Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/mm/mmu.c
50905 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Based on arch/arm/mm/mmu.c
4
*
5
* Copyright (C) 1995-2005 Russell King
6
* Copyright (C) 2012 ARM Ltd.
7
*/
8
9
#include <linux/cache.h>
10
#include <linux/export.h>
11
#include <linux/kernel.h>
12
#include <linux/errno.h>
13
#include <linux/init.h>
14
#include <linux/ioport.h>
15
#include <linux/kexec.h>
16
#include <linux/libfdt.h>
17
#include <linux/mman.h>
18
#include <linux/nodemask.h>
19
#include <linux/memblock.h>
20
#include <linux/memremap.h>
21
#include <linux/memory.h>
22
#include <linux/fs.h>
23
#include <linux/io.h>
24
#include <linux/mm.h>
25
#include <linux/vmalloc.h>
26
#include <linux/set_memory.h>
27
#include <linux/kfence.h>
28
#include <linux/pkeys.h>
29
#include <linux/mm_inline.h>
30
#include <linux/pagewalk.h>
31
#include <linux/stop_machine.h>
32
33
#include <asm/barrier.h>
34
#include <asm/cputype.h>
35
#include <asm/fixmap.h>
36
#include <asm/kasan.h>
37
#include <asm/kernel-pgtable.h>
38
#include <asm/sections.h>
39
#include <asm/setup.h>
40
#include <linux/sizes.h>
41
#include <asm/tlb.h>
42
#include <asm/mmu_context.h>
43
#include <asm/ptdump.h>
44
#include <asm/tlbflush.h>
45
#include <asm/pgalloc.h>
46
#include <asm/kfence.h>
47
48
#define NO_BLOCK_MAPPINGS BIT(0)
49
#define NO_CONT_MAPPINGS BIT(1)
50
#define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */
51
52
DEFINE_STATIC_KEY_FALSE(arm64_ptdump_lock_key);
53
54
u64 kimage_voffset __ro_after_init;
55
EXPORT_SYMBOL(kimage_voffset);
56
57
u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
58
59
static bool rodata_is_rw __ro_after_init = true;
60
61
/*
62
* The booting CPU updates the failed status @__early_cpu_boot_status,
63
* with MMU turned off.
64
*/
65
long __section(".mmuoff.data.write") __early_cpu_boot_status;
66
67
/*
68
* Empty_zero_page is a special page that is used for zero-initialized data
69
* and COW.
70
*/
71
unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
72
EXPORT_SYMBOL(empty_zero_page);
73
74
static DEFINE_SPINLOCK(swapper_pgdir_lock);
75
static DEFINE_MUTEX(fixmap_lock);
76
77
void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
78
{
79
pgd_t *fixmap_pgdp;
80
81
/*
82
* Don't bother with the fixmap if swapper_pg_dir is still mapped
83
* writable in the kernel mapping.
84
*/
85
if (rodata_is_rw) {
86
WRITE_ONCE(*pgdp, pgd);
87
dsb(ishst);
88
isb();
89
return;
90
}
91
92
spin_lock(&swapper_pgdir_lock);
93
fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
94
WRITE_ONCE(*fixmap_pgdp, pgd);
95
/*
96
* We need dsb(ishst) here to ensure the page-table-walker sees
97
* our new entry before set_p?d() returns. The fixmap's
98
* flush_tlb_kernel_range() via clear_fixmap() does this for us.
99
*/
100
pgd_clear_fixmap();
101
spin_unlock(&swapper_pgdir_lock);
102
}
103
104
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
105
unsigned long size, pgprot_t vma_prot)
106
{
107
if (!pfn_is_map_memory(pfn))
108
return pgprot_noncached(vma_prot);
109
else if (file->f_flags & O_SYNC)
110
return pgprot_writecombine(vma_prot);
111
return vma_prot;
112
}
113
EXPORT_SYMBOL(phys_mem_access_prot);
114
115
static phys_addr_t __init early_pgtable_alloc(enum pgtable_type pgtable_type)
116
{
117
phys_addr_t phys;
118
119
phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
120
MEMBLOCK_ALLOC_NOLEAKTRACE);
121
if (!phys)
122
panic("Failed to allocate page table page\n");
123
124
return phys;
125
}
126
127
bool pgattr_change_is_safe(pteval_t old, pteval_t new)
128
{
129
/*
130
* The following mapping attributes may be updated in live
131
* kernel mappings without the need for break-before-make.
132
*/
133
pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG |
134
PTE_SWBITS_MASK;
135
136
/* creating or taking down mappings is always safe */
137
if (!pte_valid(__pte(old)) || !pte_valid(__pte(new)))
138
return true;
139
140
/* A live entry's pfn should not change */
141
if (pte_pfn(__pte(old)) != pte_pfn(__pte(new)))
142
return false;
143
144
/* live contiguous mappings may not be manipulated at all */
145
if ((old | new) & PTE_CONT)
146
return false;
147
148
/* Transitioning from Non-Global to Global is unsafe */
149
if (old & ~new & PTE_NG)
150
return false;
151
152
/*
153
* Changing the memory type between Normal and Normal-Tagged is safe
154
* since Tagged is considered a permission attribute from the
155
* mismatched attribute aliases perspective.
156
*/
157
if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
158
(old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
159
((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
160
(new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
161
mask |= PTE_ATTRINDX_MASK;
162
163
return ((old ^ new) & ~mask) == 0;
164
}
165
166
static void init_clear_pgtable(void *table)
167
{
168
clear_page(table);
169
170
/* Ensure the zeroing is observed by page table walks. */
171
dsb(ishst);
172
}
173
174
static void init_pte(pte_t *ptep, unsigned long addr, unsigned long end,
175
phys_addr_t phys, pgprot_t prot)
176
{
177
do {
178
pte_t old_pte = __ptep_get(ptep);
179
180
/*
181
* Required barriers to make this visible to the table walker
182
* are deferred to the end of alloc_init_cont_pte().
183
*/
184
__set_pte_nosync(ptep, pfn_pte(__phys_to_pfn(phys), prot));
185
186
/*
187
* After the PTE entry has been populated once, we
188
* only allow updates to the permission attributes.
189
*/
190
BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
191
pte_val(__ptep_get(ptep))));
192
193
phys += PAGE_SIZE;
194
} while (ptep++, addr += PAGE_SIZE, addr != end);
195
}
196
197
static int alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
198
unsigned long end, phys_addr_t phys,
199
pgprot_t prot,
200
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
201
int flags)
202
{
203
unsigned long next;
204
pmd_t pmd = READ_ONCE(*pmdp);
205
pte_t *ptep;
206
207
BUG_ON(pmd_sect(pmd));
208
if (pmd_none(pmd)) {
209
pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
210
phys_addr_t pte_phys;
211
212
if (flags & NO_EXEC_MAPPINGS)
213
pmdval |= PMD_TABLE_PXN;
214
BUG_ON(!pgtable_alloc);
215
pte_phys = pgtable_alloc(TABLE_PTE);
216
if (pte_phys == INVALID_PHYS_ADDR)
217
return -ENOMEM;
218
ptep = pte_set_fixmap(pte_phys);
219
init_clear_pgtable(ptep);
220
ptep += pte_index(addr);
221
__pmd_populate(pmdp, pte_phys, pmdval);
222
} else {
223
BUG_ON(pmd_bad(pmd));
224
ptep = pte_set_fixmap_offset(pmdp, addr);
225
}
226
227
do {
228
pgprot_t __prot = prot;
229
230
next = pte_cont_addr_end(addr, end);
231
232
/* use a contiguous mapping if the range is suitably aligned */
233
if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
234
(flags & NO_CONT_MAPPINGS) == 0)
235
__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
236
237
init_pte(ptep, addr, next, phys, __prot);
238
239
ptep += pte_index(next) - pte_index(addr);
240
phys += next - addr;
241
} while (addr = next, addr != end);
242
243
/*
244
* Note: barriers and maintenance necessary to clear the fixmap slot
245
* ensure that all previous pgtable writes are visible to the table
246
* walker.
247
*/
248
pte_clear_fixmap();
249
250
return 0;
251
}
252
253
static int init_pmd(pmd_t *pmdp, unsigned long addr, unsigned long end,
254
phys_addr_t phys, pgprot_t prot,
255
phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags)
256
{
257
unsigned long next;
258
259
do {
260
pmd_t old_pmd = READ_ONCE(*pmdp);
261
262
next = pmd_addr_end(addr, end);
263
264
/* try section mapping first */
265
if (((addr | next | phys) & ~PMD_MASK) == 0 &&
266
(flags & NO_BLOCK_MAPPINGS) == 0) {
267
pmd_set_huge(pmdp, phys, prot);
268
269
/*
270
* After the PMD entry has been populated once, we
271
* only allow updates to the permission attributes.
272
*/
273
BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
274
READ_ONCE(pmd_val(*pmdp))));
275
} else {
276
int ret;
277
278
ret = alloc_init_cont_pte(pmdp, addr, next, phys, prot,
279
pgtable_alloc, flags);
280
if (ret)
281
return ret;
282
283
BUG_ON(pmd_val(old_pmd) != 0 &&
284
pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
285
}
286
phys += next - addr;
287
} while (pmdp++, addr = next, addr != end);
288
289
return 0;
290
}
291
292
static int alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
293
unsigned long end, phys_addr_t phys,
294
pgprot_t prot,
295
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
296
int flags)
297
{
298
int ret;
299
unsigned long next;
300
pud_t pud = READ_ONCE(*pudp);
301
pmd_t *pmdp;
302
303
/*
304
* Check for initial section mappings in the pgd/pud.
