#include <linux/irqchip/arm-gic-v3.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/kstrtox.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/string_choices.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_asm.h>
#include "vgic-mmio.h"
#include "vgic.h"
static bool group0_trap;
static bool group1_trap;
static bool common_trap;
static bool dir_trap;
static bool gicv4_enable;
void vgic_v3_configure_hcr(struct kvm_vcpu *vcpu,
struct ap_list_summary *als)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
if (!irqchip_in_kernel(vcpu->kvm))
return;
cpuif->vgic_hcr = ICH_HCR_EL2_En;
if (irqs_pending_outside_lrs(als))
cpuif->vgic_hcr |= ICH_HCR_EL2_NPIE;
if (irqs_active_outside_lrs(als))
cpuif->vgic_hcr |= ICH_HCR_EL2_LRENPIE;
if (irqs_outside_lrs(als))
cpuif->vgic_hcr |= ICH_HCR_EL2_UIE;
if (!als->nr_sgi)
cpuif->vgic_hcr |= ICH_HCR_EL2_vSGIEOICount;
cpuif->vgic_hcr |= (cpuif->vgic_vmcr & ICH_VMCR_EL2_VENG0_MASK) ?
ICH_HCR_EL2_VGrp0DIE : ICH_HCR_EL2_VGrp0EIE;
cpuif->vgic_hcr |= (cpuif->vgic_vmcr & ICH_VMCR_EL2_VENG1_MASK) ?
ICH_HCR_EL2_VGrp1DIE : ICH_HCR_EL2_VGrp1EIE;
if (!cpus_have_final_cap(ARM64_HAS_ICH_HCR_EL2_TDIR) ||
irqs_active_outside_lrs(als) ||
atomic_read(&vcpu->kvm->arch.vgic.active_spis))
cpuif->vgic_hcr |= ICH_HCR_EL2_TDIR;
}
static bool lr_signals_eoi_mi(u64 lr_val)
{
return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
!(lr_val & ICH_LR_HW);
}
static void vgic_v3_fold_lr(struct kvm_vcpu *vcpu, u64 val)
{
struct vgic_irq *irq;
bool is_v2_sgi = false;
bool deactivated;
u32 intid;
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
intid = val & ICH_LR_VIRTUAL_ID_MASK;
} else {
intid = val & GICH_LR_VIRTUALID;
is_v2_sgi = vgic_irq_is_sgi(intid);
}
irq = vgic_get_vcpu_irq(vcpu, intid);
if (!irq)
return;
scoped_guard(raw_spinlock, &irq->irq_lock) {
if (irq->intid >= VGIC_MIN_LPI)
val &= ~ICH_LR_ACTIVE_BIT;
deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT);
irq->active = !!(val & ICH_LR_ACTIVE_BIT);
if (irq->config == VGIC_CONFIG_EDGE &&
(val & ICH_LR_PENDING_BIT))
irq->pending_latch = true;
if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
irq->pending_latch = false;
if (is_v2_sgi) {
u8 cpuid = FIELD_GET(GICH_LR_PHYSID_CPUID, val);
if (irq->active)
irq->active_source = cpuid;
if (val & ICH_LR_PENDING_BIT)
irq->source |= BIT(cpuid);
}
vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT);
irq->on_lr = false;
}
if (deactivated && lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) {
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
atomic_dec_if_positive(&vcpu->kvm->arch.vgic.active_spis);
}
vgic_put_irq(vcpu->kvm, irq);
}
static u64 vgic_v3_compute_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq);
static void vgic_v3_deactivate_phys(u32 intid)
{
if (cpus_have_final_cap(ARM64_HAS_GICV5_LEGACY))
gic_insn(intid | FIELD_PREP(GICV5_GIC_CDDI_TYPE_MASK, 1), CDDI);
else
gic_write_dir(intid);
}
void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
u32 eoicount = FIELD_GET(ICH_HCR_EL2_EOIcount, cpuif->vgic_hcr);
struct vgic_irq *irq;
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
for (int lr = 0; lr < cpuif->used_lrs; lr++)
vgic_v3_fold_lr(vcpu, cpuif->vgic_lr[lr]);
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
u64 lr;
if (!eoicount) {
break;
} else {
guard(raw_spinlock)(&irq->irq_lock);
if (!(likely(vgic_target_oracle(irq) == vcpu) &&
irq->active))
continue;
lr = vgic_v3_compute_lr(vcpu, irq) & ~ICH_LR_ACTIVE_BIT;
}
if (lr & ICH_LR_HW)
vgic_v3_deactivate_phys(FIELD_GET(ICH_LR_PHYS_ID_MASK, lr));
vgic_v3_fold_lr(vcpu, lr);
