Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/vgic/vgic-v3.c
26532 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
3
#include <linux/irqchip/arm-gic-v3.h>
4
#include <linux/irq.h>
5
#include <linux/irqdomain.h>
6
#include <linux/kstrtox.h>
7
#include <linux/kvm.h>
8
#include <linux/kvm_host.h>
9
#include <linux/string_choices.h>
10
#include <kvm/arm_vgic.h>
11
#include <asm/kvm_hyp.h>
12
#include <asm/kvm_mmu.h>
13
#include <asm/kvm_asm.h>
14
15
#include "vgic.h"
16
17
static bool group0_trap;
18
static bool group1_trap;
19
static bool common_trap;
20
static bool dir_trap;
21
static bool gicv4_enable;
22
23
void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
24
{
25
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
26
27
cpuif->vgic_hcr |= ICH_HCR_EL2_UIE;
28
}
29
30
static bool lr_signals_eoi_mi(u64 lr_val)
31
{
32
return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
33
!(lr_val & ICH_LR_HW);
34
}
35
36
void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
37
{
38
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
39
struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
40
u32 model = vcpu->kvm->arch.vgic.vgic_model;
41
int lr;
42
43
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
44
45
cpuif->vgic_hcr &= ~ICH_HCR_EL2_UIE;
46
47
for (lr = 0; lr < cpuif->used_lrs; lr++) {
48
u64 val = cpuif->vgic_lr[lr];
49
u32 intid, cpuid;
50
struct vgic_irq *irq;
51
bool is_v2_sgi = false;
52
bool deactivated;
53
54
cpuid = val & GICH_LR_PHYSID_CPUID;
55
cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
56
57
if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
58
intid = val & ICH_LR_VIRTUAL_ID_MASK;
59
} else {
60
intid = val & GICH_LR_VIRTUALID;
61
is_v2_sgi = vgic_irq_is_sgi(intid);
62
}
63
64
/* Notify fds when the guest EOI'ed a level-triggered IRQ */
65
if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
66
kvm_notify_acked_irq(vcpu->kvm, 0,
67
intid - VGIC_NR_PRIVATE_IRQS);
68
69
irq = vgic_get_vcpu_irq(vcpu, intid);
70
if (!irq) /* An LPI could have been unmapped. */
71
continue;
72
73
raw_spin_lock(&irq->irq_lock);
74
75
/* Always preserve the active bit, note deactivation */
76
deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT);
77
irq->active = !!(val & ICH_LR_ACTIVE_BIT);
78
79
if (irq->active && is_v2_sgi)
80
irq->active_source = cpuid;
81
82
/* Edge is the only case where we preserve the pending bit */
83
if (irq->config == VGIC_CONFIG_EDGE &&
84
(val & ICH_LR_PENDING_BIT)) {
85
irq->pending_latch = true;
86
87
if (is_v2_sgi)
88
irq->source |= (1 << cpuid);
89
}
90
91
/*
92
* Clear soft pending state when level irqs have been acked.
93
*/
94
if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
95
irq->pending_latch = false;
96
97
/* Handle resampling for mapped interrupts if required */
98
vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT);
99
100
raw_spin_unlock(&irq->irq_lock);
101
vgic_put_irq(vcpu->kvm, irq);
102
}
103
104
cpuif->used_lrs = 0;
105
}
106
107
/* Requires the irq to be locked already */
108
void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
109
{
110
u32 model = vcpu->kvm->arch.vgic.vgic_model;
111
u64 val = irq->intid;
112
bool allow_pending = true, is_v2_sgi;
113
114
is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
115
model == KVM_DEV_TYPE_ARM_VGIC_V2);
116
117
if (irq->active) {
118
val |= ICH_LR_ACTIVE_BIT;
119
if (is_v2_sgi)
120
val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
121
if (vgic_irq_is_multi_sgi(irq)) {
122
allow_pending = false;
123
val |= ICH_LR_EOI;
124
}
125
}
126
127
if (irq->hw && !vgic_irq_needs_resampling(irq)) {
128
val |= ICH_LR_HW;
129
val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
130
/*
131
* Never set pending+active on a HW interrupt, as the
132
* pending state is kept at the physical distributor
133
* level.
134
*/
135
if (irq->active)
136
allow_pending = false;
137
} else {
138
if (irq->config == VGIC_CONFIG_LEVEL) {
139
val |= ICH_LR_EOI;
140
141
/*
142
* Software resampling doesn't work very well
143
* if we allow P+A, so let's not do that.
