Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/mm/init.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Based on arch/arm/mm/init.c
4
*
5
* Copyright (C) 1995-2005 Russell King
6
* Copyright (C) 2012 ARM Ltd.
7
*/
8
9
#include <linux/kernel.h>
10
#include <linux/export.h>
11
#include <linux/errno.h>
12
#include <linux/swap.h>
13
#include <linux/init.h>
14
#include <linux/cache.h>
15
#include <linux/mman.h>
16
#include <linux/nodemask.h>
17
#include <linux/initrd.h>
18
#include <linux/gfp.h>
19
#include <linux/math.h>
20
#include <linux/memblock.h>
21
#include <linux/sort.h>
22
#include <linux/of.h>
23
#include <linux/of_fdt.h>
24
#include <linux/dma-direct.h>
25
#include <linux/dma-map-ops.h>
26
#include <linux/efi.h>
27
#include <linux/swiotlb.h>
28
#include <linux/vmalloc.h>
29
#include <linux/mm.h>
30
#include <linux/kexec.h>
31
#include <linux/crash_dump.h>
32
#include <linux/hugetlb.h>
33
#include <linux/acpi_iort.h>
34
#include <linux/kmemleak.h>
35
#include <linux/execmem.h>
36
37
#include <asm/boot.h>
38
#include <asm/fixmap.h>
39
#include <asm/kasan.h>
40
#include <asm/kernel-pgtable.h>
41
#include <asm/kvm_host.h>
42
#include <asm/memory.h>
43
#include <asm/numa.h>
44
#include <asm/rsi.h>
45
#include <asm/sections.h>
46
#include <asm/setup.h>
47
#include <linux/sizes.h>
48
#include <asm/tlb.h>
49
#include <asm/alternative.h>
50
#include <asm/xen/swiotlb-xen.h>
51
52
/*
53
* We need to be able to catch inadvertent references to memstart_addr
54
* that occur (potentially in generic code) before arm64_memblock_init()
55
* executes, which assigns it its actual value. So use a default value
56
* that cannot be mistaken for a real physical address.
57
*/
58
s64 memstart_addr __ro_after_init = -1;
59
EXPORT_SYMBOL(memstart_addr);
60
61
/*
62
* If the corresponding config options are enabled, we create both ZONE_DMA
63
* and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
64
* unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
65
* In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
66
* otherwise it is empty.
67
*/
68
phys_addr_t __ro_after_init arm64_dma_phys_limit;
69
70
/*
71
* To make optimal use of block mappings when laying out the linear
72
* mapping, round down the base of physical memory to a size that can
73
* be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
74
* (64k granule), or a multiple that can be mapped using contiguous bits
75
* in the page tables: 32 * PMD_SIZE (16k granule)
76
*/
77
#if defined(CONFIG_ARM64_4K_PAGES)
78
#define ARM64_MEMSTART_SHIFT PUD_SHIFT
79
#elif defined(CONFIG_ARM64_16K_PAGES)
80
#define ARM64_MEMSTART_SHIFT CONT_PMD_SHIFT
81
#else
82
#define ARM64_MEMSTART_SHIFT PMD_SHIFT
83
#endif
84
85
/*
86
* sparsemem vmemmap imposes an additional requirement on the alignment of
87
* memstart_addr, due to the fact that the base of the vmemmap region
88
* has a direct correspondence, and needs to appear sufficiently aligned
89
* in the virtual address space.
90
*/
91
#if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
92
#define ARM64_MEMSTART_ALIGN (1UL << SECTION_SIZE_BITS)
93
#else
94
#define ARM64_MEMSTART_ALIGN (1UL << ARM64_MEMSTART_SHIFT)
95
#endif
96
97
static void __init arch_reserve_crashkernel(void)
98
{
99
unsigned long long low_size = 0;
100
unsigned long long crash_base, crash_size;
101
bool high = false;
102
int ret;
103
104
if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
105
return;
106
107
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
108
&crash_size, &crash_base,
109
&low_size, NULL, &high);
110
if (ret)
111
return;
112
113
reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
114
}
115
116
static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
117
{
118
return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
119
}
120
121
static void __init zone_sizes_init(void)
122
{
123
unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
124
phys_addr_t __maybe_unused acpi_zone_dma_limit;
125
phys_addr_t __maybe_unused dt_zone_dma_limit;
126
phys_addr_t __maybe_unused dma32_phys_limit =
127
max_zone_phys(DMA_BIT_MASK(32));
128
129
#ifdef CONFIG_ZONE_DMA
130
acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
131
dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
132
zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
133
/*
134
* Information we get from firmware (e.g. DT dma-ranges) describe DMA
135
* bus constraints. Devices using DMA might have their own limitations.
