Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/mm/fault.c
50487 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Based on arch/arm/mm/fault.c
4
*
5
* Copyright (C) 1995 Linus Torvalds
6
* Copyright (C) 1995-2004 Russell King
7
* Copyright (C) 2012 ARM Ltd.
8
*/
9
10
#include <linux/acpi.h>
11
#include <linux/bitfield.h>
12
#include <linux/extable.h>
13
#include <linux/kfence.h>
14
#include <linux/signal.h>
15
#include <linux/mm.h>
16
#include <linux/hardirq.h>
17
#include <linux/init.h>
18
#include <linux/kasan.h>
19
#include <linux/kprobes.h>
20
#include <linux/uaccess.h>
21
#include <linux/page-flags.h>
22
#include <linux/sched/signal.h>
23
#include <linux/sched/debug.h>
24
#include <linux/highmem.h>
25
#include <linux/perf_event.h>
26
#include <linux/pkeys.h>
27
#include <linux/preempt.h>
28
#include <linux/hugetlb.h>
29
30
#include <asm/acpi.h>
31
#include <asm/bug.h>
32
#include <asm/cmpxchg.h>
33
#include <asm/cpufeature.h>
34
#include <asm/efi.h>
35
#include <asm/exception.h>
36
#include <asm/daifflags.h>
37
#include <asm/debug-monitors.h>
38
#include <asm/esr.h>
39
#include <asm/kprobes.h>
40
#include <asm/mte.h>
41
#include <asm/processor.h>
42
#include <asm/sysreg.h>
43
#include <asm/system_misc.h>
44
#include <asm/tlbflush.h>
45
#include <asm/traps.h>
46
47
struct fault_info {
48
int (*fn)(unsigned long far, unsigned long esr,
49
struct pt_regs *regs);
50
int sig;
51
int code;
52
const char *name;
53
};
54
55
static const struct fault_info fault_info[];
56
57
static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
58
{
59
return fault_info + (esr & ESR_ELx_FSC);
60
}
61
62
static void data_abort_decode(unsigned long esr)
63
{
64
unsigned long iss2 = ESR_ELx_ISS2(esr);
65
66
pr_alert("Data abort info:\n");
67
68
if (esr & ESR_ELx_ISV) {
69
pr_alert(" Access size = %u byte(s)\n",
70
1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
71
pr_alert(" SSE = %lu, SRT = %lu\n",
72
(esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
73
(esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
74
pr_alert(" SF = %lu, AR = %lu\n",
75
(esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
76
(esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
77
} else {
78
pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
79
esr & ESR_ELx_ISS_MASK, iss2);
80
}
81
82
pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
83
(esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
84
(esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
85
(iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
86
(iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
87
88
pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
89
(iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
90
(iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
91
(iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
92
(iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
93
}
94
95
static void mem_abort_decode(unsigned long esr)
96
{
97
pr_alert("Mem abort info:\n");
98
99
pr_alert(" ESR = 0x%016lx\n", esr);
100
pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
101
ESR_ELx_EC(esr), esr_get_class_string(esr),
102
(esr & ESR_ELx_IL) ? 32 : 16);
103
pr_alert(" SET = %lu, FnV = %lu\n",
104
(esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
105
(esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
106
pr_alert(" EA = %lu, S1PTW = %lu\n",
107
(esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
108
(esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
109
pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
110
esr_to_fault_info(esr)->name);
111
112
if (esr_is_data_abort(esr))
113
data_abort_decode(esr);
114
}
115
116
static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
117
{
118
/* Either init_pg_dir or swapper_pg_dir */
119
if (mm == &init_mm)
120
return __pa_symbol(mm->pgd);
121
122
return (unsigned long)virt_to_phys(mm->pgd);
123
}
124
125
/*
126
* Dump out the page tables associated with 'addr' in the currently active mm.