144
*/
145
if (irq->active)
146
allow_pending = false;
147
}
148
}
149
150
if (allow_pending && irq_is_pending(irq)) {
151
val |= ICH_LR_PENDING_BIT;
152
153
if (irq->config == VGIC_CONFIG_EDGE)
154
irq->pending_latch = false;
155
156
if (vgic_irq_is_sgi(irq->intid) &&
157
model == KVM_DEV_TYPE_ARM_VGIC_V2) {
158
u32 src = ffs(irq->source);
159
160
if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
161
irq->intid))
162
return;
163
164
val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
165
irq->source &= ~(1 << (src - 1));
166
if (irq->source) {
167
irq->pending_latch = true;
168
val |= ICH_LR_EOI;
169
}
170
}
171
}
172
173
/*
174
* Level-triggered mapped IRQs are special because we only observe
175
* rising edges as input to the VGIC. We therefore lower the line
176
* level here, so that we can take new virtual IRQs. See
177
* vgic_v3_fold_lr_state for more info.
178
*/
179
if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
180
irq->line_level = false;
181
182
if (irq->group)
183
val |= ICH_LR_GROUP;
184
185
val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
186
187
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
188
}
189
190
void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
191
{
192
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
193
}
194
195
void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
196
{
197
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
198
u32 model = vcpu->kvm->arch.vgic.vgic_model;
199
u32 vmcr;
200
201
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
202
vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
203
ICH_VMCR_ACK_CTL_MASK;
204
vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
205
ICH_VMCR_FIQ_EN_MASK;
206
} else {
207
/*
208
* When emulating GICv3 on GICv3 with SRE=1 on the
209
* VFIQEn bit is RES1 and the VAckCtl bit is RES0.
210
*/
211
vmcr = ICH_VMCR_FIQ_EN_MASK;
212
}
213
214
vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
215
vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
216
vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
217
vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
218
vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
219
vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
220
vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
221
222
cpu_if->vgic_vmcr = vmcr;
223
}
224
225
void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
226
{
227
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
228
u32 model = vcpu->kvm->arch.vgic.vgic_model;
229
u32 vmcr;
230
231
vmcr = cpu_if->vgic_vmcr;
232
233
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
234
vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
235
ICH_VMCR_ACK_CTL_SHIFT;
236
vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
237
ICH_VMCR_FIQ_EN_SHIFT;
238
} else {
239
/*
240
* When emulating GICv3 on GICv3 with SRE=1 on the
241
* VFIQEn bit is RES1 and the VAckCtl bit is RES0.
242
*/
243
vmcrp->fiqen = 1;
244
vmcrp->ackctl = 0;
245
}
246
247
vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
248
vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
249
vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
250
vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
251
vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
252
vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
253
vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
254
}
255
256
#define INITIAL_PENDBASER_VALUE \
257
(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
258
GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
259
GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
260
261
void vgic_v3_enable(struct kvm_vcpu *vcpu)
262
{
263
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
264
265
/*
266
* By forcing VMCR to zero, the GIC will restore the binary
267
* points to their reset values. Anything else resets to zero
268
* anyway.
269
*/
270
vgic_v3->vgic_vmcr = 0;
271
272
/*
273
* If we are emulating a GICv3, we do it in an non-GICv2-compatible
274
* way, so we force SRE to 1 to demonstrate this to the guest.
275
* Also, we don't support any form of IRQ/FIQ bypass.
276
* This goes with the spec allowing the value to be RAO/WI.