305
*/
306
BUG_ON(pud_sect(pud));
307
if (pud_none(pud)) {
308
pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
309
phys_addr_t pmd_phys;
310
311
if (flags & NO_EXEC_MAPPINGS)
312
pudval |= PUD_TABLE_PXN;
313
BUG_ON(!pgtable_alloc);
314
pmd_phys = pgtable_alloc(TABLE_PMD);
315
if (pmd_phys == INVALID_PHYS_ADDR)
316
return -ENOMEM;
317
pmdp = pmd_set_fixmap(pmd_phys);
318
init_clear_pgtable(pmdp);
319
pmdp += pmd_index(addr);
320
__pud_populate(pudp, pmd_phys, pudval);
321
} else {
322
BUG_ON(pud_bad(pud));
323
pmdp = pmd_set_fixmap_offset(pudp, addr);
324
}
325
326
do {
327
pgprot_t __prot = prot;
328
329
next = pmd_cont_addr_end(addr, end);
330
331
/* use a contiguous mapping if the range is suitably aligned */
332
if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
333
(flags & NO_CONT_MAPPINGS) == 0)
334
__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
335
336
ret = init_pmd(pmdp, addr, next, phys, __prot, pgtable_alloc, flags);
337
if (ret)
338
goto out;
339
340
pmdp += pmd_index(next) - pmd_index(addr);
341
phys += next - addr;
342
} while (addr = next, addr != end);
343
344
out:
345
pmd_clear_fixmap();
346
347
return ret;
348
}
349
350
static int alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end,
351
phys_addr_t phys, pgprot_t prot,
352
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
353
int flags)
354
{
355
int ret = 0;
356
unsigned long next;
357
p4d_t p4d = READ_ONCE(*p4dp);
358
pud_t *pudp;
359
360
if (p4d_none(p4d)) {
361
p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN | P4D_TABLE_AF;
362
phys_addr_t pud_phys;
363
364
if (flags & NO_EXEC_MAPPINGS)
365
p4dval |= P4D_TABLE_PXN;
366
BUG_ON(!pgtable_alloc);
367
pud_phys = pgtable_alloc(TABLE_PUD);
368
if (pud_phys == INVALID_PHYS_ADDR)
369
return -ENOMEM;
370
pudp = pud_set_fixmap(pud_phys);
371
init_clear_pgtable(pudp);
372
pudp += pud_index(addr);
373
__p4d_populate(p4dp, pud_phys, p4dval);
374
} else {
375
BUG_ON(p4d_bad(p4d));
376
pudp = pud_set_fixmap_offset(p4dp, addr);
377
}
378
379
do {
380
pud_t old_pud = READ_ONCE(*pudp);
381
382
next = pud_addr_end(addr, end);
383
384
/*
385
* For 4K granule only, attempt to put down a 1GB block
386
*/
387
if (pud_sect_supported() &&
388
((addr | next | phys) & ~PUD_MASK) == 0 &&
389
(flags & NO_BLOCK_MAPPINGS) == 0) {
390
pud_set_huge(pudp, phys, prot);
391
392
/*
393
* After the PUD entry has been populated once, we
394
* only allow updates to the permission attributes.
395
*/
396
BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
397
READ_ONCE(pud_val(*pudp))));
398
} else {
399
ret = alloc_init_cont_pmd(pudp, addr, next, phys, prot,
400
pgtable_alloc, flags);
401
if (ret)
402
goto out;
403
404
BUG_ON(pud_val(old_pud) != 0 &&
405
pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
406
}
407
phys += next - addr;
408
} while (pudp++, addr = next, addr != end);
409
410
out:
411
pud_clear_fixmap();
412
413
return ret;
414
}
415
416
static int alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end,
417
phys_addr_t phys, pgprot_t prot,
418
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
419
int flags)
420
{
421
int ret;
422
unsigned long next;
423
pgd_t pgd = READ_ONCE(*pgdp);
424
p4d_t *p4dp;
425
426
if (pgd_none(pgd)) {
427
pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN | PGD_TABLE_AF;
428
phys_addr_t p4d_phys;
429
430
if (flags & NO_EXEC_MAPPINGS)
431
pgdval |= PGD_TABLE_PXN;
432
BUG_ON(!pgtable_alloc);
433
p4d_phys = pgtable_alloc(TABLE_P4D);
434
if (p4d_phys == INVALID_PHYS_ADDR)
435
return -ENOMEM;
436
p4dp = p4d_set_fixmap(p4d_phys);
437
init_clear_pgtable(p4dp);
438
p4dp += p4d_index(addr);
439
__pgd_populate(pgdp, p4d_phys, pgdval);
440
} else {
441
BUG_ON(pgd_bad(pgd));
442
p4dp = p4d_set_fixmap_offset(pgdp, addr);
443
}
444
445
do {
446
p4d_t old_p4d = READ_ONCE(*p4dp);
447
448
next = p4d_addr_end(addr, end);
449
450
ret = alloc_init_pud(p4dp, addr, next, phys, prot,
451
pgtable_alloc, flags);
452
if (ret)
453
goto out;
454
455
BUG_ON(p4d_val(old_p4d) != 0 &&
456
p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp)));
457
458
phys += next - addr;
459
} while (p4dp++, addr = next, addr != end);
460
461
out:
462
p4d_clear_fixmap();
463
464
return ret;
465
}
466
467
static int __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys,
468
unsigned long virt, phys_addr_t size,
469
pgprot_t prot,
470
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
471
int flags)
472
{
473
int ret;
474
unsigned long addr, end, next;
475
pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
476
477
/*
478
* If the virtual and physical address don't have the same offset
479
* within a page, we cannot map the region as the caller expects.
480
*/
481
if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
482
return -EINVAL;
483
484
phys &= PAGE_MASK;
485
addr = virt & PAGE_MASK;
486
end = PAGE_ALIGN(virt + size);
487
488
do {
489
next = pgd_addr_end(addr, end);
490
ret = alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc,
491
flags);
492
if (ret)
493
return ret;
494
phys += next - addr;
495
} while (pgdp++, addr = next, addr != end);
496
497
return 0;
498
}
499
500
static int __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
501
unsigned long virt, phys_addr_t size,
502
pgprot_t prot,
503
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
504
int flags)
505
{
506
int ret;
507
508
mutex_lock(&fixmap_lock);
509
ret = __create_pgd_mapping_locked(pgdir, phys, virt, size, prot,
510
pgtable_alloc, flags);
511
mutex_unlock(&fixmap_lock);
512
513
return ret;
514
}
515
516
static void early_create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
517
unsigned long virt, phys_addr_t size,
518
pgprot_t prot,
519
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
520
int flags)
521
{
522
int ret;
523
524
ret = __create_pgd_mapping(pgdir, phys, virt, size, prot, pgtable_alloc,
525
flags);
526
if (ret)
527
panic("Failed to create page tables\n");
528
}
529
530
static phys_addr_t __pgd_pgtable_alloc(struct mm_struct *mm, gfp_t gfp,
531
enum pgtable_type pgtable_type)
532
{
533
/* Page is zeroed by init_clear_pgtable() so don't duplicate effort. */
534
struct ptdesc *ptdesc = pagetable_alloc(gfp & ~__GFP_ZERO, 0);
535
phys_addr_t pa;
536
537
if (!ptdesc)
538
return INVALID_PHYS_ADDR;
539
540
pa = page_to_phys(ptdesc_page(ptdesc));
541
542
switch (pgtable_type) {
543
case TABLE_PTE:
544
BUG_ON(!pagetable_pte_ctor(mm, ptdesc));
545
break;
546
case TABLE_PMD:
547
BUG_ON(!pagetable_pmd_ctor(mm, ptdesc));
548
break;
549
case TABLE_PUD:
550
pagetable_pud_ctor(ptdesc);
551
break;
552
case TABLE_P4D:
553
pagetable_p4d_ctor(ptdesc);
554
break;
555
}
556
557
return pa;
558
}
559
560
static phys_addr_t
561
pgd_pgtable_alloc_init_mm_gfp(enum pgtable_type pgtable_type, gfp_t gfp)
562
{
563
return __pgd_pgtable_alloc(&init_mm, gfp, pgtable_type);
564
}
565
566
static phys_addr_t __maybe_unused
567
pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)
568
{
569
return pgd_pgtable_alloc_init_mm_gfp(pgtable_type, GFP_PGTABLE_KERNEL);
570
}
571
572
static phys_addr_t
573
pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)
574
{
575
return __pgd_pgtable_alloc(NULL, GFP_PGTABLE_KERNEL, pgtable_type);
576
}
577
578
static void split_contpte(pte_t *ptep)
579
{
580
int i;
581
582
ptep = PTR_ALIGN_DOWN(ptep, sizeof(*ptep) * CONT_PTES);
583
for (i = 0; i < CONT_PTES; i++, ptep++)
584
__set_pte(ptep, pte_mknoncont(__ptep_get(ptep)));
585
}
586
587
static int split_pmd(pmd_t *pmdp, pmd_t pmd, gfp_t gfp, bool to_cont)
588
{
589
pmdval_t tableprot = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
590
unsigned long pfn = pmd_pfn(pmd);
591
pgprot_t prot = pmd_pgprot(pmd);
592
phys_addr_t pte_phys;
593
pte_t *ptep;
594
int i;
595
596
pte_phys = pgd_pgtable_alloc_init_mm_gfp(TABLE_PTE, gfp);
597
if (pte_phys == INVALID_PHYS_ADDR)
598
return -ENOMEM;
599
ptep = (pte_t *)phys_to_virt(pte_phys);
600
601
if (pgprot_val(prot) & PMD_SECT_PXN)
602
tableprot |= PMD_TABLE_PXN;
603
604
prot = __pgprot((pgprot_val(prot) & ~PTE_TYPE_MASK) | PTE_TYPE_PAGE);
605
prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
606
if (to_cont)
607
prot = __pgprot(pgprot_val(prot) | PTE_CONT);
608
609
for (i = 0; i < PTRS_PER_PTE; i++, ptep++, pfn++)
610
__set_pte(ptep, pfn_pte(pfn, prot));
611
612
/*
613
* Ensure the pte entries are visible to the table walker by the time
614
* the pmd entry that points to the ptes is visible.
