Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/vgic/vgic.c
52651 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2015, 2016 ARM Ltd.
4
*/
5
6
#include <linux/interrupt.h>
7
#include <linux/irq.h>
8
#include <linux/kvm.h>
9
#include <linux/kvm_host.h>
10
#include <linux/list_sort.h>
11
#include <linux/nospec.h>
12
13
#include <asm/kvm_hyp.h>
14
15
#include "vgic.h"
16
17
#define CREATE_TRACE_POINTS
18
#include "trace.h"
19
20
struct vgic_global kvm_vgic_global_state __ro_after_init = {
21
.gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22
};
23
24
/*
25
* Locking order is always:
26
* kvm->lock (mutex)
27
* vcpu->mutex (mutex)
28
* kvm->arch.config_lock (mutex)
29
* its->cmd_lock (mutex)
30
* its->its_lock (mutex)
31
* vgic_dist->lpi_xa.xa_lock must be taken with IRQs disabled
32
* vgic_cpu->ap_list_lock must be taken with IRQs disabled
33
* vgic_irq->irq_lock must be taken with IRQs disabled
34
*
35
* As the ap_list_lock might be taken from the timer interrupt handler,
36
* we have to disable IRQs before taking this lock and everything lower
37
* than it.
38
*
39
* The config_lock has additional ordering requirements:
40
* kvm->slots_lock
41
* kvm->srcu
42
* kvm->arch.config_lock
43
*
44
* If you need to take multiple locks, always take the upper lock first,
45
* then the lower ones, e.g. first take the its_lock, then the irq_lock.
46
* If you are already holding a lock and need to take a higher one, you
47
* have to drop the lower ranking lock first and re-acquire it after having
48
* taken the upper one.
49
*
50
* When taking more than one ap_list_lock at the same time, always take the
51
* lowest numbered VCPU's ap_list_lock first, so:
52
* vcpuX->vcpu_id < vcpuY->vcpu_id:
53
* raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
54
* raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
55
*
56
* Since the VGIC must support injecting virtual interrupts from ISRs, we have
57
* to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
58
* spinlocks for any lock that may be taken while injecting an interrupt.
59
*/
60
61
/*
62
* Index the VM's xarray of mapped LPIs and return a reference to the IRQ
63
* structure. The caller is expected to call vgic_put_irq() later once it's
64
* finished with the IRQ.
65
*/
66
static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
67
{
68
struct vgic_dist *dist = &kvm->arch.vgic;
69
struct vgic_irq *irq = NULL;
70
71
rcu_read_lock();
72
73
irq = xa_load(&dist->lpi_xa, intid);
74
if (!vgic_try_get_irq_ref(irq))
75
irq = NULL;
76
77
rcu_read_unlock();
78
79
return irq;
80
}
81
82
/*
83
* This looks up the virtual interrupt ID to get the corresponding
84
* struct vgic_irq. It also increases the refcount, so any caller is expected
85
* to call vgic_put_irq() once it's finished with this IRQ.
86
*/
87
struct vgic_irq *vgic_get_irq(struct kvm *kvm, u32 intid)
88
{
89
/* SPIs */
90
if (intid >= VGIC_NR_PRIVATE_IRQS &&
91
intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
92
intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
93
return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
94
}
95
96
/* LPIs */
97
if (intid >= VGIC_MIN_LPI)
98
return vgic_get_lpi(kvm, intid);
99
100
return NULL;
101
}
102
103
struct vgic_irq *vgic_get_vcpu_irq(struct kvm_vcpu *vcpu, u32 intid)
104
{
105
if (WARN_ON(!vcpu))
106
return NULL;
107
108
/* SGIs and PPIs */
109
if (intid < VGIC_NR_PRIVATE_IRQS) {
110
intid = array_index_nospec(intid, VGIC_NR_PRIVATE_IRQS);
111
return &vcpu->arch.vgic_cpu.private_irqs[intid];
112
}
113
114
return vgic_get_irq(vcpu->kvm, intid);
115
}
116
117
static void vgic_release_lpi_locked(struct vgic_dist *dist, struct vgic_irq *irq)
118
{
119
lockdep_assert_held(&dist->lpi_xa.xa_lock);
120
__xa_erase(&dist->lpi_xa, irq->intid);
121
kfree_rcu(irq, rcu);
122
}
123
124
static __must_check bool __vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
125
{
126
if (irq->intid < VGIC_MIN_LPI)
127
return false;
128
129
return refcount_dec_and_test(&irq->refcount);
130
}
131
132
static __must_check bool vgic_put_irq_norelease(struct kvm *kvm, struct vgic_irq *irq)
133
{
134
if (!__vgic_put_irq(kvm, irq))
135
return false;
136
137
irq->pending_release = true;
138
return true;
139
}
140
141
void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
142
{
143
struct vgic_dist *dist = &kvm->arch.vgic;
144
unsigned long flags;
145
146
/*
147
* Normally the lock is only taken when the refcount drops to 0.