127
*/
128
static void show_pte(unsigned long addr)
129
{
130
struct mm_struct *mm;
131
pgd_t *pgdp;
132
pgd_t pgd;
133
134
if (is_ttbr0_addr(addr)) {
135
/* TTBR0 */
136
mm = current->active_mm;
137
if (mm == &init_mm) {
138
pr_alert("[%016lx] user address but active_mm is swapper\n",
139
addr);
140
return;
141
}
142
} else if (is_ttbr1_addr(addr)) {
143
/* TTBR1 */
144
mm = &init_mm;
145
} else {
146
pr_alert("[%016lx] address between user and kernel address ranges\n",
147
addr);
148
return;
149
}
150
151
pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
152
mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
153
vabits_actual, mm_to_pgd_phys(mm));
154
pgdp = pgd_offset(mm, addr);
155
pgd = READ_ONCE(*pgdp);
156
pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
157
158
do {
159
p4d_t *p4dp, p4d;
160
pud_t *pudp, pud;
161
pmd_t *pmdp, pmd;
162
pte_t *ptep, pte;
163
164
if (pgd_none(pgd) || pgd_bad(pgd))
165
break;
166
167
p4dp = p4d_offset(pgdp, addr);
168
p4d = READ_ONCE(*p4dp);
169
pr_cont(", p4d=%016llx", p4d_val(p4d));
170
if (p4d_none(p4d) || p4d_bad(p4d))
171
break;
172
173
pudp = pud_offset(p4dp, addr);
174
pud = READ_ONCE(*pudp);
175
pr_cont(", pud=%016llx", pud_val(pud));
176
if (pud_none(pud) || pud_bad(pud))
177
break;
178
179
pmdp = pmd_offset(pudp, addr);
180
pmd = READ_ONCE(*pmdp);
181
pr_cont(", pmd=%016llx", pmd_val(pmd));
182
if (pmd_none(pmd) || pmd_bad(pmd))
183
break;
184
185
ptep = pte_offset_map(pmdp, addr);
186
if (!ptep)
187
break;
188
189
pte = __ptep_get(ptep);
190
pr_cont(", pte=%016llx", pte_val(pte));
191
pte_unmap(ptep);
192
} while(0);
193
194
pr_cont("\n");
195
}
196
197
/*
198
* This function sets the access flags (dirty, accessed), as well as write
199
* permission, and only to a more permissive setting.
200
*
201
* It needs to cope with hardware update of the accessed/dirty state by other
202
* agents in the system and can safely skip the __sync_icache_dcache() call as,
203
* like __set_ptes(), the PTE is never changed from no-exec to exec here.
204
*
205
* Returns whether or not the PTE actually changed.
206
*/
207
int __ptep_set_access_flags(struct vm_area_struct *vma,
208
unsigned long address, pte_t *ptep,
209
pte_t entry, int dirty)
210
{
211
pteval_t old_pteval, pteval;
212
pte_t pte = __ptep_get(ptep);
213
214
if (pte_same(pte, entry))
215
return 0;
216
217
/* only preserve the access flags and write permission */
218
pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
219
220
/*
221
* Setting the flags must be done atomically to avoid racing with the
222
* hardware update of the access/dirty state. The PTE_RDONLY bit must
223
* be set to the most permissive (lowest value) of *ptep and entry
224
* (calculated as: a & b == ~(~a | ~b)).
225
*/
226
pte_val(entry) ^= PTE_RDONLY;
227
pteval = pte_val(pte);
228
do {
229
old_pteval = pteval;
230
pteval ^= PTE_RDONLY;
231
pteval |= pte_val(entry);
232
pteval ^= PTE_RDONLY;
233
pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
234
} while (pteval != old_pteval);
235
236
/*
237
* Invalidate the local stale read-only entry. Remote stale entries
238
* may still cause page faults and be invalidated via
239
* flush_tlb_fix_spurious_fault().
240
*/
241
if (dirty)
242
local_flush_tlb_page(vma, address);
243
return 1;
244
}
245
246
static bool is_el1_instruction_abort(unsigned long esr)
247
{
248
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
249
}
250
251
static bool is_el1_data_abort(unsigned long esr)
252
{
253
return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
254
}
255
256
static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
257
struct pt_regs *regs)
258
{
259
if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
260
return false;
261
262
if (esr_fsc_is_permission_fault(esr))
263
return true;
264
265
if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
266
return esr_fsc_is_translation_fault(esr) &&
267
(regs->pstate & PSR_PAN_BIT);
268
269
return false;
270
}
271
272
static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
273
unsigned long esr,
274
struct pt_regs *regs)
275
{
276
unsigned long flags;
277
u64 par, dfsc;
278
279
if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
280
return false;
281
282
local_irq_save(flags);
283
asm volatile("at s1e1r, %0" :: "r" (addr));
284
isb();
285
par = read_sysreg_par();
286
local_irq_restore(flags);
287
288
/*
289
* If we now have a valid translation, treat the translation fault as
290
* spurious.