615
*/
616
dsb(ishst);
617
__pmd_populate(pmdp, pte_phys, tableprot);
618
619
return 0;
620
}
621
622
static void split_contpmd(pmd_t *pmdp)
623
{
624
int i;
625
626
pmdp = PTR_ALIGN_DOWN(pmdp, sizeof(*pmdp) * CONT_PMDS);
627
for (i = 0; i < CONT_PMDS; i++, pmdp++)
628
set_pmd(pmdp, pmd_mknoncont(pmdp_get(pmdp)));
629
}
630
631
static int split_pud(pud_t *pudp, pud_t pud, gfp_t gfp, bool to_cont)
632
{
633
pudval_t tableprot = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
634
unsigned int step = PMD_SIZE >> PAGE_SHIFT;
635
unsigned long pfn = pud_pfn(pud);
636
pgprot_t prot = pud_pgprot(pud);
637
phys_addr_t pmd_phys;
638
pmd_t *pmdp;
639
int i;
640
641
pmd_phys = pgd_pgtable_alloc_init_mm_gfp(TABLE_PMD, gfp);
642
if (pmd_phys == INVALID_PHYS_ADDR)
643
return -ENOMEM;
644
pmdp = (pmd_t *)phys_to_virt(pmd_phys);
645
646
if (pgprot_val(prot) & PMD_SECT_PXN)
647
tableprot |= PUD_TABLE_PXN;
648
649
prot = __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
650
prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
651
if (to_cont)
652
prot = __pgprot(pgprot_val(prot) | PTE_CONT);
653
654
for (i = 0; i < PTRS_PER_PMD; i++, pmdp++, pfn += step)
655
set_pmd(pmdp, pfn_pmd(pfn, prot));
656
657
/*
658
* Ensure the pmd entries are visible to the table walker by the time
659
* the pud entry that points to the pmds is visible.
660
*/
661
dsb(ishst);
662
__pud_populate(pudp, pmd_phys, tableprot);
663
664
return 0;
665
}
666
667
static int split_kernel_leaf_mapping_locked(unsigned long addr)
668
{
669
pgd_t *pgdp, pgd;
670
p4d_t *p4dp, p4d;
671
pud_t *pudp, pud;
672
pmd_t *pmdp, pmd;
673
pte_t *ptep, pte;
674
int ret = 0;
675
676
/*
677
* PGD: If addr is PGD aligned then addr already describes a leaf
678
* boundary. If not present then there is nothing to split.
679
*/
680
if (ALIGN_DOWN(addr, PGDIR_SIZE) == addr)
681
goto out;
682
pgdp = pgd_offset_k(addr);
683
pgd = pgdp_get(pgdp);
684
if (!pgd_present(pgd))
685
goto out;
686
687
/*
688
* P4D: If addr is P4D aligned then addr already describes a leaf
689
* boundary. If not present then there is nothing to split.
690
*/
691
if (ALIGN_DOWN(addr, P4D_SIZE) == addr)
692
goto out;
693
p4dp = p4d_offset(pgdp, addr);
694
p4d = p4dp_get(p4dp);
695
if (!p4d_present(p4d))
696
goto out;
697
698
/*
699
* PUD: If addr is PUD aligned then addr already describes a leaf
700
* boundary. If not present then there is nothing to split. Otherwise,
701
* if we have a pud leaf, split to contpmd.
702
*/
703
if (ALIGN_DOWN(addr, PUD_SIZE) == addr)
704
goto out;
705
pudp = pud_offset(p4dp, addr);
706
pud = pudp_get(pudp);
707
if (!pud_present(pud))
708
goto out;
709
if (pud_leaf(pud)) {
710
ret = split_pud(pudp, pud, GFP_PGTABLE_KERNEL, true);
711
if (ret)
712
goto out;
713
}
714
715
/*
716
* CONTPMD: If addr is CONTPMD aligned then addr already describes a
717
* leaf boundary. If not present then there is nothing to split.
718
* Otherwise, if we have a contpmd leaf, split to pmd.
719
*/
720
if (ALIGN_DOWN(addr, CONT_PMD_SIZE) == addr)
721
goto out;
722
pmdp = pmd_offset(pudp, addr);
723
pmd = pmdp_get(pmdp);
724
if (!pmd_present(pmd))
725
goto out;
726
if (pmd_leaf(pmd)) {
727
if (pmd_cont(pmd))
728
split_contpmd(pmdp);
729
/*
730
* PMD: If addr is PMD aligned then addr already describes a
731
* leaf boundary. Otherwise, split to contpte.
732
*/
733
if (ALIGN_DOWN(addr, PMD_SIZE) == addr)
734
goto out;
735
ret = split_pmd(pmdp, pmd, GFP_PGTABLE_KERNEL, true);
736
if (ret)
737
goto out;
738
}
739
740
/*
741
* CONTPTE: If addr is CONTPTE aligned then addr already describes a
742
* leaf boundary. If not present then there is nothing to split.
743
* Otherwise, if we have a contpte leaf, split to pte.
744
*/
745
if (ALIGN_DOWN(addr, CONT_PTE_SIZE) == addr)
746
goto out;
747
ptep = pte_offset_kernel(pmdp, addr);
748
pte = __ptep_get(ptep);
749
if (!pte_present(pte))
750
goto out;
751
if (pte_cont(pte))
752
split_contpte(ptep);
753
754
out:
755
return ret;
756
}
757
758
static inline bool force_pte_mapping(void)
759
{
760
const bool bbml2 = system_capabilities_finalized() ?
761
system_supports_bbml2_noabort() : cpu_supports_bbml2_noabort();
762
763
if (debug_pagealloc_enabled())
764
return true;
765
if (bbml2)
766
return false;
767
return rodata_full || arm64_kfence_can_set_direct_map() || is_realm_world();
768
}
769
770
static DEFINE_MUTEX(pgtable_split_lock);
771
772
int split_kernel_leaf_mapping(unsigned long start, unsigned long end)
773
{
774
int ret;
775
776
/*
777
* !BBML2_NOABORT systems should not be trying to change permissions on
778
* anything that is not pte-mapped in the first place. Just return early
779
* and let the permission change code raise a warning if not already
780
* pte-mapped.
781
*/
782
if (!system_supports_bbml2_noabort())
783
return 0;
784
785
/*
786
* If the region is within a pte-mapped area, there is no need to try to
787
* split. Additionally, CONFIG_DEBUG_PAGEALLOC and CONFIG_KFENCE may
788
* change permissions from atomic context so for those cases (which are
789
* always pte-mapped), we must not go any further because taking the
790
* mutex below may sleep.
791
*/
792
if (force_pte_mapping() || is_kfence_address((void *)start))
793
return 0;
794
795
/*
796
* Ensure start and end are at least page-aligned since this is the
797
* finest granularity we can split to.
798
*/
799
if (start != PAGE_ALIGN(start) || end != PAGE_ALIGN(end))
800
return -EINVAL;
801
802
mutex_lock(&pgtable_split_lock);
803
arch_enter_lazy_mmu_mode();
804
805
/*
806
* The split_kernel_leaf_mapping_locked() may sleep, it is not a
807
* problem for ARM64 since ARM64's lazy MMU implementation allows
808
* sleeping.
809
*
810
* Optimize for the common case of splitting out a single page from a
811
* larger mapping. Here we can just split on the "least aligned" of
812
* start and end and this will guarantee that there must also be a split
813
* on the more aligned address since the both addresses must be in the
814
* same contpte block and it must have been split to ptes.