136
* Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
137
* DMA zone on platforms that have RAM there.
138
*/
139
if (memblock_start_of_DRAM() < U32_MAX)
140
zone_dma_limit = min(zone_dma_limit, U32_MAX);
141
arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
142
max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
143
#endif
144
#ifdef CONFIG_ZONE_DMA32
145
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
146
if (!arm64_dma_phys_limit)
147
arm64_dma_phys_limit = dma32_phys_limit;
148
#endif
149
if (!arm64_dma_phys_limit)
150
arm64_dma_phys_limit = PHYS_MASK + 1;
151
max_zone_pfns[ZONE_NORMAL] = max_pfn;
152
153
free_area_init(max_zone_pfns);
154
}
155
156
int pfn_is_map_memory(unsigned long pfn)
157
{
158
phys_addr_t addr = PFN_PHYS(pfn);
159
160
/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
161
if (PHYS_PFN(addr) != pfn)
162
return 0;
163
164
return memblock_is_map_memory(addr);
165
}
166
EXPORT_SYMBOL(pfn_is_map_memory);
167
168
static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
169
170
/*
171
* Limit the memory size that was specified via FDT.
172
*/
173
static int __init early_mem(char *p)
174
{
175
if (!p)
176
return 1;
177
178
memory_limit = memparse(p, &p) & PAGE_MASK;
179
pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
180
181
return 0;
182
}
183
early_param("mem", early_mem);
184
185
void __init arm64_memblock_init(void)
186
{
187
s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
188
189
/*
190
* Corner case: 52-bit VA capable systems running KVM in nVHE mode may
191
* be limited in their ability to support a linear map that exceeds 51
192
* bits of VA space, depending on the placement of the ID map. Given
193
* that the placement of the ID map may be randomized, let's simply
194
* limit the kernel's linear map to 51 bits as well if we detect this
195
* configuration.
196
*/
197
if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
198
is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
199
pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
200
linear_region_size = min_t(u64, linear_region_size, BIT(51));
201
}
202
203
/* Remove memory above our supported physical address size */
204
memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
205
206
/*
207
* Select a suitable value for the base of physical memory.
208
*/
209
memstart_addr = round_down(memblock_start_of_DRAM(),
210
ARM64_MEMSTART_ALIGN);
211
212
if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
213
pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
214
215
/*
216
* Remove the memory that we will not be able to cover with the
217
* linear mapping. Take care not to clip the kernel which may be
218
* high in memory.
219
*/
220
memblock_remove(max_t(u64, memstart_addr + linear_region_size,
221
__pa_symbol(_end)), ULLONG_MAX);
222
if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
223
/* ensure that memstart_addr remains sufficiently aligned */
224
memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
225
ARM64_MEMSTART_ALIGN);
226
memblock_remove(0, memstart_addr);
227
}
228
229
/*
230
* If we are running with a 52-bit kernel VA config on a system that
231
* does not support it, we have to place the available physical
232
* memory in the 48-bit addressable part of the linear region, i.e.,
233
* we have to move it upward. Since memstart_addr represents the
234
* physical address of PAGE_OFFSET, we have to *subtract* from it.
235
*/
236
if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
237
memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
238
239
/*
240
* Apply the memory limit if it was set. Since the kernel may be loaded
241
* high up in memory, add back the kernel region that must be accessible
242
* via the linear mapping.
243
*/
244
if (memory_limit != PHYS_ADDR_MAX) {
245
memblock_mem_limit_remove_map(memory_limit);
246
memblock_add(__pa_symbol(_text), (u64)(_end - _text));
247
}
248
249
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
250
/*
251
* Add back the memory we just removed if it results in the
252
* initrd to become inaccessible via the linear mapping.
253
* Otherwise, this is a no-op
254
*/
255
u64 base = phys_initrd_start & PAGE_MASK;
256
u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
257
258
/*
259
* We can only add back the initrd memory if we don't end up
260
* with more memory than we can address via the linear mapping.
261
* It is up to the bootloader to position the kernel and the
262
* initrd reasonably close to each other (i.e., within 32 GB of
263
* each other) so that all granule/#levels combinations can
264
* always access both.
