Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/mm/fault.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Based on arch/arm/mm/fault.c
4
*
5
* Copyright (C) 1995 Linus Torvalds
6
* Copyright (C) 1995-2004 Russell King
7
* Copyright (C) 2012 ARM Ltd.
8
*/
9
10
#include <linux/acpi.h>
11
#include <linux/bitfield.h>
12
#include <linux/extable.h>
13
#include <linux/kfence.h>
14
#include <linux/signal.h>
15
#include <linux/mm.h>
16
#include <linux/hardirq.h>
17
#include <linux/init.h>
18
#include <linux/kasan.h>
19
#include <linux/kprobes.h>
20
#include <linux/uaccess.h>
21
#include <linux/page-flags.h>
22
#include <linux/sched/signal.h>
23
#include <linux/sched/debug.h>
24
#include <linux/highmem.h>
25
#include <linux/perf_event.h>
26
#include <linux/pkeys.h>
27
#include <linux/preempt.h>
28
#include <linux/hugetlb.h>
29
30
#include <asm/acpi.h>
31
#include <asm/bug.h>
32
#include <asm/cmpxchg.h>
33
#include <asm/cpufeature.h>
34
#include <asm/efi.h>
35
#include <asm/exception.h>
36
#include <asm/daifflags.h>
37
#include <asm/debug-monitors.h>
38
#include <asm/esr.h>
39
#include <asm/kprobes.h>
40
#include <asm/mte.h>
41
#include <asm/processor.h>
42
#include <asm/sysreg.h>
43
#include <asm/system_misc.h>
44
#include <asm/tlbflush.h>
45
#include <asm/traps.h>
46
47
struct fault_info {
48
int (*fn)(unsigned long far, unsigned long esr,
49
struct pt_regs *regs);
50
int sig;
51
int code;
52
const char *name;
53
};
54
55
static const struct fault_info fault_info[];
56
57
static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
58
{
59
return fault_info + (esr & ESR_ELx_FSC);
60
}
61
62
static void data_abort_decode(unsigned long esr)
63
{
64
unsigned long iss2 = ESR_ELx_ISS2(esr);
65
66
pr_alert("Data abort info:\n");
67
68
if (esr & ESR_ELx_ISV) {
69
pr_alert(" Access size = %u byte(s)\n",
70
1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
71
pr_alert(" SSE = %lu, SRT = %lu\n",
72
(esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
73
(esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
74
pr_alert(" SF = %lu, AR = %lu\n",
75
(esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
76
(esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
77
} else {
78
pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
79
esr & ESR_ELx_ISS_MASK, iss2);
80
}
81
82
pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
83
(esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
84
(esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
85
(iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
86
(iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
87
88
pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
89
(iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
90
(iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
91
(iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
92
(iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
93
}
94
95
static void mem_abort_decode(unsigned long esr)
96
{
97
pr_alert("Mem abort info:\n");
98
99
pr_alert(" ESR = 0x%016lx\n", esr);
100
pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
101
ESR_ELx_EC(esr), esr_get_class_string(esr),
102
(esr & ESR_ELx_IL) ? 32 : 16);
103
pr_alert(" SET = %lu, FnV = %lu\n",
104
(esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
105
(esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
106
pr_alert(" EA = %lu, S1PTW = %lu\n",
107
(esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
108
(esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
109
pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
110
esr_to_fault_info(esr)->name);
111
112
if (esr_is_data_abort(esr))
113
data_abort_decode(esr);
114
}
115
116
static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
117
{
118
/* Either init_pg_dir or swapper_pg_dir */
119
if (mm == &init_mm)
120
return __pa_symbol(mm->pgd);
121
122
return (unsigned long)virt_to_phys(mm->pgd);
123
}
124
125
/*
126
* Dump out the page tables associated with 'addr' in the currently active mm.
