Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/vgic/vgic-v4.c
52467 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2017 ARM Ltd.
4
* Author: Marc Zyngier <[email protected]>
5
*/
6
7
#include <linux/interrupt.h>
8
#include <linux/irq.h>
9
#include <linux/irqdomain.h>
10
#include <linux/kvm_host.h>
11
#include <linux/irqchip/arm-gic-v3.h>
12
13
#include "vgic.h"
14
15
/*
16
* How KVM uses GICv4 (insert rude comments here):
17
*
18
* The vgic-v4 layer acts as a bridge between several entities:
19
* - The GICv4 ITS representation offered by the ITS driver
20
* - VFIO, which is in charge of the PCI endpoint
21
* - The virtual ITS, which is the only thing the guest sees
22
*
23
* The configuration of VLPIs is triggered by a callback from VFIO,
24
* instructing KVM that a PCI device has been configured to deliver
25
* MSIs to a vITS.
26
*
27
* kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
28
* and this is used to find the corresponding vITS data structures
29
* (ITS instance, device, event and irq) using a process that is
30
* extremely similar to the injection of an MSI.
31
*
32
* At this stage, we can link the guest's view of an LPI (uniquely
33
* identified by the routing entry) and the host irq, using the GICv4
34
* driver mapping operation. Should the mapping succeed, we've then
35
* successfully upgraded the guest's LPI to a VLPI. We can then start
36
* with updating GICv4's view of the property table and generating an
37
* INValidation in order to kickstart the delivery of this VLPI to the
38
* guest directly, without software intervention. Well, almost.
39
*
40
* When the PCI endpoint is deconfigured, this operation is reversed
41
* with VFIO calling kvm_vgic_v4_unset_forwarding().
42
*
43
* Once the VLPI has been mapped, it needs to follow any change the
44
* guest performs on its LPI through the vITS. For that, a number of
45
* command handlers have hooks to communicate these changes to the HW:
46
* - Any invalidation triggers a call to its_prop_update_vlpi()
47
* - The INT command results in a irq_set_irqchip_state(), which
48
* generates an INT on the corresponding VLPI.
49
* - The CLEAR command results in a irq_set_irqchip_state(), which
50
* generates an CLEAR on the corresponding VLPI.
51
* - DISCARD translates into an unmap, similar to a call to
52
* kvm_vgic_v4_unset_forwarding().
53
* - MOVI is translated by an update of the existing mapping, changing
54
* the target vcpu, resulting in a VMOVI being generated.
55
* - MOVALL is translated by a string of mapping updates (similar to
56
* the handling of MOVI). MOVALL is horrible.
57
*
58
* Note that a DISCARD/MAPTI sequence emitted from the guest without
59
* reprogramming the PCI endpoint after MAPTI does not result in a
60
* VLPI being mapped, as there is no callback from VFIO (the guest
61
* will get the interrupt via the normal SW injection). Fixing this is
62
* not trivial, and requires some horrible messing with the VFIO
63
* internals. Not fun. Don't do that.
64
*
65
* Then there is the scheduling. Each time a vcpu is about to run on a
66
* physical CPU, KVM must tell the corresponding redistributor about
67
* it. And if we've migrated our vcpu from one CPU to another, we must
68
* tell the ITS (so that the messages reach the right redistributor).
69
* This is done in two steps: first issue a irq_set_affinity() on the
70
* irq corresponding to the vcpu, then call its_make_vpe_resident().
71
* You must be in a non-preemptible context. On exit, a call to
72
* its_make_vpe_non_resident() tells the redistributor that we're done
73
* with the vcpu.
74
*
75
* Finally, the doorbell handling: Each vcpu is allocated an interrupt
76
* which will fire each time a VLPI is made pending whilst the vcpu is
77
* not running. Each time the vcpu gets blocked, the doorbell
78
* interrupt gets enabled. When the vcpu is unblocked (for whatever
79
* reason), the doorbell interrupt is disabled.
80
*/
81
82
#define DB_IRQ_FLAGS (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
83
84
static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
85
{
86
struct kvm_vcpu *vcpu = info;
87
88
/* We got the message, no need to fire again */
89
if (!kvm_vgic_global_state.has_gicv4_1 &&
90
!irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
91
disable_irq_nosync(irq);
92
93
/*
94
* The v4.1 doorbell can fire concurrently with the vPE being
95
* made non-resident. Ensure we only update pending_last
96
* *after* the non-residency sequence has completed.