291
*/
292
if (!(par & SYS_PAR_EL1_F))
293
return true;
294
295
/*
296
* If we got a different type of fault from the AT instruction,
297
* treat the translation fault as spurious.
298
*/
299
dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
300
return !esr_fsc_is_translation_fault(dfsc);
301
}
302
303
static void die_kernel_fault(const char *msg, unsigned long addr,
304
unsigned long esr, struct pt_regs *regs)
305
{
306
bust_spinlocks(1);
307
308
pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
309
addr);
310
311
kasan_non_canonical_hook(addr);
312
313
mem_abort_decode(esr);
314
315
show_pte(addr);
316
die("Oops", regs, esr);
317
bust_spinlocks(0);
318
make_task_dead(SIGKILL);
319
}
320
321
#ifdef CONFIG_KASAN_HW_TAGS
322
static void report_tag_fault(unsigned long addr, unsigned long esr,
323
struct pt_regs *regs)
324
{
325
/*
326
* SAS bits aren't set for all faults reported in EL1, so we can't
327
* find out access size.
328
*/
329
bool is_write = !!(esr & ESR_ELx_WNR);
330
kasan_report((void *)addr, 0, is_write, regs->pc);
331
}
332
#else
333
/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
334
static inline void report_tag_fault(unsigned long addr, unsigned long esr,
335
struct pt_regs *regs) { }
336
#endif
337
338
static void do_tag_recovery(unsigned long addr, unsigned long esr,
339
struct pt_regs *regs)
340
{
341
342
report_tag_fault(addr, esr, regs);
343
344
/*
345
* Disable MTE Tag Checking on the local CPU for the current EL.
346
* It will be done lazily on the other CPUs when they will hit a
347
* tag fault.
348
*/
349
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
350
SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
351
isb();
352
}
353
354
static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
355
{
356
unsigned long fsc = esr & ESR_ELx_FSC;
357
358
if (!is_el1_data_abort(esr))
359
return false;
360
361
if (fsc == ESR_ELx_FSC_MTE)
362
return true;
363
364
return false;
365
}
366
367
static void __do_kernel_fault(unsigned long addr, unsigned long esr,
368
struct pt_regs *regs)
369
{
370
const char *msg;
371
372
/*
373
* Are we prepared to handle this kernel fault?
374
* We are almost certainly not prepared to handle instruction faults.
375
*/
376
if (!is_el1_instruction_abort(esr) && fixup_exception(regs, esr))
377
return;
378
379
if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
380
"Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
381
return;
382
383
if (is_el1_mte_sync_tag_check_fault(esr)) {
384
do_tag_recovery(addr, esr, regs);
385
386
return;
387
}
388
389
if (is_el1_permission_fault(addr, esr, regs)) {
390
if (esr & ESR_ELx_WNR)
391
msg = "write to read-only memory";
392
else if (is_el1_instruction_abort(esr))
393
msg = "execute from non-executable memory";
394
else
395
msg = "read from unreadable memory";
396
} else if (addr < PAGE_SIZE) {
397
msg = "NULL pointer dereference";
398
} else {
399
if (esr_fsc_is_translation_fault(esr) &&
400
kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
401
return;
402
403
msg = "paging request";
404
}
405
406
if (efi_runtime_fixup_exception(regs, msg))
407
return;
408
409
die_kernel_fault(msg, addr, esr, regs);
410
}
411
412
static void set_thread_esr(unsigned long address, unsigned long esr)
413
{
414
current->thread.fault_address = address;
415
416
/*
417
* If the faulting address is in the kernel, we must sanitize the ESR.
418
* From userspace's point of view, kernel-only mappings don't exist
419
* at all, so we report them as level 0 translation faults.