815
*/
816
if (end - start == PAGE_SIZE) {
817
start = __ffs(start) < __ffs(end) ? start : end;
818
ret = split_kernel_leaf_mapping_locked(start);
819
} else {
820
ret = split_kernel_leaf_mapping_locked(start);
821
if (!ret)
822
ret = split_kernel_leaf_mapping_locked(end);
823
}
824
825
arch_leave_lazy_mmu_mode();
826
mutex_unlock(&pgtable_split_lock);
827
return ret;
828
}
829
830
static int split_to_ptes_pud_entry(pud_t *pudp, unsigned long addr,
831
unsigned long next, struct mm_walk *walk)
832
{
833
gfp_t gfp = *(gfp_t *)walk->private;
834
pud_t pud = pudp_get(pudp);
835
int ret = 0;
836
837
if (pud_leaf(pud))
838
ret = split_pud(pudp, pud, gfp, false);
839
840
return ret;
841
}
842
843
static int split_to_ptes_pmd_entry(pmd_t *pmdp, unsigned long addr,
844
unsigned long next, struct mm_walk *walk)
845
{
846
gfp_t gfp = *(gfp_t *)walk->private;
847
pmd_t pmd = pmdp_get(pmdp);
848
int ret = 0;
849
850
if (pmd_leaf(pmd)) {
851
if (pmd_cont(pmd))
852
split_contpmd(pmdp);
853
ret = split_pmd(pmdp, pmd, gfp, false);
854
855
/*
856
* We have split the pmd directly to ptes so there is no need to
857
* visit each pte to check if they are contpte.
858
*/
859
walk->action = ACTION_CONTINUE;
860
}
861
862
return ret;
863
}
864
865
static int split_to_ptes_pte_entry(pte_t *ptep, unsigned long addr,
866
unsigned long next, struct mm_walk *walk)
867
{
868
pte_t pte = __ptep_get(ptep);
869
870
if (pte_cont(pte))
871
split_contpte(ptep);
872
873
return 0;
874
}
875
876
static const struct mm_walk_ops split_to_ptes_ops = {
877
.pud_entry = split_to_ptes_pud_entry,
878
.pmd_entry = split_to_ptes_pmd_entry,
879
.pte_entry = split_to_ptes_pte_entry,
880
};
881
882
static int range_split_to_ptes(unsigned long start, unsigned long end, gfp_t gfp)
883
{
884
int ret;
885
886
arch_enter_lazy_mmu_mode();
887
ret = walk_kernel_page_table_range_lockless(start, end,
888
&split_to_ptes_ops, NULL, &gfp);
889
arch_leave_lazy_mmu_mode();
890
891
return ret;
892
}
893
894
static bool linear_map_requires_bbml2 __initdata;
895
896
u32 idmap_kpti_bbml2_flag;
897
898
static void __init init_idmap_kpti_bbml2_flag(void)
899
{
900
WRITE_ONCE(idmap_kpti_bbml2_flag, 1);
901
/* Must be visible to other CPUs before stop_machine() is called. */
902
smp_mb();
903
}
904
905
static int __init linear_map_split_to_ptes(void *__unused)
906
{
907
/*
908
* Repainting the linear map must be done by CPU0 (the boot CPU) because
909
* that's the only CPU that we know supports BBML2. The other CPUs will
910
* be held in a waiting area with the idmap active.
911
*/
912
if (!smp_processor_id()) {
913
unsigned long lstart = _PAGE_OFFSET(vabits_actual);
914
unsigned long lend = PAGE_END;
915
unsigned long kstart = (unsigned long)lm_alias(_stext);
916
unsigned long kend = (unsigned long)lm_alias(__init_begin);
917
int ret;
918
919
/*
920
* Wait for all secondary CPUs to be put into the waiting area.
921
*/
922
smp_cond_load_acquire(&idmap_kpti_bbml2_flag, VAL == num_online_cpus());
923
924
/*
925
* Walk all of the linear map [lstart, lend), except the kernel
926
* linear map alias [kstart, kend), and split all mappings to
927
* PTE. The kernel alias remains static throughout runtime so
928
* can continue to be safely mapped with large mappings.
929
*/
930
ret = range_split_to_ptes(lstart, kstart, GFP_ATOMIC);
931
if (!ret)
932
ret = range_split_to_ptes(kend, lend, GFP_ATOMIC);
933
if (ret)
934
panic("Failed to split linear map\n");
935
flush_tlb_kernel_range(lstart, lend);
936
937
/*
938
* Relies on dsb in flush_tlb_kernel_range() to avoid reordering
939
* before any page table split operations.
940
*/
941
WRITE_ONCE(idmap_kpti_bbml2_flag, 0);
942
} else {
943
typedef void (wait_split_fn)(void);
944
extern wait_split_fn wait_linear_map_split_to_ptes;
945
wait_split_fn *wait_fn;
946
947
wait_fn = (void *)__pa_symbol(wait_linear_map_split_to_ptes);
948
949
/*
950
* At least one secondary CPU doesn't support BBML2 so cannot
951
* tolerate the size of the live mappings changing. So have the
952
* secondary CPUs wait for the boot CPU to make the changes
953
* with the idmap active and init_mm inactive.
954
*/
955
cpu_install_idmap();
956
wait_fn();
957
cpu_uninstall_idmap();
958
}
959
960
return 0;
961
}
962
963
void __init linear_map_maybe_split_to_ptes(void)
964
{
965
if (linear_map_requires_bbml2 && !system_supports_bbml2_noabort()) {
966
init_idmap_kpti_bbml2_flag();
967
stop_machine(linear_map_split_to_ptes, NULL, cpu_online_mask);
968
}
969
}
970
971
/*
972
* This function can only be used to modify existing table entries,
973
* without allocating new levels of table. Note that this permits the
974
* creation of new section or page entries.
975
*/
976
void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
977
phys_addr_t size, pgprot_t prot)
978
{
979
if (virt < PAGE_OFFSET) {
980
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
981
&phys, virt);
982
return;
983
}
984
early_create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
985
NO_CONT_MAPPINGS);
986
}
987
988
void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
989
unsigned long virt, phys_addr_t size,
990
pgprot_t prot, bool page_mappings_only)
991
{
992
int flags = 0;
993
994
BUG_ON(mm == &init_mm);
995
996
if (page_mappings_only)
997
flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
998
999
early_create_pgd_mapping(mm->pgd, phys, virt, size, prot,
1000
pgd_pgtable_alloc_special_mm, flags);
1001
}
1002
1003
static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
1004
phys_addr_t size, pgprot_t prot)
1005
{
1006
if (virt < PAGE_OFFSET) {
1007
pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
1008
&phys, virt);
1009
return;
1010
}
1011
1012
early_create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
1013
NO_CONT_MAPPINGS);
1014
1015
/* flush the TLBs after updating live kernel mappings */
1016
flush_tlb_kernel_range(virt, virt + size);
1017
}
1018
1019
static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
1020
phys_addr_t end, pgprot_t prot, int flags)
1021
{
1022
early_create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
1023
prot, early_pgtable_alloc, flags);
1024
}
1025
1026
void __init mark_linear_text_alias_ro(void)
1027
{
1028
/*
1029
* Remove the write permissions from the linear alias of .text/.rodata
1030
*/
1031
update_mapping_prot(__pa_symbol(_text), (unsigned long)lm_alias(_text),
1032
(unsigned long)__init_begin - (unsigned long)_text,
1033
PAGE_KERNEL_RO);
1034
}
1035
1036
#ifdef CONFIG_KFENCE
1037
1038
bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
1039
1040
/* early_param() will be parsed before map_mem() below. */
1041
static int __init parse_kfence_early_init(char *arg)
1042
{
1043
int val;
1044
1045
if (get_option(&arg, &val))
1046
kfence_early_init = !!val;
1047
return 0;
1048
}
1049
early_param("kfence.sample_interval", parse_kfence_early_init);
1050
1051
static phys_addr_t __init arm64_kfence_alloc_pool(void)
1052
{
1053
phys_addr_t kfence_pool;
1054
1055
if (!kfence_early_init)
1056
return 0;
1057
1058
kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1059
if (!kfence_pool) {
1060
pr_err("failed to allocate kfence pool\n");
1061
kfence_early_init = false;
1062
return 0;
1063
}
1064
1065
/* Temporarily mark as NOMAP. */
1066
memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1067
1068
return kfence_pool;
1069
}
1070
1071
static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
1072
{
1073
if (!kfence_pool)
1074
return;
1075
1076
/* KFENCE pool needs page-level mapping. */
1077
__map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
1078
pgprot_tagged(PAGE_KERNEL),
1079
NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
1080
memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1081
__kfence_pool = phys_to_virt(kfence_pool);
1082
}
1083
1084
bool arch_kfence_init_pool(void)
1085
{
1086
unsigned long start = (unsigned long)__kfence_pool;
1087
unsigned long end = start + KFENCE_POOL_SIZE;
1088
int ret;
1089
1090
/* Exit early if we know the linear map is already pte-mapped. */
1091
if (force_pte_mapping())
1092
return true;
1093
1094
/* Kfence pool is already pte-mapped for the early init case. */
1095
if (kfence_early_init)
1096
return true;
1097
1098
mutex_lock(&pgtable_split_lock);
1099
ret = range_split_to_ptes(start, end, GFP_PGTABLE_KERNEL);
1100
mutex_unlock(&pgtable_split_lock);
1101
1102
/*
1103
* Since the system supports bbml2_noabort, tlb invalidation is not
1104
* required here; the pgtable mappings have been split to pte but larger
1105
* entries may safely linger in the TLB.