148
* Acquire/release it early on lockdep kernels to make locking issues
149
* in rare release paths a bit more obvious.
150
*/
151
if (IS_ENABLED(CONFIG_LOCKDEP) && irq->intid >= VGIC_MIN_LPI) {
152
guard(spinlock_irqsave)(&dist->lpi_xa.xa_lock);
153
}
154
155
if (!__vgic_put_irq(kvm, irq))
156
return;
157
158
xa_lock_irqsave(&dist->lpi_xa, flags);
159
vgic_release_lpi_locked(dist, irq);
160
xa_unlock_irqrestore(&dist->lpi_xa, flags);
161
}
162
163
static void vgic_release_deleted_lpis(struct kvm *kvm)
164
{
165
struct vgic_dist *dist = &kvm->arch.vgic;
166
unsigned long flags, intid;
167
struct vgic_irq *irq;
168
169
xa_lock_irqsave(&dist->lpi_xa, flags);
170
171
xa_for_each(&dist->lpi_xa, intid, irq) {
172
if (irq->pending_release)
173
vgic_release_lpi_locked(dist, irq);
174
}
175
176
xa_unlock_irqrestore(&dist->lpi_xa, flags);
177
}
178
179
void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
180
{
181
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
182
struct vgic_irq *irq, *tmp;
183
bool deleted = false;
184
unsigned long flags;
185
186
raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
187
188
list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
189
if (irq->intid >= VGIC_MIN_LPI) {
190
raw_spin_lock(&irq->irq_lock);
191
list_del(&irq->ap_list);
192
irq->vcpu = NULL;
193
raw_spin_unlock(&irq->irq_lock);
194
deleted |= vgic_put_irq_norelease(vcpu->kvm, irq);
195
}
196
}
197
198
raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
199
200
if (deleted)
201
vgic_release_deleted_lpis(vcpu->kvm);
202
}
203
204
void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
205
{
206
WARN_ON(irq_set_irqchip_state(irq->host_irq,
207
IRQCHIP_STATE_PENDING,
208
pending));
209
}
210
211
bool vgic_get_phys_line_level(struct vgic_irq *irq)
212
{
213
bool line_level;
214
215
BUG_ON(!irq->hw);
216
217
if (irq->ops && irq->ops->get_input_level)
218
return irq->ops->get_input_level(irq->intid);
219
220
WARN_ON(irq_get_irqchip_state(irq->host_irq,
221
IRQCHIP_STATE_PENDING,
222
&line_level));
223
return line_level;
224
}
225
226
/* Set/Clear the physical active state */
227
void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
228
{
229
230
BUG_ON(!irq->hw);
231
WARN_ON(irq_set_irqchip_state(irq->host_irq,
232
IRQCHIP_STATE_ACTIVE,
233
active));
234
}
235
236
/**
237
* vgic_target_oracle - compute the target vcpu for an irq
238
*
239
* @irq: The irq to route. Must be already locked.
240
*
241
* Based on the current state of the interrupt (enabled, pending,
242
* active, vcpu and target_vcpu), compute the next vcpu this should be
243
* given to. Return NULL if this shouldn't be injected at all.
244
*
245
* Requires the IRQ lock to be held.
246
*/
247
struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
248
{
249
lockdep_assert_held(&irq->irq_lock);
250
251
/* If the interrupt is active, it must stay on the current vcpu */
252
if (irq->active)
253
return irq->vcpu ? : irq->target_vcpu;
254
255
/*
256
* If the IRQ is not active but enabled and pending, we should direct
257
* it to its configured target VCPU.
258
* If the distributor is disabled, pending interrupts shouldn't be
259
* forwarded.
260
*/
261
if (irq->enabled && irq_is_pending(irq)) {
262
if (unlikely(irq->target_vcpu &&
263
!irq->target_vcpu->kvm->arch.vgic.enabled))
264
return NULL;
265
266
return irq->target_vcpu;
267
}
268
269
/* If neither active nor pending and enabled, then this IRQ should not
270
* be queued to any VCPU.
271
*/
272
return NULL;
273
}
274
275
struct vgic_sort_info {
276
struct kvm_vcpu *vcpu;
277
struct vgic_vmcr vmcr;
278
};
279
280
/*
281
* The order of items in the ap_lists defines how we'll pack things in LRs as
282
* well, the first items in the list being the first things populated in the
283
* LRs.
284
*
285
* Pending, non-active interrupts must be placed at the head of the list.
286
* Otherwise things should be sorted by the priority field and the GIC
287
* hardware support will take care of preemption of priority groups etc.
288
* Interrupts that are not deliverable should be at the end of the list.
289
*
290
* Return negative if "a" sorts before "b", 0 to preserve order, and positive
291
* to sort "b" before "a".