420
* (This is not quite the way that "no mapping there at all" behaves:
421
* an alignment fault not caused by the memory type would take
422
* precedence over translation fault for a real access to empty
423
* space. Unfortunately we can't easily distinguish "alignment fault
424
* not caused by memory type" from "alignment fault caused by memory
425
* type", so we ignore this wrinkle and just return the translation
426
* fault.)
427
*/
428
if (!is_ttbr0_addr(current->thread.fault_address)) {
429
switch (ESR_ELx_EC(esr)) {
430
case ESR_ELx_EC_DABT_LOW:
431
/*
432
* These bits provide only information about the
433
* faulting instruction, which userspace knows already.
434
* We explicitly clear bits which are architecturally
435
* RES0 in case they are given meanings in future.
436
* We always report the ESR as if the fault was taken
437
* to EL1 and so ISV and the bits in ISS[23:14] are
438
* clear. (In fact it always will be a fault to EL1.)
439
*/
440
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
441
ESR_ELx_CM | ESR_ELx_WNR;
442
esr |= ESR_ELx_FSC_FAULT;
443
break;
444
case ESR_ELx_EC_IABT_LOW:
445
/*
446
* Claim a level 0 translation fault.
447
* All other bits are architecturally RES0 for faults
448
* reported with that DFSC value, so we clear them.
449
*/
450
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
451
esr |= ESR_ELx_FSC_FAULT;
452
break;
453
default:
454
/*
455
* This should never happen (entry.S only brings us
456
* into this code for insn and data aborts from a lower
457
* exception level). Fail safe by not providing an ESR
458
* context record at all.
459
*/
460
WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
461
esr = 0;
462
break;
463
}
464
}
465
466
current->thread.fault_code = esr;
467
}
468
469
static void do_bad_area(unsigned long far, unsigned long esr,
470
struct pt_regs *regs)
471
{
472
unsigned long addr = untagged_addr(far);
473
474
/*
475
* If we are in kernel mode at this point, we have no context to
476
* handle this fault with.
477
*/
478
if (user_mode(regs)) {
479
const struct fault_info *inf = esr_to_fault_info(esr);
480
481
set_thread_esr(addr, esr);
482
arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
483
} else {
484
__do_kernel_fault(addr, esr, regs);
485
}
486
}
487
488
static bool fault_from_pkey(struct vm_area_struct *vma, unsigned int mm_flags)
489
{
490
if (!system_supports_poe())
491
return false;
492
493
/*
494
* We do not check whether an Overlay fault has occurred because we
495
* cannot make a decision based solely on its value:
496
*
497
* - If Overlay is set, a fault did occur due to POE, but it may be
498
* spurious in those cases where we update POR_EL0 without ISB (e.g.
499
* on context-switch). We would then need to manually check POR_EL0
500
* against vma_pkey(vma), which is exactly what
501
* arch_vma_access_permitted() does.
502
*
503
* - If Overlay is not set, we may still need to report a pkey fault.
504
* This is the case if an access was made within a mapping but with no
505
* page mapped, and POR_EL0 forbids the access (according to
506
* vma_pkey()). Such access will result in a SIGSEGV regardless
507
* because core code checks arch_vma_access_permitted(), but in order
508
* to report the correct error code - SEGV_PKUERR - we must handle
509
* that case here.
510
*/
511
return !arch_vma_access_permitted(vma,
512
mm_flags & FAULT_FLAG_WRITE,
513
mm_flags & FAULT_FLAG_INSTRUCTION,
514
false);
515
}
516
517
static bool is_gcs_fault(unsigned long esr)
518
{
519
if (!esr_is_data_abort(esr))
520
return false;
521
522
return ESR_ELx_ISS2(esr) & ESR_ELx_GCS;
523
}
524
525
static bool is_el0_instruction_abort(unsigned long esr)
526
{
527
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
528
}
529
530
/*
531
* Note: not valid for EL1 DC IVAC, but we never use that such that it
532
* should fault. EL0 cannot issue DC IVAC (undef).