1106
*/
1107
1108
return !ret;
1109
}
1110
#else /* CONFIG_KFENCE */
1111
1112
static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
1113
static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
1114
1115
#endif /* CONFIG_KFENCE */
1116
1117
static void __init map_mem(pgd_t *pgdp)
1118
{
1119
static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
1120
phys_addr_t kernel_start = __pa_symbol(_text);
1121
phys_addr_t kernel_end = __pa_symbol(__init_begin);
1122
phys_addr_t start, end;
1123
phys_addr_t early_kfence_pool;
1124
int flags = NO_EXEC_MAPPINGS;
1125
u64 i;
1126
1127
/*
1128
* Setting hierarchical PXNTable attributes on table entries covering
1129
* the linear region is only possible if it is guaranteed that no table
1130
* entries at any level are being shared between the linear region and
1131
* the vmalloc region. Check whether this is true for the PGD level, in
1132
* which case it is guaranteed to be true for all other levels as well.
1133
* (Unless we are running with support for LPA2, in which case the
1134
* entire reduced VA space is covered by a single pgd_t which will have
1135
* been populated without the PXNTable attribute by the time we get here.)
1136
*/
1137
BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) &&
1138
pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1);
1139
1140
early_kfence_pool = arm64_kfence_alloc_pool();
1141
1142
linear_map_requires_bbml2 = !force_pte_mapping() && can_set_direct_map();
1143
1144
if (force_pte_mapping())
1145
flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1146
1147
/*
1148
* Take care not to create a writable alias for the
1149
* read-only text and rodata sections of the kernel image.
1150
* So temporarily mark them as NOMAP to skip mappings in
1151
* the following for-loop
1152
*/
1153
memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
1154
1155
/* map all the memory banks */
1156
for_each_mem_range(i, &start, &end) {
1157
if (start >= end)
1158
break;
1159
/*
1160
* The linear map must allow allocation tags reading/writing
1161
* if MTE is present. Otherwise, it has the same attributes as
1162
* PAGE_KERNEL.
1163
*/
1164
__map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
1165
flags);
1166
}
1167
1168
/*
1169
* Map the linear alias of the [_text, __init_begin) interval
1170
* as non-executable now, and remove the write permission in
1171
* mark_linear_text_alias_ro() below (which will be called after
1172
* alternative patching has completed). This makes the contents
1173
* of the region accessible to subsystems such as hibernate,
1174
* but protects it from inadvertent modification or execution.
1175
* Note that contiguous mappings cannot be remapped in this way,
1176
* so we should avoid them here.
1177
*/
1178
__map_memblock(pgdp, kernel_start, kernel_end,
1179
PAGE_KERNEL, NO_CONT_MAPPINGS);
1180
memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
1181
arm64_kfence_map_pool(early_kfence_pool, pgdp);
1182
}
1183
1184
void mark_rodata_ro(void)
1185
{
1186
unsigned long section_size;
1187
1188
/*
1189
* mark .rodata as read only. Use __init_begin rather than __end_rodata
1190
* to cover NOTES and EXCEPTION_TABLE.
1191
*/
1192
section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
1193
WRITE_ONCE(rodata_is_rw, false);
1194
update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
1195
section_size, PAGE_KERNEL_RO);
1196
/* mark the range between _text and _stext as read only. */
1197
update_mapping_prot(__pa_symbol(_text), (unsigned long)_text,
1198
(unsigned long)_stext - (unsigned long)_text,
1199
PAGE_KERNEL_RO);
1200
}
1201
1202
static void __init declare_vma(struct vm_struct *vma,
1203
void *va_start, void *va_end,
1204
unsigned long vm_flags)
1205
{
1206
phys_addr_t pa_start = __pa_symbol(va_start);
1207
unsigned long size = va_end - va_start;
1208
1209
BUG_ON(!PAGE_ALIGNED(pa_start));
1210
BUG_ON(!PAGE_ALIGNED(size));
1211
1212
if (!(vm_flags & VM_NO_GUARD))
1213
size += PAGE_SIZE;
1214
1215
vma->addr = va_start;
1216
vma->phys_addr = pa_start;
1217
vma->size = size;
1218
vma->flags = VM_MAP | vm_flags;
1219
vma->caller = __builtin_return_address(0);
1220
1221
vm_area_add_early(vma);
1222
}
1223
1224
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1225
#define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1226
1227
static phys_addr_t kpti_ng_temp_alloc __initdata;
1228
1229
static phys_addr_t __init kpti_ng_pgd_alloc(enum pgtable_type type)
1230
{
1231
kpti_ng_temp_alloc -= PAGE_SIZE;
1232
return kpti_ng_temp_alloc;
1233
}
1234
1235
static int __init __kpti_install_ng_mappings(void *__unused)
1236
{
1237
typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1238
extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1239
kpti_remap_fn *remap_fn;
1240
1241
int cpu = smp_processor_id();
1242
int levels = CONFIG_PGTABLE_LEVELS;
1243
int order = order_base_2(levels);
1244
u64 kpti_ng_temp_pgd_pa = 0;
1245
pgd_t *kpti_ng_temp_pgd;
1246
u64 alloc = 0;
1247
1248
if (levels == 5 && !pgtable_l5_enabled())
1249
levels = 4;
1250
else if (levels == 4 && !pgtable_l4_enabled())
1251
levels = 3;
1252
1253
remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1254
1255
if (!cpu) {
1256
int ret;
1257
1258
alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1259
kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1260
kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1261
1262
//
1263
// Create a minimal page table hierarchy that permits us to map
1264
// the swapper page tables temporarily as we traverse them.
1265
//
1266
// The physical pages are laid out as follows:
1267
//
1268
// +--------+-/-------+-/------ +-/------ +-\\\--------+
1269
// : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1270
// +--------+-\-------+-\------ +-\------ +-///--------+
1271
// ^
1272
// The first page is mapped into this hierarchy at a PMD_SHIFT
1273
// aligned virtual address, so that we can manipulate the PTE
1274
// level entries while the mapping is active. The first entry
1275
// covers the PTE[] page itself, the remaining entries are free
1276
// to be used as a ad-hoc fixmap.
1277
//
1278
ret = __create_pgd_mapping_locked(kpti_ng_temp_pgd, __pa(alloc),
1279
KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1280
kpti_ng_pgd_alloc, 0);
1281
if (ret)
1282
panic("Failed to create page tables\n");
1283
}
1284
1285
cpu_install_idmap();
1286
remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1287
cpu_uninstall_idmap();
1288
1289
if (!cpu) {
1290
free_pages(alloc, order);
1291
arm64_use_ng_mappings = true;
1292
}
1293
1294
return 0;
1295
}
1296
1297
void __init kpti_install_ng_mappings(void)
1298
{
1299
/* Check whether KPTI is going to be used */
1300
if (!arm64_kernel_unmapped_at_el0())
1301
return;
1302
1303
/*
1304
* We don't need to rewrite the page-tables if either we've done
1305
* it already or we have KASLR enabled and therefore have not
1306
* created any global mappings at all.
1307
*/
1308
if (arm64_use_ng_mappings)
1309
return;
1310
1311
init_idmap_kpti_bbml2_flag();
1312
stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1313
}
1314
1315
static pgprot_t __init kernel_exec_prot(void)
1316
{
1317
return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
1318
}
1319
1320
static int __init map_entry_trampoline(void)
1321
{
1322
int i;
1323
1324
if (!arm64_kernel_unmapped_at_el0())
1325
return 0;
1326
1327
pgprot_t prot = kernel_exec_prot();
1328
phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
1329
1330
/* The trampoline is always mapped and can therefore be global */
1331
pgprot_val(prot) &= ~PTE_NG;
1332
1333
/* Map only the text into the trampoline page table */
1334
memset(tramp_pg_dir, 0, PGD_SIZE);
1335
early_create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
1336
entry_tramp_text_size(), prot,
1337
pgd_pgtable_alloc_init_mm, NO_BLOCK_MAPPINGS);
1338
1339
/* Map both the text and data into the kernel page table */
1340
for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
1341
__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1342
pa_start + i * PAGE_SIZE, prot);
1343
1344
if (IS_ENABLED(CONFIG_RELOCATABLE))
1345
__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1346
pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
1347
1348
return 0;
1349
}
1350
core_initcall(map_entry_trampoline);
1351
#endif
1352
1353
/*
1354
* Declare the VMA areas for the kernel
1355
*/
1356
static void __init declare_kernel_vmas(void)
1357
{
1358
static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT];
1359
1360
declare_vma(&vmlinux_seg[0], _text, _etext, VM_NO_GUARD);
1361
declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD);
1362
declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD);
1363
declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD);
1364
declare_vma(&vmlinux_seg[4], _data, _end, 0);
1365
}
1366
1367
void __pi_map_range(phys_addr_t *pte, u64 start, u64 end, phys_addr_t pa,
1368
pgprot_t prot, int level, pte_t *tbl, bool may_use_cont,
1369
u64 va_offset);
1370
1371
static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init,
1372
kpti_bbml2_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init;
1373
1374
static void __init create_idmap(void)
1375
{
1376
phys_addr_t start = __pa_symbol(__idmap_text_start);
1377
phys_addr_t end = __pa_symbol(__idmap_text_end);
1378
phys_addr_t ptep = __pa_symbol(idmap_ptes);
1379
1380
__pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX,
1381
IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1382
__phys_to_virt(ptep) - ptep);
1383
1384
if (linear_map_requires_bbml2 ||
1385
(IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings)) {
1386
phys_addr_t pa = __pa_symbol(&idmap_kpti_bbml2_flag);
1387
1388
/*
1389
* The KPTI G-to-nG conversion code needs a read-write mapping
1390
* of its synchronization flag in the ID map. This is also used
1391
* when splitting the linear map to ptes if a secondary CPU
1392
* doesn't support bbml2.