eoicount--;
}
cpuif->used_lrs = 0;
}
void vgic_v3_deactivate(struct kvm_vcpu *vcpu, u64 val)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
struct kvm_vcpu *target_vcpu = NULL;
bool mmio = false, is_v2_sgi;
struct vgic_irq *irq;
unsigned long flags;
u64 lr = 0;
u8 cpuid;
cpuid = FIELD_GET(GENMASK_ULL(12, 10), val);
val &= ~GENMASK_ULL(12, 10);
is_v2_sgi = (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
val < VGIC_NR_SGIS);
if (!(cpuif->vgic_vmcr & ICH_VMCR_EL2_VEOIM_MASK) ||
val >= vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)
return;
local_irq_save(flags);
irq = vgic_get_vcpu_irq(vcpu, val);
if (WARN_ON_ONCE(!irq))
goto out;
scoped_guard(raw_spinlock, &irq->irq_lock) {
target_vcpu = irq->vcpu;
if (!target_vcpu)
goto put;
if (irq->on_lr) {
mmio = true;
goto put;
}
if (is_v2_sgi && irq->active_source != cpuid) {
target_vcpu = NULL;
goto put;
}
lr = vgic_v3_compute_lr(vcpu, irq) & ~ICH_LR_ACTIVE_BIT;
}
if (lr & ICH_LR_HW)
vgic_v3_deactivate_phys(FIELD_GET(ICH_LR_PHYS_ID_MASK, lr));
vgic_v3_fold_lr(vcpu, lr);
put:
vgic_put_irq(vcpu->kvm, irq);
out:
local_irq_restore(flags);
if (mmio)
vgic_mmio_write_cactive(vcpu, (val / 32) * 4, 4, BIT(val % 32));
if (target_vcpu)
kvm_make_request(KVM_REQ_VGIC_PROCESS_UPDATE, target_vcpu);
}
static u64 vgic_v3_compute_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
{
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u64 val = irq->intid;
bool allow_pending = true, is_v2_sgi;
WARN_ON(irq->on_lr);
is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2);
if (irq->active) {
val |= ICH_LR_ACTIVE_BIT;
if (is_v2_sgi)
val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
if (vgic_irq_is_multi_sgi(irq)) {
allow_pending = false;
val |= ICH_LR_EOI;
}
}
if (irq->hw && !vgic_irq_needs_resampling(irq)) {
val |= ICH_LR_HW;
val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
if (irq->active)
allow_pending = false;
} else {
if (irq->config == VGIC_CONFIG_LEVEL) {
val |= ICH_LR_EOI;
if (irq->active)
allow_pending = false;
}
}
if (allow_pending && irq_is_pending(irq)) {
val |= ICH_LR_PENDING_BIT;
if (is_v2_sgi) {
u32 src = ffs(irq->source);
if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
irq->intid))
return 0;
val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
if (irq->source & ~BIT(src - 1))
val |= ICH_LR_EOI;
}
}
if (irq->group)
val |= ICH_LR_GROUP;
val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
return val;
}
void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u64 val = vgic_v3_compute_lr(vcpu, irq);
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
if (val & ICH_LR_PENDING_BIT) {
if (irq->config == VGIC_CONFIG_EDGE)
irq->pending_latch = false;
if (vgic_irq_is_sgi(irq->intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2) {
u32 src = ffs(irq->source);
irq->source &= ~BIT(src - 1);
if (irq->source)
irq->pending_latch = true;
}
}
if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
irq->line_level = false;
irq->on_lr = true;
}
void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
}
void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u32 vmcr;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
vmcr = FIELD_PREP(ICH_VMCR_EL2_VAckCtl, vmcrp->ackctl);
vmcr |= FIELD_PREP(ICH_VMCR_EL2_VFIQEn, vmcrp->fiqen);
} else {
vmcr = ICH_VMCR_EL2_VFIQEn_MASK;
}
vmcr |= FIELD_PREP(ICH_VMCR_EL2_VCBPR, vmcrp->cbpr);
vmcr |= FIELD_PREP(ICH_VMCR_EL2_VEOIM, vmcrp->eoim);
vmcr |= FIELD_PREP(ICH_VMCR_EL2_VBPR1, vmcrp->abpr);
vmcr |= FIELD_PREP(ICH_VMCR_EL2_VBPR0, vmcrp->bpr);