97
*/
98
raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
99
vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
100
raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
101
102
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
103
kvm_vcpu_kick(vcpu);
104
105
return IRQ_HANDLED;
106
}
107
108
static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
109
{
110
vpe->sgi_config[irq->intid].enabled = irq->enabled;
111
vpe->sgi_config[irq->intid].group = irq->group;
112
vpe->sgi_config[irq->intid].priority = irq->priority;
113
}
114
115
static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
116
{
117
struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
118
int i;
119
120
/*
121
* With GICv4.1, every virtual SGI can be directly injected. So
122
* let's pretend that they are HW interrupts, tied to a host
123
* IRQ. The SGI code will do its magic.
124
*/
125
for (i = 0; i < VGIC_NR_SGIS; i++) {
126
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, i);
127
struct irq_desc *desc;
128
unsigned long flags;
129
int ret;
130
131
raw_spin_lock_irqsave(&irq->irq_lock, flags);
132
133
if (irq->hw)
134
goto unlock;
135
136
irq->hw = true;
137
irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
138
139
/* Transfer the full irq state to the vPE */
140
vgic_v4_sync_sgi_config(vpe, irq);
141
desc = irq_to_desc(irq->host_irq);
142
ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
143
false);
144
if (!WARN_ON(ret)) {
145
/* Transfer pending state */
146
ret = irq_set_irqchip_state(irq->host_irq,
147
IRQCHIP_STATE_PENDING,
148
irq->pending_latch);
149
WARN_ON(ret);
150
irq->pending_latch = false;
151
}
152
unlock:
153
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
154
vgic_put_irq(vcpu->kvm, irq);
155
}
156
}
157
158
static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
159
{
160
int i;
161
162
for (i = 0; i < VGIC_NR_SGIS; i++) {
163
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, i);
164
struct irq_desc *desc;
165
unsigned long flags;
166
bool pending;
167
int ret;
168
169
raw_spin_lock_irqsave(&irq->irq_lock, flags);
170
171
if (!irq->hw)
172
goto unlock;
173
174
irq->hw = false;
175
ret = irq_get_irqchip_state(irq->host_irq,
176
IRQCHIP_STATE_PENDING,
177
&pending);
178
WARN_ON(ret);
179
180
irq->pending_latch = pending;
181
182
desc = irq_to_desc(irq->host_irq);
183
irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
184
unlock:
185
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
186
vgic_put_irq(vcpu->kvm, irq);
187
}
188
}
189
190
void vgic_v4_configure_vsgis(struct kvm *kvm)
191
{
192
struct vgic_dist *dist = &kvm->arch.vgic;
193
struct kvm_vcpu *vcpu;
194
unsigned long i;
195
196
lockdep_assert_held(&kvm->arch.config_lock);
197
198
kvm_arm_halt_guest(kvm);
199
200
kvm_for_each_vcpu(i, vcpu, kvm) {
201
if (dist->nassgireq)
202
vgic_v4_enable_vsgis(vcpu);
203
else
204
vgic_v4_disable_vsgis(vcpu);
205
}
206
207
kvm_arm_resume_guest(kvm);
208
}
209
210
/*
211
* Must be called with GICv4.1 and the vPE unmapped, which
212
* indicates the invalidation of any VPT caches associated
213
* with the vPE, thus we can get the VLPI state by peeking
214
* at the VPT.
215
*/
216
void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val)
217
{
218
struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
219
int mask = BIT(irq->intid % BITS_PER_BYTE);
220
void *va;
221
u8 *ptr;
222
223
va = page_address(vpe->vpt_page);
224
ptr = va + irq->intid / BITS_PER_BYTE;
225
226
*val = !!(*ptr & mask);
227
}
228
229
int vgic_v4_request_vpe_irq(struct kvm_vcpu *vcpu, int irq)
230
{
231
return request_irq(irq, vgic_v4_doorbell_handler, 0, "vcpu", vcpu);
232
}
233
234
/**
235
* vgic_v4_init - Initialize the GICv4 data structures
236
* @kvm: Pointer to the VM being initialized
237
*
238
* We may be called each time a vITS is created, or when the
239
* vgic is initialized. In both cases, the number of vcpus
240
* should now be fixed.