292
*/
293
static int vgic_irq_cmp(void *priv, const struct list_head *a,
294
const struct list_head *b)
295
{
296
struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
297
struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
298
struct vgic_sort_info *info = priv;
299
struct kvm_vcpu *vcpu = info->vcpu;
300
bool penda, pendb;
301
int ret;
302
303
/*
304
* list_sort may call this function with the same element when
305
* the list is fairly long.
306
*/
307
if (unlikely(irqa == irqb))
308
return 0;
309
310
raw_spin_lock(&irqa->irq_lock);
311
raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
312
313
/* Undeliverable interrupts should be last */
314
ret = (int)(vgic_target_oracle(irqb) == vcpu) - (int)(vgic_target_oracle(irqa) == vcpu);
315
if (ret)
316
goto out;
317
318
/* Same thing for interrupts targeting a disabled group */
319
ret = (int)(irqb->group ? info->vmcr.grpen1 : info->vmcr.grpen0);
320
ret -= (int)(irqa->group ? info->vmcr.grpen1 : info->vmcr.grpen0);
321
if (ret)
322
goto out;
323
324
penda = irqa->enabled && irq_is_pending(irqa) && !irqa->active;
325
pendb = irqb->enabled && irq_is_pending(irqb) && !irqb->active;
326
327
ret = (int)pendb - (int)penda;
328
if (ret)
329
goto out;
330
331
/* Both pending and enabled, sort by priority (lower number first) */
332
ret = (int)irqa->priority - (int)irqb->priority;
333
if (ret)
334
goto out;
335
336
/* Finally, HW bit active interrupts have priority over non-HW ones */
337
ret = (int)irqb->hw - (int)irqa->hw;
338
339
out:
340
raw_spin_unlock(&irqb->irq_lock);
341
raw_spin_unlock(&irqa->irq_lock);
342
return ret;
343
}
344
345
/* Must be called with the ap_list_lock held */
346
static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
347
{
348
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
349
struct vgic_sort_info info = { .vcpu = vcpu, };
350
351
lockdep_assert_held(&vgic_cpu->ap_list_lock);
352
353
vgic_get_vmcr(vcpu, &info.vmcr);
354
list_sort(&info, &vgic_cpu->ap_list_head, vgic_irq_cmp);
355
}
356
357
/*
358
* Only valid injection if changing level for level-triggered IRQs or for a
359
* rising edge, and in-kernel connected IRQ lines can only be controlled by
360
* their owner.
361
*/
362
static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
363
{
364
if (irq->owner != owner)
365
return false;
366
367
switch (irq->config) {
368
case VGIC_CONFIG_LEVEL:
369
return irq->line_level != level;
370
case VGIC_CONFIG_EDGE:
371
return level;
372
}
373
374
return false;
375
}
376
377
static bool vgic_model_needs_bcst_kick(struct kvm *kvm)
378
{
379
/*
380
* A GICv3 (or GICv3-like) system exposing a GICv3 to the guest
381
* needs a broadcast kick to set TDIR globally.
382
*
383
* For systems that do not have TDIR (ARM's own v8.0 CPUs), the
384
* shadow TDIR bit is always set, and so is the register's TC bit,
385
* so no need to kick the CPUs.
386
*/
387
return (cpus_have_final_cap(ARM64_HAS_ICH_HCR_EL2_TDIR) &&
388
kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3);
389
}
390
391
/*
392
* Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
393
* Do the queuing if necessary, taking the right locks in the right order.
394
* Returns true when the IRQ was queued, false otherwise.
395
*
396
* Needs to be entered with the IRQ lock already held, but will return
397
* with all locks dropped.
398
*/
399
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
400
unsigned long flags) __releases(&irq->irq_lock)
401
{
402
struct kvm_vcpu *vcpu;
403
bool bcast;
404
405
lockdep_assert_held(&irq->irq_lock);
406
407
retry:
408
vcpu = vgic_target_oracle(irq);
409
if (irq->vcpu || !vcpu) {
410
/*
411
* If this IRQ is already on a VCPU's ap_list, then it
412
* cannot be moved or modified and there is no more work for
413
* us to do.
414
*
415
* Otherwise, if the irq is not pending and enabled, it does
416
* not need to be inserted into an ap_list and there is also
417
* no more work for us to do.
418
*/
419
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
420
421
/*
422
* We have to kick the VCPU here, because we could be
423
* queueing an edge-triggered interrupt for which we
424
* get no EOI maintenance interrupt. In that case,
425
* while the IRQ is already on the VCPU's AP list, the
426
* VCPU could have EOI'ed the original interrupt and
427
* won't see this one until it exits for some other
428
* reason.
429
*/
430
if (vcpu) {
431
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
432
kvm_vcpu_kick(vcpu);
433
}
434
return false;
435
}
436
437
/*
438
* We must unlock the irq lock to take the ap_list_lock where
439
* we are going to insert this new pending interrupt.
440
*/
441
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
442
443
/* someone can do stuff here, which we re-check below */
444
445
raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
446
raw_spin_lock(&irq->irq_lock);
447
448
/*
449
* Did something change behind our backs?