127
*/
128
static void show_pte(unsigned long addr)
129
{
130
struct mm_struct *mm;
131
pgd_t *pgdp;
132
pgd_t pgd;
133
134
if (is_ttbr0_addr(addr)) {
135
/* TTBR0 */
136
mm = current->active_mm;
137
if (mm == &init_mm) {
138
pr_alert("[%016lx] user address but active_mm is swapper\n",
139
addr);
140
return;
141
}
142
} else if (is_ttbr1_addr(addr)) {
143
/* TTBR1 */
144
mm = &init_mm;
145
} else {
146
pr_alert("[%016lx] address between user and kernel address ranges\n",
147
addr);
148
return;
149
}
150
151
pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
152
mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
153
vabits_actual, mm_to_pgd_phys(mm));
154
pgdp = pgd_offset(mm, addr);
155
pgd = READ_ONCE(*pgdp);
156
pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
157
158
do {
159
p4d_t *p4dp, p4d;
160
pud_t *pudp, pud;
161
pmd_t *pmdp, pmd;
162
pte_t *ptep, pte;
163
164
if (pgd_none(pgd) || pgd_bad(pgd))
165
break;
166
167
p4dp = p4d_offset(pgdp, addr);
168
p4d = READ_ONCE(*p4dp);
169
pr_cont(", p4d=%016llx", p4d_val(p4d));
170
if (p4d_none(p4d) || p4d_bad(p4d))
171
break;
172
173
pudp = pud_offset(p4dp, addr);
174
pud = READ_ONCE(*pudp);
175
pr_cont(", pud=%016llx", pud_val(pud));
176
if (pud_none(pud) || pud_bad(pud))
177
break;
178
179
pmdp = pmd_offset(pudp, addr);
180
pmd = READ_ONCE(*pmdp);
181
pr_cont(", pmd=%016llx", pmd_val(pmd));
182
if (pmd_none(pmd) || pmd_bad(pmd))
183
break;
184
185
ptep = pte_offset_map(pmdp, addr);
186
if (!ptep)
187
break;
188
189
pte = __ptep_get(ptep);
190
pr_cont(", pte=%016llx", pte_val(pte));
191
pte_unmap(ptep);
192
} while(0);
193
194
pr_cont("\n");
195
}
196
197
/*
198
* This function sets the access flags (dirty, accessed), as well as write
199
* permission, and only to a more permissive setting.
200
*
201
* It needs to cope with hardware update of the accessed/dirty state by other
202
* agents in the system and can safely skip the __sync_icache_dcache() call as,
203
* like __set_ptes(), the PTE is never changed from no-exec to exec here.
204
*
205
* Returns whether or not the PTE actually changed.
206
*/
207
int __ptep_set_access_flags(struct vm_area_struct *vma,
208
unsigned long address, pte_t *ptep,
209
pte_t entry, int dirty)
210
{
211
pteval_t old_pteval, pteval;
212
pte_t pte = __ptep_get(ptep);
213
214
if (pte_same(pte, entry))
215
return 0;
216
217
/* only preserve the access flags and write permission */
218
pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
219
220
/*
221
* Setting the flags must be done atomically to avoid racing with the
222
* hardware update of the access/dirty state. The PTE_RDONLY bit must
223
* be set to the most permissive (lowest value) of *ptep and entry
224
* (calculated as: a & b == ~(~a | ~b)).
225
*/
226
pte_val(entry) ^= PTE_RDONLY;
227
pteval = pte_val(pte);
228
do {
229
old_pteval = pteval;
230
pteval ^= PTE_RDONLY;
231
pteval |= pte_val(entry);
232
pteval ^= PTE_RDONLY;
233
pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
234
} while (pteval != old_pteval);
235
236
/* Invalidate a stale read-only entry */
237
if (dirty)
238
flush_tlb_page(vma, address);
239
return 1;
240
}
241
242
static bool is_el1_instruction_abort(unsigned long esr)
243
{
244
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
245
}
246
247
static bool is_el1_data_abort(unsigned long esr)
248
{
249
return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
250
}
251
252
static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
253
struct pt_regs *regs)
254
{
255
if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
256
return false;
257
258
if (esr_fsc_is_permission_fault(esr))
259
return true;
260
261
if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
262
return esr_fsc_is_translation_fault(esr) &&
263
(regs->pstate & PSR_PAN_BIT);
264
265
return false;
266
}
267
268
static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
269
unsigned long esr,
270
struct pt_regs *regs)
271
{
272
unsigned long flags;
273
u64 par, dfsc;
274
275
if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
276
return false;
277
278
local_irq_save(flags);
279
asm volatile("at s1e1r, %0" :: "r" (addr));
280
isb();
281
par = read_sysreg_par();
282
local_irq_restore(flags);
283
284
/*
285
* If we now have a valid translation, treat the translation fault as
286
* spurious.