277
*/
278
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
279
vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
280
ICC_SRE_EL1_DFB |
281
ICC_SRE_EL1_SRE);
282
vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
283
} else {
284
vgic_v3->vgic_sre = 0;
285
}
286
287
vcpu->arch.vgic_cpu.num_id_bits = FIELD_GET(ICH_VTR_EL2_IDbits,
288
kvm_vgic_global_state.ich_vtr_el2);
289
vcpu->arch.vgic_cpu.num_pri_bits = FIELD_GET(ICH_VTR_EL2_PRIbits,
290
kvm_vgic_global_state.ich_vtr_el2) + 1;
291
292
/* Get the show on the road... */
293
vgic_v3->vgic_hcr = ICH_HCR_EL2_En;
294
}
295
296
void vcpu_set_ich_hcr(struct kvm_vcpu *vcpu)
297
{
298
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
299
300
/* Hide GICv3 sysreg if necessary */
301
if (!kvm_has_gicv3(vcpu->kvm)) {
302
vgic_v3->vgic_hcr |= (ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 |
303
ICH_HCR_EL2_TC);
304
return;
305
}
306
307
if (group0_trap)
308
vgic_v3->vgic_hcr |= ICH_HCR_EL2_TALL0;
309
if (group1_trap)
310
vgic_v3->vgic_hcr |= ICH_HCR_EL2_TALL1;
311
if (common_trap)
312
vgic_v3->vgic_hcr |= ICH_HCR_EL2_TC;
313
if (dir_trap)
314
vgic_v3->vgic_hcr |= ICH_HCR_EL2_TDIR;
315
}
316
317
int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
318
{
319
struct kvm_vcpu *vcpu;
320
int byte_offset, bit_nr;
321
gpa_t pendbase, ptr;
322
bool status;
323
u8 val;
324
int ret;
325
unsigned long flags;
326
327
retry:
328
vcpu = irq->target_vcpu;
329
if (!vcpu)
330
return 0;
331
332
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
333
334
byte_offset = irq->intid / BITS_PER_BYTE;
335
bit_nr = irq->intid % BITS_PER_BYTE;
336
ptr = pendbase + byte_offset;
337
338
ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
339
if (ret)
340
return ret;
341
342
status = val & (1 << bit_nr);
343
344
raw_spin_lock_irqsave(&irq->irq_lock, flags);
345
if (irq->target_vcpu != vcpu) {
346
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
347
goto retry;
348
}
349
irq->pending_latch = status;
350
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
351
352
if (status) {
353
/* clear consumed data */
354
val &= ~(1 << bit_nr);
355
ret = vgic_write_guest_lock(kvm, ptr, &val, 1);
356
if (ret)
357
return ret;
358
}
359
return 0;
360
}
361
362
/*
363
* The deactivation of the doorbell interrupt will trigger the
364
* unmapping of the associated vPE.
365
*/
366
static void unmap_all_vpes(struct kvm *kvm)
367
{
368
struct vgic_dist *dist = &kvm->arch.vgic;
369
int i;
370
371
for (i = 0; i < dist->its_vm.nr_vpes; i++)
372
free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i));
373
}
374
375
static void map_all_vpes(struct kvm *kvm)
376
{
377
struct vgic_dist *dist = &kvm->arch.vgic;
378
int i;
379
380
for (i = 0; i < dist->its_vm.nr_vpes; i++)
381
WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i),
382
dist->its_vm.vpes[i]->irq));
383
}
384
385
/*
386
* vgic_v3_save_pending_tables - Save the pending tables into guest RAM
387
* kvm lock and all vcpu lock must be held
388
*/
389
int vgic_v3_save_pending_tables(struct kvm *kvm)
390
{
391
struct vgic_dist *dist = &kvm->arch.vgic;
392
struct vgic_irq *irq;
393
gpa_t last_ptr = ~(gpa_t)0;
394
bool vlpi_avail = false;
395
unsigned long index;
396
int ret = 0;
397
u8 val;
398
399
if (unlikely(!vgic_initialized(kvm)))
400
return -ENXIO;
401
402
/*
403
* A preparation for getting any VLPI states.
404
* The above vgic initialized check also ensures that the allocation
405
* and enabling of the doorbells have already been done.
406
*/
407
if (kvm_vgic_global_state.has_gicv4_1) {
408
unmap_all_vpes(kvm);
409
vlpi_avail = true;
410
}
411
412
xa_for_each(&dist->lpi_xa, index, irq) {
413
int byte_offset, bit_nr;
414
struct kvm_vcpu *vcpu;
415
gpa_t pendbase, ptr;
416
bool is_pending;
417
bool stored;
418
419
vcpu = irq->target_vcpu;
420
if (!vcpu)
421
continue;
422
423
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
424
425
byte_offset = irq->intid / BITS_PER_BYTE;
426
bit_nr = irq->intid % BITS_PER_BYTE;
427
ptr = pendbase + byte_offset;
428
429
if (ptr != last_ptr) {
430
ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
431
if (ret)
432
goto out;
433
last_ptr = ptr;
434
}
435
436
stored = val & (1U << bit_nr);
437
438
is_pending = irq->pending_latch;
439
440
if (irq->hw && vlpi_avail)
441
vgic_v4_get_vlpi_state(irq, &is_pending);
442
443
if (stored == is_pending)
444
continue;
445
446
if (is_pending)
447
val |= 1 << bit_nr;
448
else
449
val &= ~(1 << bit_nr);
450
451
ret = vgic_write_guest_lock(kvm, ptr, &val, 1);
452
if (ret)
453
goto out;
454
}
455
456
out:
457
if (vlpi_avail)
458
map_all_vpes(kvm);
459
460
return ret;
461
}
462
463
/**
464
* vgic_v3_rdist_overlap - check if a region overlaps with any
465
* existing redistributor region
466
*
467
* @kvm: kvm handle
468
* @base: base of the region
469
* @size: size of region
470
*
471
* Return: true if there is an overlap
472
*/
473
bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
474
{
475
struct vgic_dist *d = &kvm->arch.vgic;
476
struct vgic_redist_region *rdreg;
477
478
list_for_each_entry(rdreg, &d->rd_regions, list) {
479
if ((base + size > rdreg->base) &&
480
(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
481
return true;
482
}
483
return false;
484
}
485
486
/*
487
* Check for overlapping regions and for regions crossing the end of memory
488
* for base addresses which have already been set.