533
*/
534
static bool is_write_abort(unsigned long esr)
535
{
536
return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
537
}
538
539
static bool is_invalid_gcs_access(struct vm_area_struct *vma, u64 esr)
540
{
541
if (!system_supports_gcs())
542
return false;
543
544
if (unlikely(is_gcs_fault(esr))) {
545
/* GCS accesses must be performed on a GCS page */
546
if (!(vma->vm_flags & VM_SHADOW_STACK))
547
return true;
548
} else if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) {
549
/* Only GCS operations can write to a GCS page */
550
return esr_is_data_abort(esr) && is_write_abort(esr);
551
}
552
553
return false;
554
}
555
556
static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
557
struct pt_regs *regs)
558
{
559
const struct fault_info *inf;
560
struct mm_struct *mm = current->mm;
561
vm_fault_t fault;
562
vm_flags_t vm_flags;
563
unsigned int mm_flags = FAULT_FLAG_DEFAULT;
564
unsigned long addr = untagged_addr(far);
565
struct vm_area_struct *vma;
566
int si_code;
567
int pkey = -1;
568
569
if (kprobe_page_fault(regs, esr))
570
return 0;
571
572
/*
573
* If we're in an interrupt or have no user context, we must not take
574
* the fault.
575
*/
576
if (faulthandler_disabled() || !mm)
577
goto no_context;
578
579
if (user_mode(regs))
580
mm_flags |= FAULT_FLAG_USER;
581
582
/*
583
* vm_flags tells us what bits we must have in vma->vm_flags
584
* for the fault to be benign, __do_page_fault() would check
585
* vma->vm_flags & vm_flags and returns an error if the
586
* intersection is empty
587
*/
588
if (is_el0_instruction_abort(esr)) {
589
/* It was exec fault */
590
vm_flags = VM_EXEC;
591
mm_flags |= FAULT_FLAG_INSTRUCTION;
592
} else if (is_gcs_fault(esr)) {
593
/*
594
* The GCS permission on a page implies both read and
595
* write so always handle any GCS fault as a write fault,
596
* we need to trigger CoW even for GCS reads.
597
*/
598
vm_flags = VM_WRITE;
599
mm_flags |= FAULT_FLAG_WRITE;
600
} else if (is_write_abort(esr)) {
601
/* It was write fault */
602
vm_flags = VM_WRITE;
603
mm_flags |= FAULT_FLAG_WRITE;
604
} else {
605
/* It was read fault */
606
vm_flags = VM_READ;
607
/* Write implies read */
608
vm_flags |= VM_WRITE;
609
/* If EPAN is absent then exec implies read */
610
if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
611
vm_flags |= VM_EXEC;
612
}
613
614
if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
615
if (is_el1_instruction_abort(esr))
616
die_kernel_fault("execution of user memory",
617
addr, esr, regs);
618
619
if (!insn_may_access_user(regs->pc, esr))
620
die_kernel_fault("access to user memory outside uaccess routines",
621
addr, esr, regs);
622
}
623
624
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
625
626
if (!(mm_flags & FAULT_FLAG_USER))
627
goto lock_mmap;
628
629
vma = lock_vma_under_rcu(mm, addr);
630
if (!vma)
631
goto lock_mmap;
632
633
if (is_invalid_gcs_access(vma, esr)) {
634
vma_end_read(vma);
635
fault = 0;
636
si_code = SEGV_ACCERR;
637
goto bad_area;
638
}
639
640
if (!(vma->vm_flags & vm_flags)) {
641
vma_end_read(vma);
642
fault = 0;
643
si_code = SEGV_ACCERR;
644
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
645
goto bad_area;
646
}
647
648
if (fault_from_pkey(vma, mm_flags)) {
649
pkey = vma_pkey(vma);
650
vma_end_read(vma);
651
fault = 0;
652
si_code = SEGV_PKUERR;
653
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
654
goto bad_area;
655
}
656
657
fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
658
if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
659
vma_end_read(vma);
660
661
if (!(fault & VM_FAULT_RETRY)) {
662
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
663
goto done;
664
}
665
count_vm_vma_lock_event(VMA_LOCK_RETRY);
666
if (fault & VM_FAULT_MAJOR)
667
mm_flags |= FAULT_FLAG_TRIED;
668
669
/* Quick path to respond to signals */
670
if (fault_signal_pending(fault, regs)) {
671
if (!user_mode(regs))
672
goto no_context;