1393
*/
1394
ptep = __pa_symbol(kpti_bbml2_ptes);
1395
__pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL,
1396
IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1397
__phys_to_virt(ptep) - ptep);
1398
}
1399
}
1400
1401
void __init paging_init(void)
1402
{
1403
map_mem(swapper_pg_dir);
1404
1405
memblock_allow_resize();
1406
1407
create_idmap();
1408
declare_kernel_vmas();
1409
}
1410
1411
#ifdef CONFIG_MEMORY_HOTPLUG
1412
static void free_hotplug_page_range(struct page *page, size_t size,
1413
struct vmem_altmap *altmap)
1414
{
1415
if (altmap) {
1416
vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1417
} else {
1418
WARN_ON(PageReserved(page));
1419
__free_pages(page, get_order(size));
1420
}
1421
}
1422
1423
static void free_hotplug_pgtable_page(struct page *page)
1424
{
1425
free_hotplug_page_range(page, PAGE_SIZE, NULL);
1426
}
1427
1428
static bool pgtable_range_aligned(unsigned long start, unsigned long end,
1429
unsigned long floor, unsigned long ceiling,
1430
unsigned long mask)
1431
{
1432
start &= mask;
1433
if (start < floor)
1434
return false;
1435
1436
if (ceiling) {
1437
ceiling &= mask;
1438
if (!ceiling)
1439
return false;
1440
}
1441
1442
if (end - 1 > ceiling - 1)
1443
return false;
1444
return true;
1445
}
1446
1447
static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
1448
unsigned long end, bool free_mapped,
1449
struct vmem_altmap *altmap)
1450
{
1451
pte_t *ptep, pte;
1452
1453
do {
1454
ptep = pte_offset_kernel(pmdp, addr);
1455
pte = __ptep_get(ptep);
1456
if (pte_none(pte))
1457
continue;
1458
1459
WARN_ON(!pte_present(pte));
1460
__pte_clear(&init_mm, addr, ptep);
1461
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1462
if (free_mapped)
1463
free_hotplug_page_range(pte_page(pte),
1464
PAGE_SIZE, altmap);
1465
} while (addr += PAGE_SIZE, addr < end);
1466
}
1467
1468
static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
1469
unsigned long end, bool free_mapped,
1470
struct vmem_altmap *altmap)
1471
{
1472
unsigned long next;
1473
pmd_t *pmdp, pmd;
1474
1475
do {
1476
next = pmd_addr_end(addr, end);
1477
pmdp = pmd_offset(pudp, addr);
1478
pmd = READ_ONCE(*pmdp);
1479
if (pmd_none(pmd))
1480
continue;
1481
1482
WARN_ON(!pmd_present(pmd));
1483
if (pmd_sect(pmd)) {
1484
pmd_clear(pmdp);
1485
1486
/*
1487
* One TLBI should be sufficient here as the PMD_SIZE
1488
* range is mapped with a single block entry.
1489
*/
1490
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1491
if (free_mapped)
1492
free_hotplug_page_range(pmd_page(pmd),
1493
PMD_SIZE, altmap);
1494
continue;
1495
}
1496
WARN_ON(!pmd_table(pmd));
1497
unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
1498
} while (addr = next, addr < end);
1499
}
1500
1501
static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
1502
unsigned long end, bool free_mapped,
1503
struct vmem_altmap *altmap)
1504
{
1505
unsigned long next;
1506
pud_t *pudp, pud;
1507
1508
do {
1509
next = pud_addr_end(addr, end);
1510
pudp = pud_offset(p4dp, addr);
1511
pud = READ_ONCE(*pudp);
1512
if (pud_none(pud))
1513
continue;
1514
1515
WARN_ON(!pud_present(pud));
1516
if (pud_sect(pud)) {
1517
pud_clear(pudp);
1518
1519
/*
1520
* One TLBI should be sufficient here as the PUD_SIZE
1521
* range is mapped with a single block entry.
1522
*/
1523
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1524
if (free_mapped)
1525
free_hotplug_page_range(pud_page(pud),
1526
PUD_SIZE, altmap);
1527
continue;
1528
}
1529
WARN_ON(!pud_table(pud));
1530
unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
1531
} while (addr = next, addr < end);
1532
}
1533
1534
static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
1535
unsigned long end, bool free_mapped,
1536
struct vmem_altmap *altmap)
1537
{
1538
unsigned long next;
1539
p4d_t *p4dp, p4d;
1540
1541
do {
1542
next = p4d_addr_end(addr, end);
1543
p4dp = p4d_offset(pgdp, addr);
1544
p4d = READ_ONCE(*p4dp);
1545
if (p4d_none(p4d))
1546
continue;
1547
1548
WARN_ON(!p4d_present(p4d));
1549
unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
1550
} while (addr = next, addr < end);
1551
}
1552
1553
static void unmap_hotplug_range(unsigned long addr, unsigned long end,
1554
bool free_mapped, struct vmem_altmap *altmap)
1555
{
1556
unsigned long next;
1557
pgd_t *pgdp, pgd;
1558
1559
/*
1560
* altmap can only be used as vmemmap mapping backing memory.
1561
* In case the backing memory itself is not being freed, then
1562
* altmap is irrelevant. Warn about this inconsistency when
1563
* encountered.
1564
*/
1565
WARN_ON(!free_mapped && altmap);
1566
1567
do {
1568
next = pgd_addr_end(addr, end);
1569
pgdp = pgd_offset_k(addr);
1570
pgd = READ_ONCE(*pgdp);
1571
if (pgd_none(pgd))
1572
continue;
1573
1574
WARN_ON(!pgd_present(pgd));
1575
unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
1576
} while (addr = next, addr < end);
1577
}
1578
1579
static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
1580
unsigned long end, unsigned long floor,
1581
unsigned long ceiling)
1582
{
1583
pte_t *ptep, pte;
1584
unsigned long i, start = addr;
1585
1586
do {
1587
ptep = pte_offset_kernel(pmdp, addr);
1588
pte = __ptep_get(ptep);
1589
1590
/*
1591
* This is just a sanity check here which verifies that
1592
* pte clearing has been done by earlier unmap loops.
1593
*/
1594
WARN_ON(!pte_none(pte));
1595
} while (addr += PAGE_SIZE, addr < end);
1596
1597
if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1598
return;
1599
1600
/*
1601
* Check whether we can free the pte page if the rest of the
1602
* entries are empty. Overlap with other regions have been
1603
* handled by the floor/ceiling check.
1604
*/
1605
ptep = pte_offset_kernel(pmdp, 0UL);
1606
for (i = 0; i < PTRS_PER_PTE; i++) {
1607
if (!pte_none(__ptep_get(&ptep[i])))
1608
return;
1609
}
1610
1611
pmd_clear(pmdp);
1612
__flush_tlb_kernel_pgtable(start);
1613
free_hotplug_pgtable_page(virt_to_page(ptep));
1614
}
1615
1616
static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1617
unsigned long end, unsigned long floor,
1618
unsigned long ceiling)
1619
{
1620
pmd_t *pmdp, pmd;
1621
unsigned long i, next, start = addr;
1622
1623
do {
1624
next = pmd_addr_end(addr, end);
1625
pmdp = pmd_offset(pudp, addr);
1626
pmd = READ_ONCE(*pmdp);
1627
if (pmd_none(pmd))
1628
continue;
1629
1630
WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1631
free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1632
} while (addr = next, addr < end);
1633
1634
if (CONFIG_PGTABLE_LEVELS <= 2)
1635
return;
1636
1637
if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1638
return;
1639
1640
/*
1641
* Check whether we can free the pmd page if the rest of the
1642
* entries are empty. Overlap with other regions have been
1643
* handled by the floor/ceiling check.
1644
*/
1645
pmdp = pmd_offset(pudp, 0UL);
1646
for (i = 0; i < PTRS_PER_PMD; i++) {
1647
if (!pmd_none(READ_ONCE(pmdp[i])))
1648
return;
1649
}
1650
1651
pud_clear(pudp);
1652
__flush_tlb_kernel_pgtable(start);
1653
free_hotplug_pgtable_page(virt_to_page(pmdp));
1654
}
1655
1656
static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1657
unsigned long end, unsigned long floor,
1658
unsigned long ceiling)
1659
{
1660
pud_t *pudp, pud;
1661
unsigned long i, next, start = addr;
1662
1663
do {
1664
next = pud_addr_end(addr, end);
1665
pudp = pud_offset(p4dp, addr);
1666
pud = READ_ONCE(*pudp);
1667
if (pud_none(pud))
1668
continue;
1669
1670
WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1671
free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1672
} while (addr = next, addr < end);
1673
1674
if (!pgtable_l4_enabled())
1675
return;
1676
1677
if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK))
1678
return;
1679
1680
/*
1681
* Check whether we can free the pud page if the rest of the
1682
* entries are empty. Overlap with other regions have been
1683
* handled by the floor/ceiling check.