450
*
451
* There are two cases:
452
* 1) The irq lost its pending state or was disabled behind our
453
* backs and/or it was queued to another VCPU's ap_list.
454
* 2) Someone changed the affinity on this irq behind our
455
* backs and we are now holding the wrong ap_list_lock.
456
*
457
* In both cases, drop the locks and retry.
458
*/
459
460
if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
461
raw_spin_unlock(&irq->irq_lock);
462
raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
463
flags);
464
465
raw_spin_lock_irqsave(&irq->irq_lock, flags);
466
goto retry;
467
}
468
469
/*
470
* Grab a reference to the irq to reflect the fact that it is
471
* now in the ap_list. This is safe as the caller must already hold a
472
* reference on the irq.
473
*/
474
vgic_get_irq_ref(irq);
475
list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
476
irq->vcpu = vcpu;
477
478
/* A new SPI may result in deactivation trapping on all vcpus */
479
bcast = (vgic_model_needs_bcst_kick(vcpu->kvm) &&
480
vgic_valid_spi(vcpu->kvm, irq->intid) &&
481
atomic_fetch_inc(&vcpu->kvm->arch.vgic.active_spis) == 0);
482
483
raw_spin_unlock(&irq->irq_lock);
484
raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
485
486
if (!bcast) {
487
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
488
kvm_vcpu_kick(vcpu);
489
} else {
490
kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_IRQ_PENDING);
491
}
492
493
return true;
494
}
495
496
/**
497
* kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
498
* @kvm: The VM structure pointer
499
* @vcpu: The CPU for PPIs or NULL for global interrupts
500
* @intid: The INTID to inject a new state to.
501
* @level: Edge-triggered: true: to trigger the interrupt
502
* false: to ignore the call
503
* Level-sensitive true: raise the input signal
504
* false: lower the input signal
505
* @owner: The opaque pointer to the owner of the IRQ being raised to verify
506
* that the caller is allowed to inject this IRQ. Userspace
507
* injections will have owner == NULL.
508
*
509
* The VGIC is not concerned with devices being active-LOW or active-HIGH for
510
* level-sensitive interrupts. You can think of the level parameter as 1
511
* being HIGH and 0 being LOW and all devices being active-HIGH.
512
*/
513
int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
514
unsigned int intid, bool level, void *owner)
515
{
516
struct vgic_irq *irq;
517
unsigned long flags;
518
int ret;
519
520
ret = vgic_lazy_init(kvm);
521
if (ret)
522
return ret;
523
524
if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
525
return -EINVAL;
526
527
trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level);
528
529
if (intid < VGIC_NR_PRIVATE_IRQS)
530
irq = vgic_get_vcpu_irq(vcpu, intid);
531
else
532
irq = vgic_get_irq(kvm, intid);
533
if (!irq)
534
return -EINVAL;
535
536
raw_spin_lock_irqsave(&irq->irq_lock, flags);
537
538
if (!vgic_validate_injection(irq, level, owner)) {
539
/* Nothing to see here, move along... */
540
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
541
vgic_put_irq(kvm, irq);
542
return 0;
543
}
544
545
if (irq->config == VGIC_CONFIG_LEVEL)
546
irq->line_level = level;
547
else
548
irq->pending_latch = true;
549
550
vgic_queue_irq_unlock(kvm, irq, flags);
551
vgic_put_irq(kvm, irq);
552
553
return 0;
554
}
555
556
/* @irq->irq_lock must be held */
557
static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
558
unsigned int host_irq,
559
struct irq_ops *ops)
560
{
561
struct irq_desc *desc;
562
struct irq_data *data;
563
564
/*
565
* Find the physical IRQ number corresponding to @host_irq
566
*/
567
desc = irq_to_desc(host_irq);
568
if (!desc) {
569
kvm_err("%s: no interrupt descriptor\n", __func__);
570
return -EINVAL;
571
}
572
data = irq_desc_get_irq_data(desc);
573
while (data->parent_data)
574
data = data->parent_data;
575
576
irq->hw = true;
577
irq->host_irq = host_irq;
578
irq->hwintid = data->hwirq;
579
irq->ops = ops;
580
return 0;
581
}
582
583
/* @irq->irq_lock must be held */
584
static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
585
{
586
irq->hw = false;
587
irq->hwintid = 0;
588
irq->ops = NULL;
589
}
590
591
int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
592
u32 vintid, struct irq_ops *ops)
593
{
594
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
595
unsigned long flags;
596
int ret;
597
598
BUG_ON(!irq);
599
600
raw_spin_lock_irqsave(&irq->irq_lock, flags);
601
ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
602
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
603
vgic_put_irq(vcpu->kvm, irq);
604
605
return ret;
606
}
607
608
/**
609
* kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
610
* @vcpu: The VCPU pointer
611
* @vintid: The INTID of the interrupt
612
*
613
* Reset the active and pending states of a mapped interrupt. Kernel
614
* subsystems injecting mapped interrupts should reset their interrupt lines
615
* when we are doing a reset of the VM.