vmcr |= FIELD_PREP(ICH_VMCR_EL2_VPMR, vmcrp->pmr);
vmcr |= FIELD_PREP(ICH_VMCR_EL2_VENG0, vmcrp->grpen0);
vmcr |= FIELD_PREP(ICH_VMCR_EL2_VENG1, vmcrp->grpen1);
cpu_if->vgic_vmcr = vmcr;
}
void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u32 vmcr;
vmcr = cpu_if->vgic_vmcr;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
vmcrp->ackctl = FIELD_GET(ICH_VMCR_EL2_VAckCtl, vmcr);
vmcrp->fiqen = FIELD_GET(ICH_VMCR_EL2_VFIQEn, vmcr);
} else {
vmcrp->fiqen = 1;
vmcrp->ackctl = 0;
}
vmcrp->cbpr = FIELD_GET(ICH_VMCR_EL2_VCBPR, vmcr);
vmcrp->eoim = FIELD_GET(ICH_VMCR_EL2_VEOIM, vmcr);
vmcrp->abpr = FIELD_GET(ICH_VMCR_EL2_VBPR1, vmcr);
vmcrp->bpr = FIELD_GET(ICH_VMCR_EL2_VBPR0, vmcr);
vmcrp->pmr = FIELD_GET(ICH_VMCR_EL2_VPMR, vmcr);
vmcrp->grpen0 = FIELD_GET(ICH_VMCR_EL2_VENG0, vmcr);
vmcrp->grpen1 = FIELD_GET(ICH_VMCR_EL2_VENG1, vmcr);
}
#define INITIAL_PENDBASER_VALUE \
(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
void vgic_v3_reset(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
vgic_v3->vgic_vmcr = 0;
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
ICC_SRE_EL1_DFB |
ICC_SRE_EL1_SRE);
vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
} else {
vgic_v3->vgic_sre = 0;
}
vcpu->arch.vgic_cpu.num_id_bits = FIELD_GET(ICH_VTR_EL2_IDbits,
kvm_vgic_global_state.ich_vtr_el2);
vcpu->arch.vgic_cpu.num_pri_bits = FIELD_GET(ICH_VTR_EL2_PRIbits,
kvm_vgic_global_state.ich_vtr_el2) + 1;
}
void vcpu_set_ich_hcr(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
if (!vgic_is_v3(vcpu->kvm))
return;
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2 ||
!irqchip_in_kernel(vcpu->kvm))
vgic_v3->vgic_hcr |= (ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 |
ICH_HCR_EL2_TC);
}
int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
{
struct kvm_vcpu *vcpu;
int byte_offset, bit_nr;
gpa_t pendbase, ptr;
bool status;
u8 val;
int ret;
unsigned long flags;
retry:
vcpu = irq->target_vcpu;
if (!vcpu)
return 0;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
status = val & (1 << bit_nr);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->target_vcpu != vcpu) {
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
goto retry;
}
irq->pending_latch = status;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
if (status) {
val &= ~(1 << bit_nr);
ret = vgic_write_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
static void unmap_all_vpes(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int i;
for (i = 0; i < dist->its_vm.nr_vpes; i++)
free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i));
}
static void map_all_vpes(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int i;
for (i = 0; i < dist->its_vm.nr_vpes; i++)
WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i),
dist->its_vm.vpes[i]->irq));
}
int vgic_v3_save_pending_tables(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct vgic_irq *irq;
gpa_t last_ptr = ~(gpa_t)0;
bool vlpi_avail = false;
unsigned long index;
int ret = 0;
u8 val;
if (unlikely(!vgic_initialized(kvm)))
return -ENXIO;
if (kvm_vgic_global_state.has_gicv4_1) {
unmap_all_vpes(kvm);
vlpi_avail = true;
}
xa_for_each(&dist->lpi_xa, index, irq) {
int byte_offset, bit_nr;
struct kvm_vcpu *vcpu;
gpa_t pendbase, ptr;
bool is_pending;
bool stored;
vcpu = irq->target_vcpu;
if (!vcpu)
continue;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
if (ptr != last_ptr) {
ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
if (ret)
goto out;
last_ptr = ptr;
}
stored = val & (1U << bit_nr);
is_pending = irq->pending_latch;
if (irq->hw && vlpi_avail)