489
*/
490
bool vgic_v3_check_base(struct kvm *kvm)
491
{
492
struct vgic_dist *d = &kvm->arch.vgic;
493
struct vgic_redist_region *rdreg;
494
495
if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
496
d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
497
return false;
498
499
list_for_each_entry(rdreg, &d->rd_regions, list) {
500
size_t sz = vgic_v3_rd_region_size(kvm, rdreg);
501
502
if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF,
503
rdreg->base, SZ_64K, sz))
504
return false;
505
}
506
507
if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
508
return true;
509
510
return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
511
KVM_VGIC_V3_DIST_SIZE);
512
}
513
514
/**
515
* vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
516
* which has free space to put a new rdist region.
517
*
518
* @rd_regions: redistributor region list head
519
*
520
* A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
521
* Stride between redistributors is 0 and regions are filled in the index order.
522
*
523
* Return: the redist region handle, if any, that has space to map a new rdist
524
* region.
525
*/
526
struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
527
{
528
struct vgic_redist_region *rdreg;
529
530
list_for_each_entry(rdreg, rd_regions, list) {
531
if (!vgic_v3_redist_region_full(rdreg))
532
return rdreg;
533
}
534
return NULL;
535
}
536
537
struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
538
u32 index)
539
{
540
struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
541
struct vgic_redist_region *rdreg;
542
543
list_for_each_entry(rdreg, rd_regions, list) {
544
if (rdreg->index == index)
545
return rdreg;
546
}
547
return NULL;
548
}
549
550
551
int vgic_v3_map_resources(struct kvm *kvm)
552
{
553
struct vgic_dist *dist = &kvm->arch.vgic;
554
struct kvm_vcpu *vcpu;
555
unsigned long c;
556
557
kvm_for_each_vcpu(c, vcpu, kvm) {
558
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
559
560
if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
561
kvm_debug("vcpu %ld redistributor base not set\n", c);
562
return -ENXIO;
563
}
564
}
565
566
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
567
kvm_debug("Need to set vgic distributor addresses first\n");
568
return -ENXIO;
569
}
570
571
if (!vgic_v3_check_base(kvm)) {
572
kvm_debug("VGIC redist and dist frames overlap\n");
573
return -EINVAL;
574
}
575
576
/*
577
* For a VGICv3 we require the userland to explicitly initialize
578
* the VGIC before we need to use it.
579
*/
580
if (!vgic_initialized(kvm)) {
581
return -EBUSY;
582
}
583
584
if (kvm_vgic_global_state.has_gicv4_1)
585
vgic_v4_configure_vsgis(kvm);
586
587
return 0;
588
}
589
590
DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
591
592
static int __init early_group0_trap_cfg(char *buf)
593
{
594
return kstrtobool(buf, &group0_trap);
595
}
596
early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
597
598
static int __init early_group1_trap_cfg(char *buf)
599
{
600
return kstrtobool(buf, &group1_trap);
601
}
602
early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
603
604
static int __init early_common_trap_cfg(char *buf)
605
{
606
return kstrtobool(buf, &common_trap);
607
}
608
early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
609
610
static int __init early_gicv4_enable(char *buf)
611
{
612
return kstrtobool(buf, &gicv4_enable);
613
}
614
early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
615
616
static const struct midr_range broken_seis[] = {
617
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM),
618
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM),
619
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO),
620
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO),
621
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX),
622
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX),
623
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
624
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
625
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
626
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
627
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
628
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
629
{},
630
};
631
632
static bool vgic_v3_broken_seis(void)
633
{
634
return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_EL2_SEIS) &&
635
is_midr_in_range_list(broken_seis));
636
}
637
638
/**
639
* vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
640
* @info: pointer to the GIC description
641
*
642
* Returns 0 if the VGICv3 has been probed successfully, returns an error code
643
* otherwise
644
*/
645
int vgic_v3_probe(const struct gic_kvm_info *info)
646
{
647
u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
648
bool has_v2;
649
int ret;
650
651
has_v2 = ich_vtr_el2 >> 63;
652
ich_vtr_el2 = (u32)ich_vtr_el2;
653
654
/*
655
* The ListRegs field is 5 bits, but there is an architectural
656
* maximum of 16 list registers. Just ignore bit 4...