616
*/
617
void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
618
{
619
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
620
unsigned long flags;
621
622
if (!irq->hw)
623
goto out;
624
625
raw_spin_lock_irqsave(&irq->irq_lock, flags);
626
irq->active = false;
627
irq->pending_latch = false;
628
irq->line_level = false;
629
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
630
out:
631
vgic_put_irq(vcpu->kvm, irq);
632
}
633
634
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
635
{
636
struct vgic_irq *irq;
637
unsigned long flags;
638
639
if (!vgic_initialized(vcpu->kvm))
640
return -EAGAIN;
641
642
irq = vgic_get_vcpu_irq(vcpu, vintid);
643
BUG_ON(!irq);
644
645
raw_spin_lock_irqsave(&irq->irq_lock, flags);
646
kvm_vgic_unmap_irq(irq);
647
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
648
vgic_put_irq(vcpu->kvm, irq);
649
650
return 0;
651
}
652
653
int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
654
{
655
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
656
unsigned long flags;
657
int ret = -1;
658
659
raw_spin_lock_irqsave(&irq->irq_lock, flags);
660
if (irq->hw)
661
ret = irq->hwintid;
662
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
663
664
vgic_put_irq(vcpu->kvm, irq);
665
return ret;
666
}
667
668
/**
669
* kvm_vgic_set_owner - Set the owner of an interrupt for a VM
670
*
671
* @vcpu: Pointer to the VCPU (used for PPIs)
672
* @intid: The virtual INTID identifying the interrupt (PPI or SPI)
673
* @owner: Opaque pointer to the owner
674
*
675
* Returns 0 if intid is not already used by another in-kernel device and the
676
* owner is set, otherwise returns an error code.
677
*/
678
int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
679
{
680
struct vgic_irq *irq;
681
unsigned long flags;
682
int ret = 0;
683
684
if (!vgic_initialized(vcpu->kvm))
685
return -EAGAIN;
686
687
/* SGIs and LPIs cannot be wired up to any device */
688
if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
689
return -EINVAL;
690
691
irq = vgic_get_vcpu_irq(vcpu, intid);
692
raw_spin_lock_irqsave(&irq->irq_lock, flags);
693
if (irq->owner && irq->owner != owner)
694
ret = -EEXIST;
695
else
696
irq->owner = owner;
697
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
698
699
return ret;
700
}
701
702
/**
703
* vgic_prune_ap_list - Remove non-relevant interrupts from the list
704
*
705
* @vcpu: The VCPU pointer
706
*
707
* Go over the list of "interesting" interrupts, and prune those that we
708
* won't have to consider in the near future.
709
*/
710
static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
711
{
712
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
713
struct vgic_irq *irq, *tmp;
714
bool deleted_lpis = false;
715
716
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
717
718
retry:
719
raw_spin_lock(&vgic_cpu->ap_list_lock);
720
721
list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
722
struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
723
bool target_vcpu_needs_kick = false;
724
725
raw_spin_lock(&irq->irq_lock);
726
727
BUG_ON(vcpu != irq->vcpu);
728
729
target_vcpu = vgic_target_oracle(irq);
730
731
if (!target_vcpu) {
732
/*
733
* We don't need to process this interrupt any
734
* further, move it off the list.
735
*/
736
list_del(&irq->ap_list);
737
irq->vcpu = NULL;
738
raw_spin_unlock(&irq->irq_lock);
739
740
/*
741
* This vgic_put_irq call matches the
742
* vgic_get_irq_ref in vgic_queue_irq_unlock,
743
* where we added the LPI to the ap_list. As
744
* we remove the irq from the list, we drop
745
* also drop the refcount.
746
*/
747
deleted_lpis |= vgic_put_irq_norelease(vcpu->kvm, irq);
748
continue;
749
}
750
751
if (target_vcpu == vcpu) {
752
/* We're on the right CPU */
753
raw_spin_unlock(&irq->irq_lock);
754
continue;
755
}
756
757
/* This interrupt looks like it has to be migrated. */
758
759
raw_spin_unlock(&irq->irq_lock);
760
raw_spin_unlock(&vgic_cpu->ap_list_lock);
761
762
/*
763
* Ensure locking order by always locking the smallest
764
* ID first.
765
*/
766
if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
767
vcpuA = vcpu;
768
vcpuB = target_vcpu;
769
} else {
770
vcpuA = target_vcpu;
771
vcpuB = vcpu;
772
}
773
774
raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
775
raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
776
SINGLE_DEPTH_NESTING);
777
raw_spin_lock(&irq->irq_lock);
778
779
/*
780
* If the affinity has been preserved, move the
781
* interrupt around. Otherwise, it means things have
782
* changed while the interrupt was unlocked, and we
783
* need to replay this.