vgic_v4_get_vlpi_state(irq, &is_pending);
if (stored == is_pending)
continue;
if (is_pending)
val |= 1 << bit_nr;
else
val &= ~(1 << bit_nr);
ret = vgic_write_guest_lock(kvm, ptr, &val, 1);
if (ret)
goto out;
}
out:
if (vlpi_avail)
map_all_vpes(kvm);
return ret;
}
bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
{
struct vgic_dist *d = &kvm->arch.vgic;
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, &d->rd_regions, list) {
if ((base + size > rdreg->base) &&
(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
return true;
}
return false;
}
bool vgic_v3_check_base(struct kvm *kvm)
{
struct vgic_dist *d = &kvm->arch.vgic;
struct vgic_redist_region *rdreg;
if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
return false;
list_for_each_entry(rdreg, &d->rd_regions, list) {
size_t sz = vgic_v3_rd_region_size(kvm, rdreg);
if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF,
rdreg->base, SZ_64K, sz))
return false;
}
if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
return true;
return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
KVM_VGIC_V3_DIST_SIZE);
}
struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
{
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, rd_regions, list) {
if (!vgic_v3_redist_region_full(rdreg))
return rdreg;
}
return NULL;
}
struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
u32 index)
{
struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, rd_regions, list) {
if (rdreg->index == index)
return rdreg;
}
return NULL;
}
int vgic_v3_map_resources(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
unsigned long c;
kvm_for_each_vcpu(c, vcpu, kvm) {
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
kvm_debug("vcpu %ld redistributor base not set\n", c);
return -ENXIO;
}
}
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
kvm_debug("Need to set vgic distributor addresses first\n");
return -ENXIO;
}
if (!vgic_v3_check_base(kvm)) {
kvm_debug("VGIC redist and dist frames overlap\n");
return -EINVAL;
}
if (!vgic_initialized(kvm)) {
return -EBUSY;
}
if (kvm_vgic_global_state.has_gicv4_1)
vgic_v4_configure_vsgis(kvm);
return 0;
}
DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
DEFINE_STATIC_KEY_FALSE(vgic_v3_has_v2_compat);
static int __init early_group0_trap_cfg(char *buf)
{
return kstrtobool(buf, &group0_trap);
}
early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
static int __init early_group1_trap_cfg(char *buf)
{
return kstrtobool(buf, &group1_trap);
}
early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
static int __init early_common_trap_cfg(char *buf)
{
return kstrtobool(buf, &common_trap);
}
early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
static int __init early_gicv4_enable(char *buf)
{
return kstrtobool(buf, &gicv4_enable);
}
early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
static const struct midr_range broken_seis[] = {
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM),
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM),
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO),
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO),
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX),
MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX),
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
{},
};
static bool vgic_v3_broken_seis(void)
{
return (is_kernel_in_hyp_mode() &&
is_midr_in_range_list(broken_seis) &&
(read_sysreg_s(SYS_ICH_VTR_EL2) & ICH_VTR_EL2_SEIS));
}
void noinstr kvm_compute_ich_hcr_trap_bits(struct alt_instr *alt,