287
*/
288
if (!(par & SYS_PAR_EL1_F))
289
return true;
290
291
/*
292
* If we got a different type of fault from the AT instruction,
293
* treat the translation fault as spurious.
294
*/
295
dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
296
return !esr_fsc_is_translation_fault(dfsc);
297
}
298
299
static void die_kernel_fault(const char *msg, unsigned long addr,
300
unsigned long esr, struct pt_regs *regs)
301
{
302
bust_spinlocks(1);
303
304
pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
305
addr);
306
307
kasan_non_canonical_hook(addr);
308
309
mem_abort_decode(esr);
310
311
show_pte(addr);
312
die("Oops", regs, esr);
313
bust_spinlocks(0);
314
make_task_dead(SIGKILL);
315
}
316
317
#ifdef CONFIG_KASAN_HW_TAGS
318
static void report_tag_fault(unsigned long addr, unsigned long esr,
319
struct pt_regs *regs)
320
{
321
/*
322
* SAS bits aren't set for all faults reported in EL1, so we can't
323
* find out access size.
324
*/
325
bool is_write = !!(esr & ESR_ELx_WNR);
326
kasan_report((void *)addr, 0, is_write, regs->pc);
327
}
328
#else
329
/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
330
static inline void report_tag_fault(unsigned long addr, unsigned long esr,
331
struct pt_regs *regs) { }
332
#endif
333
334
static void do_tag_recovery(unsigned long addr, unsigned long esr,
335
struct pt_regs *regs)
336
{
337
338
report_tag_fault(addr, esr, regs);
339
340
/*
341
* Disable MTE Tag Checking on the local CPU for the current EL.
342
* It will be done lazily on the other CPUs when they will hit a
343
* tag fault.
344
*/
345
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
346
SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
347
isb();
348
}
349
350
static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
351
{
352
unsigned long fsc = esr & ESR_ELx_FSC;
353
354
if (!is_el1_data_abort(esr))
355
return false;
356
357
if (fsc == ESR_ELx_FSC_MTE)
358
return true;
359
360
return false;
361
}
362
363
static void __do_kernel_fault(unsigned long addr, unsigned long esr,
364
struct pt_regs *regs)
365
{
366
const char *msg;
367
368
/*
369
* Are we prepared to handle this kernel fault?
370
* We are almost certainly not prepared to handle instruction faults.
371
*/
372
if (!is_el1_instruction_abort(esr) && fixup_exception(regs, esr))
373
return;
374
375
if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
376
"Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
377
return;
378
379
if (is_el1_mte_sync_tag_check_fault(esr)) {
380
do_tag_recovery(addr, esr, regs);
381
382
return;
383
}
384
385
if (is_el1_permission_fault(addr, esr, regs)) {
386
if (esr & ESR_ELx_WNR)
387
msg = "write to read-only memory";
388
else if (is_el1_instruction_abort(esr))
389
msg = "execute from non-executable memory";
390
else
391
msg = "read from unreadable memory";
392
} else if (addr < PAGE_SIZE) {
393
msg = "NULL pointer dereference";
394
} else {
395
if (esr_fsc_is_translation_fault(esr) &&
396
kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
397
return;
398
399
msg = "paging request";
400
}
401
402
if (efi_runtime_fixup_exception(regs, msg))
403
return;
404
405
die_kernel_fault(msg, addr, esr, regs);
406
}
407
408
static void set_thread_esr(unsigned long address, unsigned long esr)
409
{
410
current->thread.fault_address = address;
411
412
/*
413
* If the faulting address is in the kernel, we must sanitize the ESR.
414
* From userspace's point of view, kernel-only mappings don't exist
415
* at all, so we report them as level 0 translation faults.