1684
*/
1685
pudp = pud_offset(p4dp, 0UL);
1686
for (i = 0; i < PTRS_PER_PUD; i++) {
1687
if (!pud_none(READ_ONCE(pudp[i])))
1688
return;
1689
}
1690
1691
p4d_clear(p4dp);
1692
__flush_tlb_kernel_pgtable(start);
1693
free_hotplug_pgtable_page(virt_to_page(pudp));
1694
}
1695
1696
static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1697
unsigned long end, unsigned long floor,
1698
unsigned long ceiling)
1699
{
1700
p4d_t *p4dp, p4d;
1701
unsigned long i, next, start = addr;
1702
1703
do {
1704
next = p4d_addr_end(addr, end);
1705
p4dp = p4d_offset(pgdp, addr);
1706
p4d = READ_ONCE(*p4dp);
1707
if (p4d_none(p4d))
1708
continue;
1709
1710
WARN_ON(!p4d_present(p4d));
1711
free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1712
} while (addr = next, addr < end);
1713
1714
if (!pgtable_l5_enabled())
1715
return;
1716
1717
if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1718
return;
1719
1720
/*
1721
* Check whether we can free the p4d page if the rest of the
1722
* entries are empty. Overlap with other regions have been
1723
* handled by the floor/ceiling check.
1724
*/
1725
p4dp = p4d_offset(pgdp, 0UL);
1726
for (i = 0; i < PTRS_PER_P4D; i++) {
1727
if (!p4d_none(READ_ONCE(p4dp[i])))
1728
return;
1729
}
1730
1731
pgd_clear(pgdp);
1732
__flush_tlb_kernel_pgtable(start);
1733
free_hotplug_pgtable_page(virt_to_page(p4dp));
1734
}
1735
1736
static void free_empty_tables(unsigned long addr, unsigned long end,
1737
unsigned long floor, unsigned long ceiling)
1738
{
1739
unsigned long next;
1740
pgd_t *pgdp, pgd;
1741
1742
do {
1743
next = pgd_addr_end(addr, end);
1744
pgdp = pgd_offset_k(addr);
1745
pgd = READ_ONCE(*pgdp);
1746
if (pgd_none(pgd))
1747
continue;
1748
1749
WARN_ON(!pgd_present(pgd));
1750
free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1751
} while (addr = next, addr < end);
1752
}
1753
#endif
1754
1755
void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1756
unsigned long addr, unsigned long next)
1757
{
1758
pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1759
}
1760
1761
int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1762
unsigned long addr, unsigned long next)
1763
{
1764
vmemmap_verify((pte_t *)pmdp, node, addr, next);
1765
1766
return pmd_sect(READ_ONCE(*pmdp));
1767
}
1768
1769
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1770
struct vmem_altmap *altmap)
1771
{
1772
WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1773
/* [start, end] should be within one section */
1774
WARN_ON_ONCE(end - start > PAGES_PER_SECTION * sizeof(struct page));
1775
1776
if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES) ||
1777
(end - start < PAGES_PER_SECTION * sizeof(struct page)))
1778
return vmemmap_populate_basepages(start, end, node, altmap);
1779
else
1780
return vmemmap_populate_hugepages(start, end, node, altmap);
1781
}
1782
1783
#ifdef CONFIG_MEMORY_HOTPLUG
1784
void vmemmap_free(unsigned long start, unsigned long end,
1785
struct vmem_altmap *altmap)
1786
{
1787
WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1788
1789
unmap_hotplug_range(start, end, true, altmap);
1790
free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1791
}
1792
#endif /* CONFIG_MEMORY_HOTPLUG */
1793
1794
int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1795
{
1796
pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1797
1798
/* Only allow permission changes for now */
1799
if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1800
pud_val(new_pud)))
1801
return 0;
1802
1803
VM_BUG_ON(phys & ~PUD_MASK);
1804
set_pud(pudp, new_pud);
1805
return 1;
1806
}
1807
1808
int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1809
{
1810
pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1811
1812
/* Only allow permission changes for now */
1813
if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1814
pmd_val(new_pmd)))
1815
return 0;
1816
1817
VM_BUG_ON(phys & ~PMD_MASK);
1818
set_pmd(pmdp, new_pmd);
1819
return 1;
1820
}
1821
1822
#ifndef __PAGETABLE_P4D_FOLDED
1823
void p4d_clear_huge(p4d_t *p4dp)
1824
{
1825
}
1826
#endif
1827
1828
int pud_clear_huge(pud_t *pudp)
1829
{
1830
if (!pud_sect(READ_ONCE(*pudp)))
1831
return 0;
1832
pud_clear(pudp);
1833
return 1;
1834
}
1835
1836
int pmd_clear_huge(pmd_t *pmdp)
1837
{
1838
if (!pmd_sect(READ_ONCE(*pmdp)))
1839
return 0;
1840
pmd_clear(pmdp);
1841
return 1;
1842
}
1843
1844
static int __pmd_free_pte_page(pmd_t *pmdp, unsigned long addr,
1845
bool acquire_mmap_lock)
1846
{
1847
pte_t *table;
1848
pmd_t pmd;
1849
1850
pmd = READ_ONCE(*pmdp);
1851
1852
if (!pmd_table(pmd)) {
1853
VM_WARN_ON(1);
1854
return 1;
1855
}
1856
1857
/* See comment in pud_free_pmd_page for static key logic */
1858
table = pte_offset_kernel(pmdp, addr);
1859
pmd_clear(pmdp);
1860
__flush_tlb_kernel_pgtable(addr);
1861
if (static_branch_unlikely(&arm64_ptdump_lock_key) && acquire_mmap_lock) {
1862
mmap_read_lock(&init_mm);
1863
mmap_read_unlock(&init_mm);
1864
}
1865
1866
pte_free_kernel(NULL, table);
1867
return 1;
1868
}
1869
1870
int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1871
{
1872
/* If ptdump is walking the pagetables, acquire init_mm.mmap_lock */
1873
return __pmd_free_pte_page(pmdp, addr, /* acquire_mmap_lock = */ true);
1874
}
1875
1876
int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1877
{
1878
pmd_t *table;
1879
pmd_t *pmdp;
1880
pud_t pud;
1881
unsigned long next, end;
1882
1883
pud = READ_ONCE(*pudp);
1884
1885
if (!pud_table(pud)) {
1886
VM_WARN_ON(1);
1887
return 1;
1888
}
1889
1890
table = pmd_offset(pudp, addr);
1891
1892
/*
1893
* Our objective is to prevent ptdump from reading a PMD table which has
1894
* been freed. In this race, if pud_free_pmd_page observes the key on
1895
* (which got flipped by ptdump) then the mmap lock sequence here will,
1896
* as a result of the mmap write lock/unlock sequence in ptdump, give
1897
* us the correct synchronization. If not, this means that ptdump has
1898
* yet not started walking the pagetables - the sequence of barriers
1899
* issued by __flush_tlb_kernel_pgtable() guarantees that ptdump will
1900
* observe an empty PUD.
1901
*/
1902
pud_clear(pudp);
1903
__flush_tlb_kernel_pgtable(addr);
1904
if (static_branch_unlikely(&arm64_ptdump_lock_key)) {
1905
mmap_read_lock(&init_mm);
1906
mmap_read_unlock(&init_mm);
1907
}
1908
1909
pmdp = table;
1910
next = addr;
1911
end = addr + PUD_SIZE;
1912
do {
1913
if (pmd_present(pmdp_get(pmdp)))
1914
/*
1915
* PMD has been isolated, so ptdump won't see it. No
1916
* need to acquire init_mm.mmap_lock.
1917
*/
1918
__pmd_free_pte_page(pmdp, next, /* acquire_mmap_lock = */ false);
1919
} while (pmdp++, next += PMD_SIZE, next != end);
1920
1921
pmd_free(NULL, table);
1922
return 1;
1923
}
1924
1925
#ifdef CONFIG_MEMORY_HOTPLUG
1926
static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1927
{
1928
unsigned long end = start + size;
1929
1930
WARN_ON(pgdir != init_mm.pgd);
1931
WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1932
1933
unmap_hotplug_range(start, end, false, NULL);
1934
free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1935
}
1936
1937
struct range arch_get_mappable_range(void)
1938
{
1939
struct range mhp_range;
1940
phys_addr_t start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1941
phys_addr_t end_linear_pa = __pa(PAGE_END - 1);
1942
1943
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1944
/*
1945
* Check for a wrap, it is possible because of randomized linear
1946
* mapping the start physical address is actually bigger than
1947
* the end physical address. In this case set start to zero
1948
* because [0, end_linear_pa] range must still be able to cover
1949
* all addressable physical addresses.
1950
*/
1951
if (start_linear_pa > end_linear_pa)
1952
start_linear_pa = 0;
1953
}
1954
1955
WARN_ON(start_linear_pa > end_linear_pa);
1956
1957
/*
1958
* Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1959
* accommodating both its ends but excluding PAGE_END. Max physical
1960
* range which can be mapped inside this linear mapping range, must
1961
* also be derived from its end points.