241
*/
242
int vgic_v4_init(struct kvm *kvm)
243
{
244
struct vgic_dist *dist = &kvm->arch.vgic;
245
struct kvm_vcpu *vcpu;
246
int nr_vcpus, ret;
247
unsigned long i;
248
249
lockdep_assert_held(&kvm->arch.config_lock);
250
251
if (!kvm_vgic_global_state.has_gicv4)
252
return 0; /* Nothing to see here... move along. */
253
254
if (dist->its_vm.vpes)
255
return 0;
256
257
nr_vcpus = atomic_read(&kvm->online_vcpus);
258
259
dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
260
GFP_KERNEL_ACCOUNT);
261
if (!dist->its_vm.vpes)
262
return -ENOMEM;
263
264
dist->its_vm.nr_vpes = nr_vcpus;
265
266
kvm_for_each_vcpu(i, vcpu, kvm)
267
dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
268
269
ret = its_alloc_vcpu_irqs(&dist->its_vm);
270
if (ret < 0) {
271
kvm_err("VPE IRQ allocation failure\n");
272
kfree(dist->its_vm.vpes);
273
dist->its_vm.nr_vpes = 0;
274
dist->its_vm.vpes = NULL;
275
return ret;
276
}
277
278
kvm_for_each_vcpu(i, vcpu, kvm) {
279
int irq = dist->its_vm.vpes[i]->irq;
280
unsigned long irq_flags = DB_IRQ_FLAGS;
281
282
/*
283
* Don't automatically enable the doorbell, as we're
284
* flipping it back and forth when the vcpu gets
285
* blocked. Also disable the lazy disabling, as the
286
* doorbell could kick us out of the guest too
287
* early...
288
*
289
* On GICv4.1, the doorbell is managed in HW and must
290
* be left enabled.
291
*/
292
if (kvm_vgic_global_state.has_gicv4_1)
293
irq_flags &= ~IRQ_NOAUTOEN;
294
irq_set_status_flags(irq, irq_flags);
295
296
ret = vgic_v4_request_vpe_irq(vcpu, irq);
297
if (ret) {
298
kvm_err("failed to allocate vcpu IRQ%d\n", irq);
299
/*
300
* Trick: adjust the number of vpes so we know
301
* how many to nuke on teardown...
302
*/
303
dist->its_vm.nr_vpes = i;
304
break;
305
}
306
}
307
308
if (ret)
309
vgic_v4_teardown(kvm);
310
311
return ret;
312
}
313
314
/**
315
* vgic_v4_teardown - Free the GICv4 data structures
316
* @kvm: Pointer to the VM being destroyed
317
*/
318
void vgic_v4_teardown(struct kvm *kvm)
319
{
320
struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
321
int i;
322
323
lockdep_assert_held(&kvm->arch.config_lock);
324
325
if (!its_vm->vpes)
326
return;
327
328
for (i = 0; i < its_vm->nr_vpes; i++) {
329
struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
330
int irq = its_vm->vpes[i]->irq;
331
332
irq_clear_status_flags(irq, DB_IRQ_FLAGS);
333
free_irq(irq, vcpu);
334
}
335
336
its_free_vcpu_irqs(its_vm);
337
kfree(its_vm->vpes);
338
its_vm->nr_vpes = 0;
339
its_vm->vpes = NULL;
340
}
341
342
static inline bool vgic_v4_want_doorbell(struct kvm_vcpu *vcpu)
343
{
344
if (vcpu_get_flag(vcpu, IN_WFI))
345
return true;
346
347
if (likely(!vcpu_has_nv(vcpu)))
348
return false;
349
350
/*
351
* GICv4 hardware is only ever used for the L1. Mark the vPE (i.e. the
352
* L1 context) nonresident and request a doorbell to kick us out of the
353
* L2 when an IRQ becomes pending.
354
*/
355
return vcpu_get_flag(vcpu, IN_NESTED_ERET);
356
}
357
358
int vgic_v4_put(struct kvm_vcpu *vcpu)
359
{
360
struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
361
362
if (!vgic_supports_direct_irqs(vcpu->kvm) || !vpe->resident)
363
return 0;
364
365
return its_make_vpe_non_resident(vpe, vgic_v4_want_doorbell(vcpu));
366
}
367
368
int vgic_v4_load(struct kvm_vcpu *vcpu)
369
{
370
struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
371
int err;
372
373
if (!vgic_supports_direct_irqs(vcpu->kvm) || vpe->resident)
374
return 0;
375
376
if (vcpu_get_flag(vcpu, IN_WFI))
377
return 0;
378
379
/*
380
* Before making the VPE resident, make sure the redistributor
381
* corresponding to our current CPU expects us here. See the
382
* doc in drivers/irqchip/irq-gic-v4.c to understand how this
383
* turns into a VMOVP command at the ITS level.
384
*/
385
err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
386
if (err)
387
return err;
388
389
err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
390
if (err)
391
return err;
392
393
/*
394
* Now that the VPE is resident, let's get rid of a potential
395
* doorbell interrupt that would still be pending. This is a
396
* GICv4.0 only "feature"...
397
*/
398
if (!kvm_vgic_global_state.has_gicv4_1)
399
err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
400
401
return err;
402
}
403
404
void vgic_v4_commit(struct kvm_vcpu *vcpu)
405
{
406
struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
407
408
/*
409
* No need to wait for the vPE to be ready across a shallow guest
410
* exit, as only a vcpu_put will invalidate it.