416
* (This is not quite the way that "no mapping there at all" behaves:
417
* an alignment fault not caused by the memory type would take
418
* precedence over translation fault for a real access to empty
419
* space. Unfortunately we can't easily distinguish "alignment fault
420
* not caused by memory type" from "alignment fault caused by memory
421
* type", so we ignore this wrinkle and just return the translation
422
* fault.)
423
*/
424
if (!is_ttbr0_addr(current->thread.fault_address)) {
425
switch (ESR_ELx_EC(esr)) {
426
case ESR_ELx_EC_DABT_LOW:
427
/*
428
* These bits provide only information about the
429
* faulting instruction, which userspace knows already.
430
* We explicitly clear bits which are architecturally
431
* RES0 in case they are given meanings in future.
432
* We always report the ESR as if the fault was taken
433
* to EL1 and so ISV and the bits in ISS[23:14] are
434
* clear. (In fact it always will be a fault to EL1.)
435
*/
436
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
437
ESR_ELx_CM | ESR_ELx_WNR;
438
esr |= ESR_ELx_FSC_FAULT;
439
break;
440
case ESR_ELx_EC_IABT_LOW:
441
/*
442
* Claim a level 0 translation fault.
443
* All other bits are architecturally RES0 for faults
444
* reported with that DFSC value, so we clear them.
445
*/
446
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
447
esr |= ESR_ELx_FSC_FAULT;
448
break;
449
default:
450
/*
451
* This should never happen (entry.S only brings us
452
* into this code for insn and data aborts from a lower
453
* exception level). Fail safe by not providing an ESR
454
* context record at all.
455
*/
456
WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
457
esr = 0;
458
break;
459
}
460
}
461
462
current->thread.fault_code = esr;
463
}
464
465
static void do_bad_area(unsigned long far, unsigned long esr,
466
struct pt_regs *regs)
467
{
468
unsigned long addr = untagged_addr(far);
469
470
/*
471
* If we are in kernel mode at this point, we have no context to
472
* handle this fault with.
473
*/
474
if (user_mode(regs)) {
475
const struct fault_info *inf = esr_to_fault_info(esr);
476
477
set_thread_esr(addr, esr);
478
arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
479
} else {
480
__do_kernel_fault(addr, esr, regs);
481
}
482
}
483
484
static bool fault_from_pkey(struct vm_area_struct *vma, unsigned int mm_flags)
485
{
486
if (!system_supports_poe())
487
return false;
488
489
/*
490
* We do not check whether an Overlay fault has occurred because we
491
* cannot make a decision based solely on its value:
492
*
493
* - If Overlay is set, a fault did occur due to POE, but it may be
494
* spurious in those cases where we update POR_EL0 without ISB (e.g.
495
* on context-switch). We would then need to manually check POR_EL0
496
* against vma_pkey(vma), which is exactly what
497
* arch_vma_access_permitted() does.
498
*
499
* - If Overlay is not set, we may still need to report a pkey fault.
500
* This is the case if an access was made within a mapping but with no
501
* page mapped, and POR_EL0 forbids the access (according to
502
* vma_pkey()). Such access will result in a SIGSEGV regardless
503
* because core code checks arch_vma_access_permitted(), but in order
504
* to report the correct error code - SEGV_PKUERR - we must handle
505
* that case here.
506
*/
507
return !arch_vma_access_permitted(vma,
508
mm_flags & FAULT_FLAG_WRITE,
509
mm_flags & FAULT_FLAG_INSTRUCTION,
510
false);
511
}
512
513
static bool is_gcs_fault(unsigned long esr)
514
{
515
if (!esr_is_data_abort(esr))
516
return false;
517
518
return ESR_ELx_ISS2(esr) & ESR_ELx_GCS;
519
}
520
521
static bool is_el0_instruction_abort(unsigned long esr)
522
{
523
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
524
}
525
526
/*
527
* Note: not valid for EL1 DC IVAC, but we never use that such that it
528
* should fault. EL0 cannot issue DC IVAC (undef).