657
*/
658
kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
659
kvm_vgic_global_state.can_emulate_gicv2 = false;
660
kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
661
662
/* GICv4 support? */
663
if (info->has_v4) {
664
kvm_vgic_global_state.has_gicv4 = gicv4_enable;
665
kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
666
kvm_info("GICv4%s support %s\n",
667
kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
668
str_enabled_disabled(gicv4_enable));
669
}
670
671
kvm_vgic_global_state.vcpu_base = 0;
672
673
if (!info->vcpu.start) {
674
kvm_info("GICv3: no GICV resource entry\n");
675
} else if (!has_v2) {
676
pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
677
} else if (!PAGE_ALIGNED(info->vcpu.start)) {
678
pr_warn("GICV physical address 0x%llx not page aligned\n",
679
(unsigned long long)info->vcpu.start);
680
} else if (kvm_get_mode() != KVM_MODE_PROTECTED) {
681
kvm_vgic_global_state.vcpu_base = info->vcpu.start;
682
kvm_vgic_global_state.can_emulate_gicv2 = true;
683
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
684
if (ret) {
685
kvm_err("Cannot register GICv2 KVM device.\n");
686
return ret;
687
}
688
kvm_info("vgic-v2@%llx\n", info->vcpu.start);
689
}
690
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
691
if (ret) {
692
kvm_err("Cannot register GICv3 KVM device.\n");
693
kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
694
return ret;
695
}
696
697
if (kvm_vgic_global_state.vcpu_base == 0)
698
kvm_info("disabling GICv2 emulation\n");
699
700
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
701
group0_trap = true;
702
group1_trap = true;
703
}
704
705
if (vgic_v3_broken_seis()) {
706
kvm_info("GICv3 with broken locally generated SEI\n");
707
708
kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_EL2_SEIS;
709
group0_trap = true;
710
group1_trap = true;
711
if (ich_vtr_el2 & ICH_VTR_EL2_TDS)
712
dir_trap = true;
713
else
714
common_trap = true;
715
}
716
717
if (group0_trap || group1_trap || common_trap | dir_trap) {
718
kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n",
719
group0_trap ? "G0" : "",
720
group1_trap ? "G1" : "",
721
common_trap ? "C" : "",
722
dir_trap ? "D" : "");
723
static_branch_enable(&vgic_v3_cpuif_trap);
724
}
725
726
kvm_vgic_global_state.vctrl_base = NULL;
727
kvm_vgic_global_state.type = VGIC_V3;
728
kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
729
730
return 0;
731
}
732
733
void vgic_v3_load(struct kvm_vcpu *vcpu)
734
{
735
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
736
737
/* If the vgic is nested, perform the full state loading */
738
if (vgic_state_is_nested(vcpu)) {
739
vgic_v3_load_nested(vcpu);
740
return;
741
}
742
743
if (likely(!is_protected_kvm_enabled()))
744
kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, cpu_if);
745
746
if (has_vhe())
747
__vgic_v3_activate_traps(cpu_if);
748
749
WARN_ON(vgic_v4_load(vcpu));
750
}
751
752
void vgic_v3_put(struct kvm_vcpu *vcpu)
753
{
754
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
755
756
if (vgic_state_is_nested(vcpu)) {
757
vgic_v3_put_nested(vcpu);
758
return;
759
}
760
761
if (likely(!is_protected_kvm_enabled()))
762
kvm_call_hyp(__vgic_v3_save_vmcr_aprs, cpu_if);
763
WARN_ON(vgic_v4_put(vcpu));
764
765
if (has_vhe())
766
__vgic_v3_deactivate_traps(cpu_if);
767
}
768
769