Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/net/bpf_jit_comp.c
50389 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* BPF JIT compiler for ARM64
4
*
5
* Copyright (C) 2014-2016 Zi Shen Lim <[email protected]>
6
*/
7
8
#define pr_fmt(fmt) "bpf_jit: " fmt
9
10
#include <linux/arm-smccc.h>
11
#include <linux/bitfield.h>
12
#include <linux/bpf.h>
13
#include <linux/cfi.h>
14
#include <linux/filter.h>
15
#include <linux/memory.h>
16
#include <linux/printk.h>
17
#include <linux/slab.h>
18
19
#include <asm/asm-extable.h>
20
#include <asm/byteorder.h>
21
#include <asm/cacheflush.h>
22
#include <asm/cpufeature.h>
23
#include <asm/debug-monitors.h>
24
#include <asm/insn.h>
25
#include <asm/text-patching.h>
26
#include <asm/set_memory.h>
27
28
#include "bpf_jit.h"
29
30
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
31
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
32
#define TCCNT_PTR (MAX_BPF_JIT_REG + 2)
33
#define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
34
#define PRIVATE_SP (MAX_BPF_JIT_REG + 4)
35
#define ARENA_VM_START (MAX_BPF_JIT_REG + 5)
36
37
#define check_imm(bits, imm) do { \
38
if ((((imm) > 0) && ((imm) >> (bits))) || \
39
(((imm) < 0) && (~(imm) >> (bits)))) { \
40
pr_info("[%2d] imm=%d(0x%x) out of range\n", \
41
i, imm, imm); \
42
return -EINVAL; \
43
} \
44
} while (0)
45
#define check_imm19(imm) check_imm(19, imm)
46
#define check_imm26(imm) check_imm(26, imm)
47
48
/* Map BPF registers to A64 registers */
49
static const int bpf2a64[] = {
50
/* return value from in-kernel function, and exit value from eBPF */
51
[BPF_REG_0] = A64_R(7),
52
/* arguments from eBPF program to in-kernel function */
53
[BPF_REG_1] = A64_R(0),
54
[BPF_REG_2] = A64_R(1),
55
[BPF_REG_3] = A64_R(2),
56
[BPF_REG_4] = A64_R(3),
57
[BPF_REG_5] = A64_R(4),
58
/* callee saved registers that in-kernel function will preserve */
59
[BPF_REG_6] = A64_R(19),
60
[BPF_REG_7] = A64_R(20),
61
[BPF_REG_8] = A64_R(21),
62
[BPF_REG_9] = A64_R(22),
63
/* read-only frame pointer to access stack */
64
[BPF_REG_FP] = A64_R(25),
65
/* temporary registers for BPF JIT */
66
[TMP_REG_1] = A64_R(10),
67
[TMP_REG_2] = A64_R(11),
68
[TMP_REG_3] = A64_R(12),
69
/* tail_call_cnt_ptr */
70
[TCCNT_PTR] = A64_R(26),
71
/* temporary register for blinding constants */
72
[BPF_REG_AX] = A64_R(9),
73
/* callee saved register for private stack pointer */
74
[PRIVATE_SP] = A64_R(27),
75
/* callee saved register for kern_vm_start address */
76
[ARENA_VM_START] = A64_R(28),
77
};
78
79
struct jit_ctx {
80
const struct bpf_prog *prog;
81
int idx;
82
int epilogue_offset;
83
int *offset;
84
int exentry_idx;
85
int nr_used_callee_reg;
86
u8 used_callee_reg[8]; /* r6~r9, fp, arena_vm_start */
87
__le32 *image;
88
__le32 *ro_image;
89
u32 stack_size;
90
u64 user_vm_start;
91
u64 arena_vm_start;
92
bool fp_used;
93
bool priv_sp_used;
94
bool write;
95
};
96
97
struct bpf_plt {
98
u32 insn_ldr; /* load target */
99
u32 insn_br; /* branch to target */
100
u64 target; /* target value */
101
};
102
103
#define PLT_TARGET_SIZE sizeof_field(struct bpf_plt, target)
104
#define PLT_TARGET_OFFSET offsetof(struct bpf_plt, target)
105
106
/* Memory size/value to protect private stack overflow/underflow */
107
#define PRIV_STACK_GUARD_SZ 16
108
#define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL
109
110
static inline void emit(const u32 insn, struct jit_ctx *ctx)
111
{
112
if (ctx->image != NULL && ctx->write)
113
ctx->image[ctx->idx] = cpu_to_le32(insn);
114
115
ctx->idx++;
116
}
117
118
static inline void emit_u32_data(const u32 data, struct jit_ctx *ctx)
119
{
120
if (ctx->image != NULL && ctx->write)
121
ctx->image[ctx->idx] = (__force __le32)data;