529
*/
530
static bool is_write_abort(unsigned long esr)
531
{
532
return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
533
}
534
535
static bool is_invalid_gcs_access(struct vm_area_struct *vma, u64 esr)
536
{
537
if (!system_supports_gcs())
538
return false;
539
540
if (unlikely(is_gcs_fault(esr))) {
541
/* GCS accesses must be performed on a GCS page */
542
if (!(vma->vm_flags & VM_SHADOW_STACK))
543
return true;
544
} else if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) {
545
/* Only GCS operations can write to a GCS page */
546
return esr_is_data_abort(esr) && is_write_abort(esr);
547
}
548
549
return false;
550
}
551
552
static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
553
struct pt_regs *regs)
554
{
555
const struct fault_info *inf;
556
struct mm_struct *mm = current->mm;
557
vm_fault_t fault;
558
vm_flags_t vm_flags;
559
unsigned int mm_flags = FAULT_FLAG_DEFAULT;
560
unsigned long addr = untagged_addr(far);
561
struct vm_area_struct *vma;
562
int si_code;
563
int pkey = -1;
564
565
if (kprobe_page_fault(regs, esr))
566
return 0;
567
568
/*
569
* If we're in an interrupt or have no user context, we must not take
570
* the fault.
571
*/
572
if (faulthandler_disabled() || !mm)
573
goto no_context;
574
575
if (user_mode(regs))
576
mm_flags |= FAULT_FLAG_USER;
577
578
/*
579
* vm_flags tells us what bits we must have in vma->vm_flags
580
* for the fault to be benign, __do_page_fault() would check
581
* vma->vm_flags & vm_flags and returns an error if the
582
* intersection is empty
583
*/
584
if (is_el0_instruction_abort(esr)) {
585
/* It was exec fault */
586
vm_flags = VM_EXEC;
587
mm_flags |= FAULT_FLAG_INSTRUCTION;
588
} else if (is_gcs_fault(esr)) {
589
/*
590
* The GCS permission on a page implies both read and
591
* write so always handle any GCS fault as a write fault,
592
* we need to trigger CoW even for GCS reads.
593
*/
594
vm_flags = VM_WRITE;
595
mm_flags |= FAULT_FLAG_WRITE;
596
} else if (is_write_abort(esr)) {
597
/* It was write fault */
598
vm_flags = VM_WRITE;
599
mm_flags |= FAULT_FLAG_WRITE;
600
} else {
601
/* It was read fault */
602
vm_flags = VM_READ;
603
/* Write implies read */
604
vm_flags |= VM_WRITE;
605
/* If EPAN is absent then exec implies read */
606
if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
607
vm_flags |= VM_EXEC;
608
}
609
610
if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
611
if (is_el1_instruction_abort(esr))
612
die_kernel_fault("execution of user memory",
613
addr, esr, regs);
614
615
if (!insn_may_access_user(regs->pc, esr))
616
die_kernel_fault("access to user memory outside uaccess routines",
617
addr, esr, regs);
618
}
619
620
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
621
622
if (!(mm_flags & FAULT_FLAG_USER))
623
goto lock_mmap;
624
625
vma = lock_vma_under_rcu(mm, addr);
626
if (!vma)
627
goto lock_mmap;
628
629
if (is_invalid_gcs_access(vma, esr)) {
630
vma_end_read(vma);
631
fault = 0;
632
si_code = SEGV_ACCERR;
633
goto bad_area;
634
}
635
636
if (!(vma->vm_flags & vm_flags)) {
637
vma_end_read(vma);
638
fault = 0;
639
si_code = SEGV_ACCERR;
640
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
641
goto bad_area;
642
}
643
644
if (fault_from_pkey(vma, mm_flags)) {
645
pkey = vma_pkey(vma);
646
vma_end_read(vma);
647
fault = 0;
648
si_code = SEGV_PKUERR;
649
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
650
goto bad_area;
651
}
652
653
fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
654
if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
655
vma_end_read(vma);
656
657
if (!(fault & VM_FAULT_RETRY)) {
658
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
659
goto done;
660
}
661
count_vm_vma_lock_event(VMA_LOCK_RETRY);
662
if (fault & VM_FAULT_MAJOR)
663
mm_flags |= FAULT_FLAG_TRIED;
664
665
/* Quick path to respond to signals */
666
if (fault_signal_pending(fault, regs)) {
667
if (!user_mode(regs))
668
goto no_context;