__le32 *origptr, __le32 *updptr,
int nr_inst)
{
u32 insn, oinsn, rd;
u64 hcr = 0;
if (cpus_have_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
group0_trap = true;
group1_trap = true;
}
if (vgic_v3_broken_seis()) {
group0_trap = true;
group1_trap = true;
dir_trap = true;
}
if (!cpus_have_cap(ARM64_HAS_ICH_HCR_EL2_TDIR))
common_trap = true;
if (group0_trap)
hcr |= ICH_HCR_EL2_TALL0;
if (group1_trap)
hcr |= ICH_HCR_EL2_TALL1;
if (common_trap)
hcr |= ICH_HCR_EL2_TC;
if (dir_trap)
hcr |= ICH_HCR_EL2_TDIR;
oinsn = le32_to_cpu(*origptr);
rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
insn = aarch64_insn_gen_movewide(rd,
(u16)hcr,
0,
AARCH64_INSN_VARIANT_64BIT,
AARCH64_INSN_MOVEWIDE_ZERO);
*updptr = cpu_to_le32(insn);
}
void vgic_v3_enable_cpuif_traps(void)
{
u64 traps = vgic_ich_hcr_trap_bits();
if (traps) {
kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n",
(traps & ICH_HCR_EL2_TALL0) ? "G0" : "",
(traps & ICH_HCR_EL2_TALL1) ? "G1" : "",
(traps & ICH_HCR_EL2_TC) ? "C" : "",
(traps & ICH_HCR_EL2_TDIR) ? "D" : "");
static_branch_enable(&vgic_v3_cpuif_trap);
}
}
int vgic_v3_probe(const struct gic_kvm_info *info)
{
u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
bool has_v2;
int ret;
has_v2 = ich_vtr_el2 >> 63;
ich_vtr_el2 = (u32)ich_vtr_el2;
kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
kvm_vgic_global_state.can_emulate_gicv2 = false;
kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
if (info->has_v4) {
kvm_vgic_global_state.has_gicv4 = gicv4_enable;
kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
kvm_info("GICv4%s support %s\n",
kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
str_enabled_disabled(gicv4_enable));
}
kvm_vgic_global_state.vcpu_base = 0;
if (!info->vcpu.start) {
kvm_info("GICv3: no GICV resource entry\n");
} else if (!has_v2) {
pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
} else if (!PAGE_ALIGNED(info->vcpu.start)) {
pr_warn("GICV physical address 0x%llx not page aligned\n",
(unsigned long long)info->vcpu.start);
} else if (kvm_get_mode() != KVM_MODE_PROTECTED) {
kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.can_emulate_gicv2 = true;
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device.\n");
return ret;
}
kvm_info("vgic-v2@%llx\n", info->vcpu.start);
}
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
if (ret) {
kvm_err("Cannot register GICv3 KVM device.\n");
kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
return ret;
}
if (kvm_vgic_global_state.vcpu_base == 0)
kvm_info("disabling GICv2 emulation\n");
if (has_v2)
static_branch_enable(&vgic_v3_has_v2_compat);
if (vgic_v3_broken_seis()) {
kvm_info("GICv3 with broken locally generated SEI\n");
kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_EL2_SEIS;
}
vgic_v3_enable_cpuif_traps();
kvm_vgic_global_state.vctrl_base = NULL;
kvm_vgic_global_state.type = VGIC_V3;
kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
return 0;
}
void vgic_v3_load(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
if (vgic_state_is_nested(vcpu)) {
vgic_v3_load_nested(vcpu);
return;
}
if (likely(!is_protected_kvm_enabled()))
kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, cpu_if);
if (has_vhe())
__vgic_v3_activate_traps(cpu_if);
WARN_ON(vgic_v4_load(vcpu));
}
void vgic_v3_put(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
if (vgic_state_is_nested(vcpu)) {
vgic_v3_put_nested(vcpu);
return;
}
if (likely(!is_protected_kvm_enabled()))
kvm_call_hyp(__vgic_v3_save_aprs, cpu_if);
WARN_ON(vgic_v4_put(vcpu));
if (has_vhe())
__vgic_v3_deactivate_traps(cpu_if);
}