673
return 0;
674
}
675
lock_mmap:
676
677
retry:
678
vma = lock_mm_and_find_vma(mm, addr, regs);
679
if (unlikely(!vma)) {
680
fault = 0;
681
si_code = SEGV_MAPERR;
682
goto bad_area;
683
}
684
685
if (!(vma->vm_flags & vm_flags)) {
686
mmap_read_unlock(mm);
687
fault = 0;
688
si_code = SEGV_ACCERR;
689
goto bad_area;
690
}
691
692
if (fault_from_pkey(vma, mm_flags)) {
693
pkey = vma_pkey(vma);
694
mmap_read_unlock(mm);
695
fault = 0;
696
si_code = SEGV_PKUERR;
697
goto bad_area;
698
}
699
700
fault = handle_mm_fault(vma, addr, mm_flags, regs);
701
702
/* Quick path to respond to signals */
703
if (fault_signal_pending(fault, regs)) {
704
if (!user_mode(regs))
705
goto no_context;
706
return 0;
707
}
708
709
/* The fault is fully completed (including releasing mmap lock) */
710
if (fault & VM_FAULT_COMPLETED)
711
return 0;
712
713
if (fault & VM_FAULT_RETRY) {
714
mm_flags |= FAULT_FLAG_TRIED;
715
goto retry;
716
}
717
mmap_read_unlock(mm);
718
719
done:
720
/* Handle the "normal" (no error) case first. */
721
if (likely(!(fault & VM_FAULT_ERROR)))
722
return 0;
723
724
si_code = SEGV_MAPERR;
725
bad_area:
726
/*
727
* If we are in kernel mode at this point, we have no context to
728
* handle this fault with.
729
*/
730
if (!user_mode(regs))
731
goto no_context;
732
733
if (fault & VM_FAULT_OOM) {
734
/*
735
* We ran out of memory, call the OOM killer, and return to
736
* userspace (which will retry the fault, or kill us if we got
737
* oom-killed).
738
*/
739
pagefault_out_of_memory();
740
return 0;
741
}
742
743
inf = esr_to_fault_info(esr);
744
set_thread_esr(addr, esr);
745
if (fault & VM_FAULT_SIGBUS) {
746
/*
747
* We had some memory, but were unable to successfully fix up
748
* this page fault.
749
*/
750
arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
751
} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
752
unsigned int lsb;
753
754
lsb = PAGE_SHIFT;
755
if (fault & VM_FAULT_HWPOISON_LARGE)
756
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
757
758
arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
759
} else {
760
/*
761
* The pkey value that we return to userspace can be different
762
* from the pkey that caused the fault.
763
*
764
* 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
765
* 2. T1 : set POR_EL0 to deny access to pkey=4, touches, page
766
* 3. T1 : faults...
767
* 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
768
* 5. T1 : enters fault handler, takes mmap_lock, etc...
769
* 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
770
* faulted on a pte with its pkey=4.
771
*/
772
/* Something tried to access memory that out of memory map */
773
if (si_code == SEGV_PKUERR)
774
arm64_force_sig_fault_pkey(far, inf->name, pkey);
775
else
776
arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name);
777
}
778
779
return 0;
780
781
no_context:
782
__do_kernel_fault(addr, esr, regs);
783
return 0;
784
}
785
786
static int __kprobes do_translation_fault(unsigned long far,
787
unsigned long esr,
788
struct pt_regs *regs)
789
{
790
unsigned long addr = untagged_addr(far);
791
792
if (is_ttbr0_addr(addr))
793
return do_page_fault(far, esr, regs);
794
795
do_bad_area(far, esr, regs);
796
return 0;
797
}
798
799
static int do_alignment_fault(unsigned long far, unsigned long esr,
800
struct pt_regs *regs)
801
{
802
if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
803
compat_user_mode(regs))
804
return do_compat_alignment_fixup(far, regs);
805
do_bad_area(far, esr, regs);
806
return 0;
807
}
808
809
static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
810
{
811
return 1; /* "fault" */
812
}
813
814
static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
815
{
816
const struct fault_info *inf;
817
unsigned long siaddr;
818
819
inf = esr_to_fault_info(esr);
820
821
if (user_mode(regs) && apei_claim_sea(regs) == 0) {
822
/*
823
* APEI claimed this as a firmware-first notification.