669
return 0;
670
}
671
lock_mmap:
672
673
retry:
674
vma = lock_mm_and_find_vma(mm, addr, regs);
675
if (unlikely(!vma)) {
676
fault = 0;
677
si_code = SEGV_MAPERR;
678
goto bad_area;
679
}
680
681
if (!(vma->vm_flags & vm_flags)) {
682
mmap_read_unlock(mm);
683
fault = 0;
684
si_code = SEGV_ACCERR;
685
goto bad_area;
686
}
687
688
if (fault_from_pkey(vma, mm_flags)) {
689
pkey = vma_pkey(vma);
690
mmap_read_unlock(mm);
691
fault = 0;
692
si_code = SEGV_PKUERR;
693
goto bad_area;
694
}
695
696
fault = handle_mm_fault(vma, addr, mm_flags, regs);
697
698
/* Quick path to respond to signals */
699
if (fault_signal_pending(fault, regs)) {
700
if (!user_mode(regs))
701
goto no_context;
702
return 0;
703
}
704
705
/* The fault is fully completed (including releasing mmap lock) */
706
if (fault & VM_FAULT_COMPLETED)
707
return 0;
708
709
if (fault & VM_FAULT_RETRY) {
710
mm_flags |= FAULT_FLAG_TRIED;
711
goto retry;
712
}
713
mmap_read_unlock(mm);
714
715
done:
716
/* Handle the "normal" (no error) case first. */
717
if (likely(!(fault & VM_FAULT_ERROR)))
718
return 0;
719
720
si_code = SEGV_MAPERR;
721
bad_area:
722
/*
723
* If we are in kernel mode at this point, we have no context to
724
* handle this fault with.
725
*/
726
if (!user_mode(regs))
727
goto no_context;
728
729
if (fault & VM_FAULT_OOM) {
730
/*
731
* We ran out of memory, call the OOM killer, and return to
732
* userspace (which will retry the fault, or kill us if we got
733
* oom-killed).
734
*/
735
pagefault_out_of_memory();
736
return 0;
737
}
738
739
inf = esr_to_fault_info(esr);
740
set_thread_esr(addr, esr);
741
if (fault & VM_FAULT_SIGBUS) {
742
/*
743
* We had some memory, but were unable to successfully fix up
744
* this page fault.
745
*/
746
arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
747
} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
748
unsigned int lsb;
749
750
lsb = PAGE_SHIFT;
751
if (fault & VM_FAULT_HWPOISON_LARGE)
752
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
753
754
arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
755
} else {
756
/*
757
* The pkey value that we return to userspace can be different
758
* from the pkey that caused the fault.
759
*
760
* 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
761
* 2. T1 : set POR_EL0 to deny access to pkey=4, touches, page
762
* 3. T1 : faults...
763
* 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
764
* 5. T1 : enters fault handler, takes mmap_lock, etc...
765
* 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
766
* faulted on a pte with its pkey=4.
767
*/
768
/* Something tried to access memory that out of memory map */
769
if (si_code == SEGV_PKUERR)
770
arm64_force_sig_fault_pkey(far, inf->name, pkey);
771
else
772
arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name);
773
}
774
775
return 0;
776
777
no_context:
778
__do_kernel_fault(addr, esr, regs);
779
return 0;
780
}
781
782
static int __kprobes do_translation_fault(unsigned long far,
783
unsigned long esr,
784
struct pt_regs *regs)
785
{
786
unsigned long addr = untagged_addr(far);
787
788
if (is_ttbr0_addr(addr))
789
return do_page_fault(far, esr, regs);
790
791
do_bad_area(far, esr, regs);
792
return 0;
793
}
794
795
static int do_alignment_fault(unsigned long far, unsigned long esr,
796
struct pt_regs *regs)
797
{
798
if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
799
compat_user_mode(regs))
800
return do_compat_alignment_fixup(far, regs);
801
do_bad_area(far, esr, regs);
802
return 0;
803
}
804
805
static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
806
{
807
return 1; /* "fault" */
808
}
809
810
static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
811
{
812
const struct fault_info *inf;
813
unsigned long siaddr;
814
815
inf = esr_to_fault_info(esr);
816
817
if (user_mode(regs) && apei_claim_sea(regs) == 0) {
818
/*
819
* APEI claimed this as a firmware-first notification.
