr & ICH_HCR_EL2_VGrp1EIE) && (vmcr & ICH_VMCR_ENG1_MASK))
209
reg |= ICH_MISR_EL2_VGrp1E;
210
211
if ((hcr & ICH_HCR_EL2_VGrp1DIE) && !(vmcr & ICH_VMCR_ENG1_MASK))
212
reg |= ICH_MISR_EL2_VGrp1D;
213
214
return reg;
215
}
216
217
static u64 translate_lr_pintid(struct kvm_vcpu *vcpu, u64 lr)
218
{
219
struct vgic_irq *irq;
220
221
if (!(lr & ICH_LR_HW))
222
return lr;
223
224
/* We have the HW bit set, check for validity of pINTID */
225
irq = vgic_get_vcpu_irq(vcpu, FIELD_GET(ICH_LR_PHYS_ID_MASK, lr));
226
/* If there was no real mapping, nuke the HW bit */
227
if (!irq || !irq->hw || irq->intid > VGIC_MAX_SPI)
228
lr &= ~ICH_LR_HW;
229
230
/* Translate the virtual mapping to the real one, even if invalid */
231
if (irq) {
232
lr &= ~ICH_LR_PHYS_ID_MASK;
233
lr |= FIELD_PREP(ICH_LR_PHYS_ID_MASK, (u64)irq->hwintid);
234
vgic_put_irq(vcpu->kvm, irq);
235
}
236
237
return lr;
238
}
239
240
/*
241
* For LRs which have HW bit set such as timer interrupts, we modify them to
242
* have the host hardware interrupt number instead of the virtual one programmed
243
* by the guest hypervisor.
244
*/
245
static void vgic_v3_create_shadow_lr(struct kvm_vcpu *vcpu,
246
struct vgic_v3_cpu_if *s_cpu_if)
247
{
248
struct shadow_if *shadow_if;
249
250
shadow_if = container_of(s_cpu_if, struct shadow_if, cpuif);
251
shadow_if->lr_map = 0;
252
253
for (int i = 0; i < kvm_vgic_global_state.nr_lr; i++) {
254
u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
255
256
if (!(lr & ICH_LR_STATE))
257
continue;
258
259
lr = translate_lr_pintid(vcpu, lr);
260
261
s_cpu_if->vgic_lr[hweight16(shadow_if->lr_map)] = lr;
262
shadow_if->lr_map |= BIT(i);
263
}
264
265
s_cpu_if->used_lrs = hweight16(shadow_if->lr_map);
266
}
267
268
void vgic_v3_sync_nested(struct kvm_vcpu *vcpu)
269
{
270
struct shadow_if *shadow_if = get_shadow_if();
271
int i;
272
273
for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) {
274
u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i));
275
struct vgic_irq *irq;
276
277
if (!(lr & ICH_LR_HW) || !(lr & ICH_LR_STATE))
278
continue;
279
280
/*
281
* If we had a HW lr programmed by the guest hypervisor, we
282
* need to emulate the HW effect between the guest hypervisor
283
* and the nested guest.
284
*/
285
irq = vgic_get_vcpu_irq(vcpu, FIELD_GET(ICH_LR_PHYS_ID_MASK, lr));
286
if (WARN_ON(!irq)) /* Shouldn't happen as we check on load */
287
continue;
288
289
lr = __gic_v3_get_lr(lr_map_idx_to_shadow_idx(shadow_if, i));
290
if (!(lr & ICH_LR_STATE))
291
irq->active = false;
292
293
vgic_put_irq(vcpu->kvm, irq);
294
}
295
}
296
297
static void vgic_v3_create_shadow_state(struct kvm_vcpu *vcpu,
298
struct vgic_v3_cpu_if *s_cpu_if)
299
{
300
struct vgic_v3_cpu_if *host_if = &vcpu->arch.vgic_cpu.vgic_v3;
301
u64 val = 0;
302
int i;
303
304
/*
305
* If we're on a system with a broken vgic that requires
306
* trapping, propagate the trapping requirements.
307
*
308
* Ah, the smell of rotten fruits...