784
*
785
* In all cases, we cannot trust the list not to have
786
* changed, so we restart from the beginning.
787
*/
788
if (target_vcpu == vgic_target_oracle(irq)) {
789
struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
790
791
list_del(&irq->ap_list);
792
irq->vcpu = target_vcpu;
793
list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
794
target_vcpu_needs_kick = true;
795
}
796
797
raw_spin_unlock(&irq->irq_lock);
798
raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
799
raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
800
801
if (target_vcpu_needs_kick) {
802
kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
803
kvm_vcpu_kick(target_vcpu);
804
}
805
806
goto retry;
807
}
808
809
raw_spin_unlock(&vgic_cpu->ap_list_lock);
810
811
if (unlikely(deleted_lpis))
812
vgic_release_deleted_lpis(vcpu->kvm);
813
}
814
815
static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
816
{
817
if (kvm_vgic_global_state.type == VGIC_V2)
818
vgic_v2_fold_lr_state(vcpu);
819
else
820
vgic_v3_fold_lr_state(vcpu);
821
}
822
823
/* Requires the irq_lock to be held. */
824
static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
825
struct vgic_irq *irq, int lr)
826
{
827
lockdep_assert_held(&irq->irq_lock);
828
829
if (kvm_vgic_global_state.type == VGIC_V2)
830
vgic_v2_populate_lr(vcpu, irq, lr);
831
else
832
vgic_v3_populate_lr(vcpu, irq, lr);
833
}
834
835
static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
836
{
837
if (kvm_vgic_global_state.type == VGIC_V2)
838
vgic_v2_clear_lr(vcpu, lr);
839
else
840
vgic_v3_clear_lr(vcpu, lr);
841
}
842
843
static void summarize_ap_list(struct kvm_vcpu *vcpu,
844
struct ap_list_summary *als)
845
{
846
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
847
struct vgic_irq *irq;
848
849
lockdep_assert_held(&vgic_cpu->ap_list_lock);
850
851
*als = (typeof(*als)){};
852
853
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
854
guard(raw_spinlock)(&irq->irq_lock);
855
856
if (unlikely(vgic_target_oracle(irq) != vcpu))
857
continue;
858
859
if (!irq->active)
860
als->nr_pend++;
861
else
862
als->nr_act++;
863
864
if (irq->intid < VGIC_NR_SGIS)
865
als->nr_sgi++;
866
}
867
}
868
869
/*
870
* Dealing with LR overflow is close to black magic -- dress accordingly.
871
*
872
* We have to present an almost infinite number of interrupts through a very
873
* limited number of registers. Therefore crucial decisions must be made to
874
* ensure we feed the most relevant interrupts into the LRs, and yet have
875
* some facilities to let the guest interact with those that are not there.
876
*
877
* All considerations below are in the context of interrupts targeting a
878
* single vcpu with non-idle state (either pending, active, or both),
879
* colloquially called the ap_list:
880
*
881
* - Pending interrupts must have priority over active interrupts. This also
882
* excludes pending+active interrupts. This ensures that a guest can
883
* perform priority drops on any number of interrupts, and yet be
884
* presented the next pending one.
885
*
886
* - Deactivation of interrupts outside of the LRs must be tracked by using
887
* either the EOIcount-driven maintenance interrupt, and sometimes by
888
* trapping the DIR register.
889
*
890
* - For EOImode=0, a non-zero EOIcount means walking the ap_list past the
891
* point that made it into the LRs, and deactivate interrupts that would
892
* have made it onto the LRs if we had the space.
893
*
894
* - The MI-generation bits must be used to try and force an exit when the
895
* guest has done enough changes to the LRs that we want to reevaluate the
896
* situation:
897
*
898
* - if the total number of pending interrupts exceeds the number of
899
* LR, NPIE must be set in order to exit once no pending interrupts
900
* are present in the LRs, allowing us to populate the next batch.
901
*
902
* - if there are active interrupts outside of the LRs, then LRENPIE
903
* must be set so that we exit on deactivation of one of these, and
904
* work out which one is to be deactivated. Note that this is not
905
* enough to deal with EOImode=1, see below.
906
*
907
* - if the overall number of interrupts exceeds the number of LRs,
908
* then UIE must be set to allow refilling of the LRs once the
909
* majority of them has been processed.
910
*
911
* - as usual, MI triggers are only an optimisation, since we cannot
912
* rely on the MI being delivered in timely manner...
913
*
914
* - EOImode=1 creates some additional problems:
915
*
916
* - deactivation can happen in any order, and we cannot rely on
917
* EOImode=0's coupling of priority-drop and deactivation which
918
* imposes strict reverse Ack order. This means that DIR must
919
* trap if we have active interrupts outside of the LRs.
920
*
921
* - deactivation of SPIs can occur on any CPU, while the SPI is only
922
* present in the ap_list of the CPU that actually ack-ed it. In that
923
* case, EOIcount doesn't provide enough information, and we must
924
* resort to trapping DIR even if we don't overflow the LRs. Bonus
925
* point for not trapping DIR when no SPIs are pending or active in
926
* the whole VM.