411
*/
412
if (!vpe->ready)
413
its_commit_vpe(vpe);
414
}
415
416
static struct vgic_its *vgic_get_its(struct kvm *kvm,
417
struct kvm_kernel_irq_routing_entry *irq_entry)
418
{
419
struct kvm_msi msi = (struct kvm_msi) {
420
.address_lo = irq_entry->msi.address_lo,
421
.address_hi = irq_entry->msi.address_hi,
422
.data = irq_entry->msi.data,
423
.flags = irq_entry->msi.flags,
424
.devid = irq_entry->msi.devid,
425
};
426
427
return vgic_msi_to_its(kvm, &msi);
428
}
429
430
int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
431
struct kvm_kernel_irq_routing_entry *irq_entry)
432
{
433
struct vgic_its *its;
434
struct vgic_irq *irq;
435
struct its_vlpi_map map;
436
unsigned long flags;
437
int ret = 0;
438
439
if (!vgic_supports_direct_msis(kvm))
440
return 0;
441
442
/*
443
* Get the ITS, and escape early on error (not a valid
444
* doorbell for any of our vITSs).
445
*/
446
its = vgic_get_its(kvm, irq_entry);
447
if (IS_ERR(its))
448
return 0;
449
450
guard(mutex)(&its->its_lock);
451
452
/*
453
* Perform the actual DevID/EventID -> LPI translation.
454
*
455
* Silently exit if translation fails as the guest (or userspace!) has
456
* managed to do something stupid. Emulated LPI injection will still
457
* work if the guest figures itself out at a later time.
458
*/
459
if (vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
460
irq_entry->msi.data, &irq))
461
return 0;
462
463
raw_spin_lock_irqsave(&irq->irq_lock, flags);
464
465
/* Silently exit if the vLPI is already mapped */
466
if (irq->hw)
467
goto out_unlock_irq;
468
469
/*
470
* Emit the mapping request. If it fails, the ITS probably
471
* isn't v4 compatible, so let's silently bail out. Holding
472
* the ITS lock should ensure that nothing can modify the
473
* target vcpu.
474
*/
475
map = (struct its_vlpi_map) {
476
.vm = &kvm->arch.vgic.its_vm,
477
.vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
478
.vintid = irq->intid,
479
.properties = ((irq->priority & 0xfc) |
480
(irq->enabled ? LPI_PROP_ENABLED : 0) |
481
LPI_PROP_GROUP1),
482
.db_enabled = true,
483
};
484
485
ret = its_map_vlpi(virq, &map);
486
if (ret)
487
goto out_unlock_irq;
488
489
irq->hw = true;
490
irq->host_irq = virq;
491
atomic_inc(&map.vpe->vlpi_count);
492
493
/* Transfer pending state */
494
if (!irq->pending_latch)
495
goto out_unlock_irq;
496
497
ret = irq_set_irqchip_state(irq->host_irq, IRQCHIP_STATE_PENDING,
498
irq->pending_latch);
499
WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq);
500
501
/*
502
* Clear pending_latch and communicate this state
503
* change via vgic_queue_irq_unlock.
504
*/
505
irq->pending_latch = false;
506
vgic_queue_irq_unlock(kvm, irq, flags);
507
return ret;
508
509
out_unlock_irq:
510
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
511
return ret;
512
}
513
514
static struct vgic_irq *__vgic_host_irq_get_vlpi(struct kvm *kvm, int host_irq)
515
{
516
struct vgic_irq *irq;
517
unsigned long idx;
518
519
guard(rcu)();
520
xa_for_each(&kvm->arch.vgic.lpi_xa, idx, irq) {
521
if (!irq->hw || irq->host_irq != host_irq)
522
continue;
523
524
if (!vgic_try_get_irq_ref(irq))
525
return NULL;
526
527
return irq;
528
}
529
530
return NULL;
531
}
532
533
void kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int host_irq)
534
{
535
struct vgic_irq *irq;
536
unsigned long flags;
537
538
if (!vgic_supports_direct_msis(kvm))
539
return;
540
541
irq = __vgic_host_irq_get_vlpi(kvm, host_irq);
542
if (!irq)
543
return;
544
545
raw_spin_lock_irqsave(&irq->irq_lock, flags);
546
WARN_ON(irq->hw && irq->host_irq != host_irq);
547
if (irq->hw) {
548
atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
549
irq->hw = false;
550
its_unmap_vlpi(host_irq);
551
}
552
553
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
554
vgic_put_irq(kvm, irq);
555
}
556
557