265
*/
266
if (WARN(base < memblock_start_of_DRAM() ||
267
base + size > memblock_start_of_DRAM() +
268
linear_region_size,
269
"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
270
phys_initrd_size = 0;
271
} else {
272
memblock_add(base, size);
273
memblock_clear_nomap(base, size);
274
memblock_reserve(base, size);
275
}
276
}
277
278
/*
279
* Register the kernel text, kernel data, initrd, and initial
280
* pagetables with memblock.
281
*/
282
memblock_reserve(__pa_symbol(_stext), _end - _stext);
283
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
284
/* the generic initrd code expects virtual addresses */
285
initrd_start = __phys_to_virt(phys_initrd_start);
286
initrd_end = initrd_start + phys_initrd_size;
287
}
288
289
early_init_fdt_scan_reserved_mem();
290
}
291
292
void __init bootmem_init(void)
293
{
294
unsigned long min, max;
295
296
min = PFN_UP(memblock_start_of_DRAM());
297
max = PFN_DOWN(memblock_end_of_DRAM());
298
299
early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
300
301
max_pfn = max_low_pfn = max;
302
min_low_pfn = min;
303
304
arch_numa_init();
305
306
/*
307
* must be done after arch_numa_init() which calls numa_init() to
308
* initialize node_online_map that gets used in hugetlb_cma_reserve()
309
* while allocating required CMA size across online nodes.
310
*/
311
#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
312
arm64_hugetlb_cma_reserve();
313
#endif
314
315
kvm_hyp_reserve();
316
317
/*
318
* sparse_init() tries to allocate memory from memblock, so must be
319
* done after the fixed reservations
320
*/
321
sparse_init();
322
zone_sizes_init();
323
324
/*
325
* Reserve the CMA area after arm64_dma_phys_limit was initialised.
326
*/
327
dma_contiguous_reserve(arm64_dma_phys_limit);
328
329
/*
330
* request_standard_resources() depends on crashkernel's memory being
331
* reserved, so do it here.
332
*/
333
arch_reserve_crashkernel();
334
335
memblock_dump_all();
336
}
337
338
void __init arch_mm_preinit(void)
339
{
340
unsigned int flags = SWIOTLB_VERBOSE;
341
bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
342
343
if (is_realm_world()) {
344
swiotlb = true;
345
flags |= SWIOTLB_FORCE;
346
}
347
348
if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
349
/*
350
* If no bouncing needed for ZONE_DMA, reduce the swiotlb
351
* buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
352
*/
353
unsigned long size =
354
DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
355
swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
356
swiotlb = true;
357
}
358
359
swiotlb_init(swiotlb, flags);
360
swiotlb_update_mem_attributes();
361
362
/*
363
* Check boundaries twice: Some fundamental inconsistencies can be
364
* detected at build time already.
365
*/
366
#ifdef CONFIG_COMPAT
367
BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
368
#endif
369
370
/*
371
* Selected page table levels should match when derived from
372
* scratch using the virtual address range and page size.
373
*/
374
BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
375
CONFIG_PGTABLE_LEVELS);
376
377
if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
378
extern int sysctl_overcommit_memory;
379
/*
380
* On a machine this small we won't get anywhere without
381
* overcommit, so turn it on by default.
382
*/
383
sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
384
}
385
}
386
387
void free_initmem(void)
388
{
389
void *lm_init_begin = lm_alias(__init_begin);
390
void *lm_init_end = lm_alias(__init_end);
391
392
WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
393
WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
394
395
/* Delete __init region from memblock.reserved. */
396
memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
397
398
free_reserved_area(lm_init_begin, lm_init_end,
399
POISON_FREE_INITMEM, "unused kernel");
400
/*
401
* Unmap the __init region but leave the VM area in place. This
402
* prevents the region from being reused for kernel modules, which
403
* is not supported by kallsyms.
404
*/
405
vunmap_range((u64)__init_begin, (u64)__init_end);
406
}
407
408
void dump_mem_limit(void)
409
{
410
if (memory_limit != PHYS_ADDR_MAX) {
411
pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
412
} else {
413
pr_emerg("Memory Limit: none\n");
414
}
415
}
416
417
#ifdef CONFIG_EXECMEM
418
static u64 module_direct_base __ro_after_init = 0;
419
static u64 module_plt_base __ro_after_init = 0;
420
421
/*
422
* Choose a random page-aligned base address for a window of 'size' bytes which
423
* entirely contains the interval [start, end - 1].