927
*
928
* - LPIs do not suffer the same problem as SPIs on deactivation, as we
929
* have to essentially discard the active state, see below.
930
*
931
* - Virtual LPIs have an active state (surprise!), which gets removed on
932
* priority drop (EOI). However, EOIcount doesn't get bumped when the LPI
933
* is not present in the LR (surprise again!). Special care must therefore
934
* be taken to remove the active state from any activated LPI when exiting
935
* from the guest. This is in a way no different from what happens on the
936
* physical side. We still rely on the running priority to have been
937
* removed from the APRs, irrespective of the LPI being present in the LRs
938
* or not.
939
*
940
* - Virtual SGIs directly injected via GICv4.1 must not affect EOIcount, as
941
* they are not managed in SW and don't have a true active state. So only
942
* set vSGIEOICount when no SGIs are in the ap_list.
943
*
944
* - GICv2 SGIs with multiple sources are injected one source at a time, as
945
* if they were made pending sequentially. This may mean that we don't
946
* always present the HPPI if other interrupts with lower priority are
947
* pending in the LRs. Big deal.
948
*/
949
static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
950
{
951
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
952
struct ap_list_summary als;
953
struct vgic_irq *irq;
954
int count = 0;
955
956
lockdep_assert_held(&vgic_cpu->ap_list_lock);
957
958
summarize_ap_list(vcpu, &als);
959
960
if (irqs_outside_lrs(&als))
961
vgic_sort_ap_list(vcpu);
962
963
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
964
scoped_guard(raw_spinlock, &irq->irq_lock) {
965
if (likely(vgic_target_oracle(irq) == vcpu)) {
966
vgic_populate_lr(vcpu, irq, count++);
967
}
968
}
969
970
if (count == kvm_vgic_global_state.nr_lr)
971
break;
972
}
973
974
/* Nuke remaining LRs */
975
for (int i = count ; i < kvm_vgic_global_state.nr_lr; i++)
976
vgic_clear_lr(vcpu, i);
977
978
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
979
vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
980
vgic_v2_configure_hcr(vcpu, &als);
981
} else {
982
vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
983
vgic_v3_configure_hcr(vcpu, &als);
984
}
985
}
986
987
static inline bool can_access_vgic_from_kernel(void)
988
{
989
/*
990
* GICv2 can always be accessed from the kernel because it is
991
* memory-mapped, and VHE systems can access GICv3 EL2 system
992
* registers.
993
*/
994
return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
995
}
996
997
static inline void vgic_save_state(struct kvm_vcpu *vcpu)
998
{
999
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1000
vgic_v2_save_state(vcpu);
1001
else
1002
__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
1003
}
1004
1005
/* Sync back the hardware VGIC state into our emulation after a guest's run. */
1006
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1007
{
1008
/* If nesting, emulate the HW effect from L0 to L1 */
1009
if (vgic_state_is_nested(vcpu)) {
1010
vgic_v3_sync_nested(vcpu);
1011
return;
1012
}
1013
1014
if (vcpu_has_nv(vcpu))
1015
vgic_v3_nested_update_mi(vcpu);
1016
1017
if (can_access_vgic_from_kernel())
1018
vgic_save_state(vcpu);
1019
1020
vgic_fold_lr_state(vcpu);
1021
vgic_prune_ap_list(vcpu);
1022
}
1023
1024
/* Sync interrupts that were deactivated through a DIR trap */
1025
void kvm_vgic_process_async_update(struct kvm_vcpu *vcpu)
1026
{
1027
unsigned long flags;
1028
1029
/* Make sure we're in the same context as LR handling */
1030
local_irq_save(flags);
1031
vgic_prune_ap_list(vcpu);
1032
local_irq_restore(flags);
1033
}
1034
1035
static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
1036
{
1037
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1038
vgic_v2_restore_state(vcpu);
1039
else
1040
__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
1041
}
1042
1043
/* Flush our emulation state into the GIC hardware before entering the guest. */
1044
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1045
{
1046
/*
1047
* If in a nested state, we must return early. Two possibilities:
1048
*
1049
* - If we have any pending IRQ for the guest and the guest
1050
* expects IRQs to be handled in its virtual EL2 mode (the
1051
* virtual IMO bit is set) and it is not already running in
1052
* virtual EL2 mode, then we have to emulate an IRQ
1053
* exception to virtual EL2.
1054
*
1055
* We do that by placing a request to ourselves which will
1056
* abort the entry procedure and inject the exception at the
1057
* beginning of the run loop.
1058
*
1059
* - Otherwise, do exactly *NOTHING* apart from enabling the virtual
1060
* CPU interface. The guest state is already loaded, and we can
1061
* carry on with running it.
1062
*
1063
* If we have NV, but are not in a nested state, compute the
1064
* maintenance interrupt state, as it may fire.