309
*/
310
if (static_branch_unlikely(&vgic_v3_cpuif_trap))
311
val = host_if->vgic_hcr & (ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 |
312
ICH_HCR_EL2_TC | ICH_HCR_EL2_TDIR);
313
s_cpu_if->vgic_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2) | val;
314
s_cpu_if->vgic_vmcr = __vcpu_sys_reg(vcpu, ICH_VMCR_EL2);
315
s_cpu_if->vgic_sre = host_if->vgic_sre;
316
317
for (i = 0; i < 4; i++) {
318
s_cpu_if->vgic_ap0r[i] = __vcpu_sys_reg(vcpu, ICH_AP0RN(i));
319
s_cpu_if->vgic_ap1r[i] = __vcpu_sys_reg(vcpu, ICH_AP1RN(i));
320
}
321
322
vgic_v3_create_shadow_lr(vcpu, s_cpu_if);
323
}
324
325
void vgic_v3_load_nested(struct kvm_vcpu *vcpu)
326
{
327
struct shadow_if *shadow_if = get_shadow_if();
328
struct vgic_v3_cpu_if *cpu_if = &shadow_if->cpuif;
329
330
BUG_ON(!vgic_state_is_nested(vcpu));
331
332
vgic_v3_create_shadow_state(vcpu, cpu_if);
333
334
__vgic_v3_restore_vmcr_aprs(cpu_if);
335
__vgic_v3_activate_traps(cpu_if);
336
337
__vgic_v3_restore_state(cpu_if);
338
339
/*
340
* Propagate the number of used LRs for the benefit of the HYP
341
* GICv3 emulation code. Yes, this is a pretty sorry hack.
342
*/
343
vcpu->arch.vgic_cpu.vgic_v3.used_lrs = cpu_if->used_lrs;
344
}
345
346
void vgic_v3_put_nested(struct kvm_vcpu *vcpu)
347
{
348
struct shadow_if *shadow_if = get_shadow_if();
349
struct vgic_v3_cpu_if *s_cpu_if = &shadow_if->cpuif;
350
u64 val;
351
int i;
352
353
__vgic_v3_save_vmcr_aprs(s_cpu_if);
354
__vgic_v3_deactivate_traps(s_cpu_if);
355
__vgic_v3_save_state(s_cpu_if);
356
357
/*
358
* Translate the shadow state HW fields back to the virtual ones
359
* before copying the shadow struct back to the nested one.
360
*/
361
val = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
362
val &= ~ICH_HCR_EL2_EOIcount_MASK;
363
val |= (s_cpu_if->vgic_hcr & ICH_HCR_EL2_EOIcount_MASK);
364
__vcpu_assign_sys_reg(vcpu, ICH_HCR_EL2, val);
365
__vcpu_assign_sys_reg(vcpu, ICH_VMCR_EL2, s_cpu_if->vgic_vmcr);
366
367
for (i = 0; i < 4; i++) {
368
__vcpu_assign_sys_reg(vcpu, ICH_AP0RN(i), s_cpu_if->vgic_ap0r[i]);
369
__vcpu_assign_sys_reg(vcpu, ICH_AP1RN(i), s_cpu_if->vgic_ap1r[i]);
370
}
371
372
for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) {
373
val = __vcpu_sys_reg(vcpu, ICH_LRN(i));
374
375
val &= ~ICH_LR_STATE;
376
val |= s_cpu_if->vgic_lr[lr_map_idx_to_shadow_idx(shadow_if, i)] & ICH_LR_STATE;
377
378
__vcpu_assign_sys_reg(vcpu, ICH_LRN(i), val);
379
}
380
381
vcpu->arch.vgic_cpu.vgic_v3.used_lrs = 0;
382
}
383
384
/*
385
* If we exit a L2 VM with a pending maintenance interrupt from the GIC,
386
* then we need to forward this to L1 so that it can re-sync the appropriate
387
* LRs and sample level triggered interrupts again.
388
*/
389
void vgic_v3_handle_nested_maint_irq(struct kvm_vcpu *vcpu)
390
{
391
bool state = read_sysreg_s(SYS_ICH_MISR_EL2);
392
393
/* This will force a switch back to L1 if the level is high */
394
kvm_vgic_inject_irq(vcpu->kvm, vcpu,
395
vcpu->kvm->arch.vgic.mi_intid, state, vcpu);
396
397
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EL2_En, 0);
398
}
399
400
void vgic_v3_nested_update_mi(struct kvm_vcpu *vcpu)
401
{
402
bool level;
403
404
level = (__vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_En) && vgic_v3_get_misr(vcpu);
405
kvm_vgic_inject_irq(vcpu->kvm, vcpu,
406
vcpu->kvm->arch.vgic.mi_intid, level, vcpu);
407
}
408
409