820
* Some processing deferred to task_work before ret_to_user().
821
*/
822
return 0;
823
}
824
825
if (esr & ESR_ELx_FnV) {
826
siaddr = 0;
827
} else {
828
/*
829
* The architecture specifies that the tag bits of FAR_EL1 are
830
* UNKNOWN for synchronous external aborts. Mask them out now
831
* so that userspace doesn't see them.
832
*/
833
siaddr = untagged_addr(far);
834
}
835
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
836
arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
837
838
return 0;
839
}
840
841
static int do_tag_check_fault(unsigned long far, unsigned long esr,
842
struct pt_regs *regs)
843
{
844
/*
845
* The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
846
* for tag check faults. Set them to corresponding bits in the untagged
847
* address if ARM64_MTE_FAR isn't supported.
848
* Otherwise, bits 63:60 of FAR_EL1 are not UNKNOWN.
849
*/
850
if (!cpus_have_cap(ARM64_MTE_FAR))
851
far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
852
853
do_bad_area(far, esr, regs);
854
return 0;
855
}
856
857
static const struct fault_info fault_info[] = {
858
{ do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
859
{ do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
860
{ do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
861
{ do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
862
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
863
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
864
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
865
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
866
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" },
867
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
868
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
869
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
870
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" },
871
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
872
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
873
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
874
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
875
{ do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
876
{ do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
877
{ do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" },
878
{ do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
879
{ do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
880
{ do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
881
{ do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
882
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
883
{ do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
884
{ do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
885
{ do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
886
{ do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
887
{ do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
888
{ do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
889
{ do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
890
{ do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
891
{ do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
892
{ do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
893
{ do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
894
{ do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
895
{ do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
896
{ do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
897
{ do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
898
{ do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
899
{ do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" },
900
{ do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
901
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" },
902
{ do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
903
{ do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
904
{ do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
905
{ do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
906
{ do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
907
{ do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
908
{ do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
909
{ do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
910
{ do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
911
{ do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
912
{ do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
913
{ do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
914
{ do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
915
{ do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
916
{ do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
917
{ do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
918
{ do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
919
{ do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
920
{ do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
921
{ do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
922
};
923
924
void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
925
{
926
const struct fault_info *inf = esr_to_fault_info(esr);
927
unsigned long addr = untagged_addr(far);
928
929
if (!inf->fn(far, esr, regs))
930
return;
931
932
if (!user_mode(regs))
933
die_kernel_fault(inf->name, addr, esr, regs);
934
935
/*
936
* At this point we have an unrecognized fault type whose tag bits may
937
* have been defined as UNKNOWN. Therefore we only expose the untagged
938
* address to the signal handler.
939
*/
940
arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
941
}
942
NOKPROBE_SYMBOL(do_mem_abort);
943
944
void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
945
{
946
arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
947
addr, esr);
948
}
949
NOKPROBE_SYMBOL(do_sp_pc_abort);
950
951
/*
952
* Used during anonymous page fault handling.
953
*/
954
struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
955
unsigned long vaddr)
956
{
957
gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
958
959
/*
960
* If the page is mapped with PROT_MTE, initialise the tags at the
961
* point of allocation and page zeroing as this is usually faster than
962
* separate DC ZVA and STGM.
963
*/
964
if (vma->vm_flags & VM_MTE)
965
flags |= __GFP_ZEROTAGS;
966
967
return vma_alloc_folio(flags, 0, vma, vaddr);
968
}
969
970
void tag_clear_highpage(struct page *page)
971
{
972
/* Newly allocated page, shouldn't have been tagged yet */
973
WARN_ON_ONCE(!try_page_mte_tagging(page));
974
mte_zero_clear_page_tags(page_address(page));
975
set_page_mte_tagged(page);
976
}
977
978