1065
*/
1066
if (vgic_state_is_nested(vcpu)) {
1067
if (kvm_vgic_vcpu_pending_irq(vcpu))
1068
kvm_make_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu);
1069
1070
vgic_v3_flush_nested(vcpu);
1071
return;
1072
}
1073
1074
if (vcpu_has_nv(vcpu))
1075
vgic_v3_nested_update_mi(vcpu);
1076
1077
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
1078
1079
scoped_guard(raw_spinlock, &vcpu->arch.vgic_cpu.ap_list_lock)
1080
vgic_flush_lr_state(vcpu);
1081
1082
if (can_access_vgic_from_kernel())
1083
vgic_restore_state(vcpu);
1084
1085
if (vgic_supports_direct_irqs(vcpu->kvm))
1086
vgic_v4_commit(vcpu);
1087
}
1088
1089
void kvm_vgic_load(struct kvm_vcpu *vcpu)
1090
{
1091
if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
1092
if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1093
__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
1094
return;
1095
}
1096
1097
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1098
vgic_v2_load(vcpu);
1099
else
1100
vgic_v3_load(vcpu);
1101
}
1102
1103
void kvm_vgic_put(struct kvm_vcpu *vcpu)
1104
{
1105
if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
1106
if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1107
__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
1108
return;
1109
}
1110
1111
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1112
vgic_v2_put(vcpu);
1113
else
1114
vgic_v3_put(vcpu);
1115
}
1116
1117
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1118
{
1119
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1120
struct vgic_irq *irq;
1121
bool pending = false;
1122
unsigned long flags;
1123
struct vgic_vmcr vmcr;
1124
1125
if (!vcpu->kvm->arch.vgic.enabled)
1126
return false;
1127
1128
if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
1129
return true;
1130
1131
vgic_get_vmcr(vcpu, &vmcr);
1132
1133
raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
1134
1135
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
1136
raw_spin_lock(&irq->irq_lock);
1137
pending = irq_is_pending(irq) && irq->enabled &&
1138
!irq->active &&
1139
irq->priority < vmcr.pmr;
1140
raw_spin_unlock(&irq->irq_lock);
1141
1142
if (pending)
1143
break;
1144
}
1145
1146
raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
1147
1148
return pending;
1149
}
1150
1151
void vgic_kick_vcpus(struct kvm *kvm)
1152
{
1153
struct kvm_vcpu *vcpu;
1154
unsigned long c;
1155
1156
/*
1157
* We've injected an interrupt, time to find out who deserves
1158
* a good kick...
1159
*/
1160
kvm_for_each_vcpu(c, vcpu, kvm) {
1161
if (kvm_vgic_vcpu_pending_irq(vcpu)) {
1162
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1163
kvm_vcpu_kick(vcpu);
1164
}
1165
}
1166
}
1167
1168
bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1169
{
1170
struct vgic_irq *irq;
1171
bool map_is_active;
1172
unsigned long flags;
1173
1174
if (!vgic_initialized(vcpu->kvm))
1175
return false;
1176
1177
irq = vgic_get_vcpu_irq(vcpu, vintid);
1178
raw_spin_lock_irqsave(&irq->irq_lock, flags);
1179
map_is_active = irq->hw && irq->active;
1180
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1181
vgic_put_irq(vcpu->kvm, irq);
1182
1183
return map_is_active;
1184
}
1185
1186
/*
1187
* Level-triggered mapped IRQs are special because we only observe rising
1188
* edges as input to the VGIC.
1189
*
1190
* If the guest never acked the interrupt we have to sample the physical
1191
* line and set the line level, because the device state could have changed
1192
* or we simply need to process the still pending interrupt later.
1193
*
1194
* We could also have entered the guest with the interrupt active+pending.
1195
* On the next exit, we need to re-evaluate the pending state, as it could
1196
* otherwise result in a spurious interrupt by injecting a now potentially
1197
* stale pending state.
1198
*
1199
* If this causes us to lower the level, we have to also clear the physical
1200
* active state, since we will otherwise never be told when the interrupt
1201
* becomes asserted again.
1202
*
1203
* Another case is when the interrupt requires a helping hand on
1204
* deactivation (no HW deactivation, for example).
1205
*/
1206
void vgic_irq_handle_resampling(struct vgic_irq *irq,
1207
bool lr_deactivated, bool lr_pending)
1208
{
1209
if (vgic_irq_is_mapped_level(irq)) {
1210
bool resample = false;
1211
1212
if (unlikely(vgic_irq_needs_resampling(irq))) {
1213
resample = !(irq->active || irq->pending_latch);
1214
} else if (lr_pending || (lr_deactivated && irq->line_level)) {
1215
irq->line_level = vgic_get_phys_line_level(irq);
1216
resample = !irq->line_level;
1217
}
1218
1219
if (resample)
1220
vgic_irq_set_phys_active(irq, false);
1221
}
1222
}
1223
1224