424
*/
425
static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
426
{
427
u64 max_pgoff, pgoff;
428
429
if ((end - start) >= size)
430
return 0;
431
432
max_pgoff = (size - (end - start)) / PAGE_SIZE;
433
pgoff = get_random_u32_inclusive(0, max_pgoff);
434
435
return start - pgoff * PAGE_SIZE;
436
}
437
438
/*
439
* Modules may directly reference data and text anywhere within the kernel
440
* image and other modules. References using PREL32 relocations have a +/-2G
441
* range, and so we need to ensure that the entire kernel image and all modules
442
* fall within a 2G window such that these are always within range.
443
*
444
* Modules may directly branch to functions and code within the kernel text,
445
* and to functions and code within other modules. These branches will use
446
* CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
447
* that the entire kernel text and all module text falls within a 128M window
448
* such that these are always within range. With PLTs, we can expand this to a
449
* 2G window.
450
*
451
* We chose the 128M region to surround the entire kernel image (rather than
452
* just the text) as using the same bounds for the 128M and 2G regions ensures
453
* by construction that we never select a 128M region that is not a subset of
454
* the 2G region. For very large and unusual kernel configurations this means
455
* we may fall back to PLTs where they could have been avoided, but this keeps
456
* the logic significantly simpler.
457
*/
458
static int __init module_init_limits(void)
459
{
460
u64 kernel_end = (u64)_end;
461
u64 kernel_start = (u64)_text;
462
u64 kernel_size = kernel_end - kernel_start;
463
464
/*
465
* The default modules region is placed immediately below the kernel
466
* image, and is large enough to use the full 2G relocation range.
467
*/
468
BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
469
BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
470
471
if (!kaslr_enabled()) {
472
if (kernel_size < SZ_128M)
473
module_direct_base = kernel_end - SZ_128M;
474
if (kernel_size < SZ_2G)
475
module_plt_base = kernel_end - SZ_2G;
476
} else {
477
u64 min = kernel_start;
478
u64 max = kernel_end;
479
480
if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
481
pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
482
} else {
483
module_direct_base = random_bounding_box(SZ_128M, min, max);
484
if (module_direct_base) {
485
min = module_direct_base;
486
max = module_direct_base + SZ_128M;
487
}
488
}
489
490
module_plt_base = random_bounding_box(SZ_2G, min, max);
491
}
492
493
pr_info("%llu pages in range for non-PLT usage",
494
module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
495
pr_info("%llu pages in range for PLT usage",
496
module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
497
498
return 0;
499
}
500
501
static struct execmem_info execmem_info __ro_after_init;
502
503
struct execmem_info __init *execmem_arch_setup(void)
504
{
505
unsigned long fallback_start = 0, fallback_end = 0;
506
unsigned long start = 0, end = 0;
507
508
module_init_limits();
509
510
/*
511
* Where possible, prefer to allocate within direct branch range of the
512
* kernel such that no PLTs are necessary.
513
*/
514
if (module_direct_base) {
515
start = module_direct_base;
516
end = module_direct_base + SZ_128M;
517
518
if (module_plt_base) {
519
fallback_start = module_plt_base;
520
fallback_end = module_plt_base + SZ_2G;
521
}
522
} else if (module_plt_base) {
523
start = module_plt_base;
524
end = module_plt_base + SZ_2G;
525
}
526
527
execmem_info = (struct execmem_info){
528
.ranges = {
529
[EXECMEM_DEFAULT] = {
530
.start = start,
531
.end = end,
532
.pgprot = PAGE_KERNEL,
533
.alignment = 1,
534
.fallback_start = fallback_start,
535
.fallback_end = fallback_end,
536
},
537
[EXECMEM_KPROBES] = {
538
.start = VMALLOC_START,
539
.end = VMALLOC_END,
540
.pgprot = PAGE_KERNEL_ROX,
541
.alignment = 1,
542
},
543
[EXECMEM_BPF] = {
544
.start = VMALLOC_START,
545
.end = VMALLOC_END,
546
.pgprot = PAGE_KERNEL,
547
.alignment = 1,
548
},
549
},
550
};
551
552
return &execmem_info;
553
}
554
#endif /* CONFIG_EXECMEM */
555
556