824
* Some processing deferred to task_work before ret_to_user().
825
*/
826
return 0;
827
}
828
829
if (esr & ESR_ELx_FnV) {
830
siaddr = 0;
831
} else {
832
/*
833
* The architecture specifies that the tag bits of FAR_EL1 are
834
* UNKNOWN for synchronous external aborts. Mask them out now
835
* so that userspace doesn't see them.
836
*/
837
siaddr = untagged_addr(far);
838
}
839
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
840
arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
841
842
return 0;
843
}
844
845
static int do_tag_check_fault(unsigned long far, unsigned long esr,
846
struct pt_regs *regs)
847
{
848
/*
849
* The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
850
* for tag check faults. Set them to corresponding bits in the untagged
851
* address if ARM64_MTE_FAR isn't supported.
852
* Otherwise, bits 63:60 of FAR_EL1 are not UNKNOWN.
853
*/
854
if (!cpus_have_cap(ARM64_MTE_FAR))
855
far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
856
857
do_bad_area(far, esr, regs);
858
return 0;
859
}
860
861
static const struct fault_info fault_info[] = {
862
{ do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
863
{ do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
864
{ do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
865
{ do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
866
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
867
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
868
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
869
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
870
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" },
871
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
872
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
873
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
874
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" },
875
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
876
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
877
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
878
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
879
{ do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
880
{ do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
881
{ do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" },
882
{ do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
883
{ do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
884
{ do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
885
{ do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
886
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
887
{ do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
888
{ do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
889
{ do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
890
{ do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
891
{ do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
892
{ do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
893
{ do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
894
{ do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
895
{ do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
896
{ do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
897
{ do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
898
{ do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
899
{ do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
900
{ do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
901
{ do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
902
{ do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
903
{ do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" },
904
{ do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
905
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" },
906
{ do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
907
{ do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
908
{ do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
909
{ do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
910
{ do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
911
{ do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
912
{ do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
913
{ do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
914
{ do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
915
{ do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
916
{ do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
917
{ do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
918
{ do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
919
{ do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
920
{ do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
921
{ do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
922
{ do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
923
{ do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
924
{ do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
925
{ do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
926
};
927
928
void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
929
{
930
const struct fault_info *inf = esr_to_fault_info(esr);
931
unsigned long addr = untagged_addr(far);
932
933
if (!inf->fn(far, esr, regs))
934
return;
935
936
if (!user_mode(regs))
937
die_kernel_fault(inf->name, addr, esr, regs);
938
939
/*
940
* At this point we have an unrecognized fault type whose tag bits may
941
* have been defined as UNKNOWN. Therefore we only expose the untagged
942
* address to the signal handler.
943
*/
944
arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
945
}
946
NOKPROBE_SYMBOL(do_mem_abort);
947
948
void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
949
{
950
arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
951
addr, esr);
952
}
953
NOKPROBE_SYMBOL(do_sp_pc_abort);
954
955
/*
956
* Used during anonymous page fault handling.
957
*/
958
struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
959
unsigned long vaddr)
960
{
961
gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
962
963
/*
964
* If the page is mapped with PROT_MTE, initialise the tags at the
965
* point of allocation and page zeroing as this is usually faster than
966
* separate DC ZVA and STGM.
967
*/
968
if (vma->vm_flags & VM_MTE)
969
flags |= __GFP_ZEROTAGS;
970
971
return vma_alloc_folio(flags, 0, vma, vaddr);
972
}
973
974
bool tag_clear_highpages(struct page *page, int numpages)
975
{
976
/*
977
* Check if MTE is supported and fall back to clear_highpage().
978
* get_huge_zero_folio() unconditionally passes __GFP_ZEROTAGS and
979
* post_alloc_hook() will invoke tag_clear_highpages().
980
*/
981
if (!system_supports_mte())
982
return false;
983
984
/* Newly allocated pages, shouldn't have been tagged yet */
985
for (int i = 0; i < numpages; i++, page++) {
986
WARN_ON_ONCE(!try_page_mte_tagging(page));
987
mte_zero_clear_page_tags(page_address(page));
988
set_page_mte_tagged(page);
989
}
990
return true;
991
}
992
993