1962
*/
1963
mhp_range.start = start_linear_pa;
1964
mhp_range.end = end_linear_pa;
1965
1966
return mhp_range;
1967
}
1968
1969
int arch_add_memory(int nid, u64 start, u64 size,
1970
struct mhp_params *params)
1971
{
1972
int ret, flags = NO_EXEC_MAPPINGS;
1973
1974
VM_BUG_ON(!mhp_range_allowed(start, size, true));
1975
1976
if (force_pte_mapping())
1977
flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1978
1979
ret = __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1980
size, params->pgprot, pgd_pgtable_alloc_init_mm,
1981
flags);
1982
if (ret)
1983
goto err;
1984
1985
memblock_clear_nomap(start, size);
1986
1987
ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1988
params);
1989
if (ret)
1990
goto err;
1991
1992
/* Address of hotplugged memory can be smaller */
1993
max_pfn = max(max_pfn, PFN_UP(start + size));
1994
max_low_pfn = max_pfn;
1995
1996
return 0;
1997
1998
err:
1999
__remove_pgd_mapping(swapper_pg_dir,
2000
__phys_to_virt(start), size);
2001
return ret;
2002
}
2003
2004
void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
2005
{
2006
unsigned long start_pfn = start >> PAGE_SHIFT;
2007
unsigned long nr_pages = size >> PAGE_SHIFT;
2008
2009
__remove_pages(start_pfn, nr_pages, altmap);
2010
__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
2011
}
2012
2013
/*
2014
* This memory hotplug notifier helps prevent boot memory from being
2015
* inadvertently removed as it blocks pfn range offlining process in
2016
* __offline_pages(). Hence this prevents both offlining as well as
2017
* removal process for boot memory which is initially always online.
2018
* In future if and when boot memory could be removed, this notifier
2019
* should be dropped and free_hotplug_page_range() should handle any
2020
* reserved pages allocated during boot.
2021
*/
2022
static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
2023
unsigned long action, void *data)
2024
{
2025
struct mem_section *ms;
2026
struct memory_notify *arg = data;
2027
unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
2028
unsigned long pfn = arg->start_pfn;
2029
2030
if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
2031
return NOTIFY_OK;
2032
2033
for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2034
unsigned long start = PFN_PHYS(pfn);
2035
unsigned long end = start + (1UL << PA_SECTION_SHIFT);
2036
2037
ms = __pfn_to_section(pfn);
2038
if (!early_section(ms))
2039
continue;
2040
2041
if (action == MEM_GOING_OFFLINE) {
2042
/*
2043
* Boot memory removal is not supported. Prevent
2044
* it via blocking any attempted offline request
2045
* for the boot memory and just report it.
2046
*/
2047
pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
2048
return NOTIFY_BAD;
2049
} else if (action == MEM_OFFLINE) {
2050
/*
2051
* This should have never happened. Boot memory
2052
* offlining should have been prevented by this
2053
* very notifier. Probably some memory removal
2054
* procedure might have changed which would then
2055
* require further debug.
2056
*/
2057
pr_err("Boot memory [%lx %lx] offlined\n", start, end);
2058
2059
/*
2060
* Core memory hotplug does not process a return
2061
* code from the notifier for MEM_OFFLINE events.
2062
* The error condition has been reported. Return
2063
* from here as if ignored.
2064
*/
2065
return NOTIFY_DONE;
2066
}
2067
}
2068
return NOTIFY_OK;
2069
}
2070
2071
static struct notifier_block prevent_bootmem_remove_nb = {
2072
.notifier_call = prevent_bootmem_remove_notifier,
2073
};
2074
2075
/*
2076
* This ensures that boot memory sections on the platform are online
2077
* from early boot. Memory sections could not be prevented from being
2078
* offlined, unless for some reason they are not online to begin with.
2079
* This helps validate the basic assumption on which the above memory
2080
* event notifier works to prevent boot memory section offlining and
2081
* its possible removal.
2082
*/
2083
static void validate_bootmem_online(void)
2084
{
2085
phys_addr_t start, end, addr;
2086
struct mem_section *ms;
2087
u64 i;
2088
2089
/*
2090
* Scanning across all memblock might be expensive
2091
* on some big memory systems. Hence enable this
2092
* validation only with DEBUG_VM.
2093
*/
2094
if (!IS_ENABLED(CONFIG_DEBUG_VM))
2095
return;
2096
2097
for_each_mem_range(i, &start, &end) {
2098
for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
2099
ms = __pfn_to_section(PHYS_PFN(addr));
2100
2101
/*
2102
* All memory ranges in the system at this point
2103
* should have been marked as early sections.
2104
*/
2105
WARN_ON(!early_section(ms));
2106
2107
/*
2108
* Memory notifier mechanism here to prevent boot
2109
* memory offlining depends on the fact that each
2110
* early section memory on the system is initially
2111
* online. Otherwise a given memory section which
2112
* is already offline will be overlooked and can
2113
* be removed completely. Call out such sections.
2114
*/
2115
if (!online_section(ms))
2116
pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
2117
addr, addr + (1UL << PA_SECTION_SHIFT));
2118
}
2119
}
2120
}
2121
2122
static int __init prevent_bootmem_remove_init(void)
2123
{
2124
int ret = 0;
2125
2126
if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
2127
return ret;
2128
2129
validate_bootmem_online();
2130
ret = register_memory_notifier(&prevent_bootmem_remove_nb);
2131
if (ret)
2132
pr_err("%s: Notifier registration failed %d\n", __func__, ret);
2133
2134
return ret;
2135
}
2136
early_initcall(prevent_bootmem_remove_init);
2137
#endif
2138
2139
pte_t modify_prot_start_ptes(struct vm_area_struct *vma, unsigned long addr,
2140
pte_t *ptep, unsigned int nr)
2141
{
2142
pte_t pte = get_and_clear_ptes(vma->vm_mm, addr, ptep, nr);
2143
2144
if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) {
2145
/*
2146
* Break-before-make (BBM) is required for all user space mappings
2147
* when the permission changes from executable to non-executable
2148
* in cases where cpu is affected with errata #2645198.
2149
*/
2150
if (pte_accessible(vma->vm_mm, pte) && pte_user_exec(pte))
2151
__flush_tlb_range(vma, addr, nr * PAGE_SIZE,
2152
PAGE_SIZE, true, 3);
2153
}
2154
2155
return pte;
2156
}
2157
2158
pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
2159
{
2160
return modify_prot_start_ptes(vma, addr, ptep, 1);
2161
}
2162
2163
void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
2164
pte_t *ptep, pte_t old_pte, pte_t pte,
2165
unsigned int nr)
2166
{
2167
set_ptes(vma->vm_mm, addr, ptep, pte, nr);
2168
}
2169
2170
void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
2171
pte_t old_pte, pte_t pte)
2172
{
2173
modify_prot_commit_ptes(vma, addr, ptep, old_pte, pte, 1);
2174
}
2175
2176
/*
2177
* Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
2178
* avoiding the possibility of conflicting TLB entries being allocated.
2179
*/
2180
void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp)
2181
{
2182
typedef void (ttbr_replace_func)(phys_addr_t);
2183
extern ttbr_replace_func idmap_cpu_replace_ttbr1;
2184
ttbr_replace_func *replace_phys;
2185
unsigned long daif;
2186
2187
/* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
2188
phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
2189
2190
if (cnp)
2191
ttbr1 |= TTBR_CNP_BIT;
2192
2193
replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
2194
2195
cpu_install_idmap();
2196
2197
/*
2198
* We really don't want to take *any* exceptions while TTBR1 is
2199
* in the process of being replaced so mask everything.
2200
*/
2201
daif = local_daif_save();
2202
replace_phys(ttbr1);
2203
local_daif_restore(daif);
2204
2205
cpu_uninstall_idmap();
2206
}
2207
2208
#ifdef CONFIG_ARCH_HAS_PKEYS
2209
int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val)
2210
{
2211
u64 new_por;
2212
u64 old_por;
2213
2214
if (!system_supports_poe())
2215
return -ENOSPC;
2216
2217
/*
2218
* This code should only be called with valid 'pkey'
2219
* values originating from in-kernel users. Complain
2220
* if a bad value is observed.
2221
*/
2222
if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
2223
return -EINVAL;
2224
2225
/* Set the bits we need in POR: */
2226
new_por = POE_RWX;
2227
if (init_val & PKEY_DISABLE_WRITE)
2228
new_por &= ~POE_W;
2229
if (init_val & PKEY_DISABLE_ACCESS)
2230
new_por &= ~POE_RW;
2231
if (init_val & PKEY_DISABLE_READ)
2232
new_por &= ~POE_R;
2233
if (init_val & PKEY_DISABLE_EXECUTE)
2234
new_por &= ~POE_X;
2235
2236
/* Shift the bits in to the correct place in POR for pkey: */
2237
new_por = POR_ELx_PERM_PREP(pkey, new_por);
2238
2239
/* Get old POR and mask off any old bits in place: */
2240
old_por = read_sysreg_s(SYS_POR_EL0);
2241
old_por &= ~(POE_MASK << POR_ELx_PERM_SHIFT(pkey));
2242
2243
/* Write old part along with new part: */
2244
write_sysreg_s(old_por | new_por, SYS_POR_EL0);
2245
2246
return 0;
2247
}
2248
#endif
2249
2250