122
123
ctx->idx++;
124
}
125
126
static inline void emit_a64_mov_i(const int is64, const int reg,
127
const s32 val, struct jit_ctx *ctx)
128
{
129
u16 hi = val >> 16;
130
u16 lo = val & 0xffff;
131
132
if (hi & 0x8000) {
133
if (hi == 0xffff) {
134
emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
135
} else {
136
emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
137
if (lo != 0xffff)
138
emit(A64_MOVK(is64, reg, lo, 0), ctx);
139
}
140
} else {
141
emit(A64_MOVZ(is64, reg, lo, 0), ctx);
142
if (hi)
143
emit(A64_MOVK(is64, reg, hi, 16), ctx);
144
}
145
}
146
147
static int i64_i16_blocks(const u64 val, bool inverse)
148
{
149
return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
150
(((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
151
(((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
152
(((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
153
}
154
155
static inline void emit_a64_mov_i64(const int reg, const u64 val,
156
struct jit_ctx *ctx)
157
{
158
u64 nrm_tmp = val, rev_tmp = ~val;
159
bool inverse;
160
int shift;
161
162
if (!(nrm_tmp >> 32))
163
return emit_a64_mov_i(0, reg, (u32)val, ctx);
164
165
inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
166
shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
167
(fls64(nrm_tmp) - 1)), 16), 0);
168
if (inverse)
169
emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
170
else
171
emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
172
shift -= 16;
173
while (shift >= 0) {
174
if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
175
emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
176
shift -= 16;
177
}
178
}
179
180
static inline void emit_bti(u32 insn, struct jit_ctx *ctx)
181
{
182
if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
183
emit(insn, ctx);
184
}
185
186
static inline void emit_kcfi(u32 hash, struct jit_ctx *ctx)
187
{
188
if (IS_ENABLED(CONFIG_CFI))
189
emit_u32_data(hash, ctx);
190
}
191
192
/*
193
* Kernel addresses in the vmalloc space use at most 48 bits, and the
194
* remaining bits are guaranteed to be 0x1. So we can compose the address
195
* with a fixed length movn/movk/movk sequence.
196
*/
197
static inline void emit_addr_mov_i64(const int reg, const u64 val,
198
struct jit_ctx *ctx)
199
{
200
u64 tmp = val;
201
int shift = 0;
202
203
emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
204
while (shift < 32) {
205
tmp >>= 16;
206
shift += 16;
207
emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
208
}
209
}
210
211
static bool should_emit_indirect_call(long target, const struct jit_ctx *ctx)
212
{
213
long offset;
214
215
/* when ctx->ro_image is not allocated or the target is unknown,
216
* emit indirect call
217
*/
218
if (!ctx->ro_image || !target)
219
return true;
220
221
offset = target - (long)&ctx->ro_image[ctx->idx];
222
return offset < -SZ_128M || offset >= SZ_128M;
223
}
224
225
static void emit_direct_call(u64 target, struct jit_ctx *ctx)
226
{
227
u32 insn;
228
unsigned long pc;
229
230
pc = (unsigned long)&ctx->ro_image[ctx->idx];
231
insn = aarch64_insn_gen_branch_imm(pc, target, AARCH64_INSN_BRANCH_LINK);
232
emit(insn, ctx);
233
}
234
235
static void emit_indirect_call(u64 target, struct jit_ctx *ctx)
236
{
237
u8 tmp;
238
239
tmp = bpf2a64[TMP_REG_1];
240
emit_addr_mov_i64(tmp, target, ctx);
241
emit(A64_BLR(tmp), ctx);
242
}
243
244
static void emit_call(u64 target, struct jit_ctx *ctx)
245
{
246
if (should_emit_indirect_call((long)target, ctx))
247
emit_indirect_call(target, ctx);
248
else
249
emit_direct_call(target, ctx);
250
}
251
252
static inline int bpf2a64_offset(int bpf_insn, int off,
253
const struct jit_ctx *ctx)
254
{
255
/* BPF JMP offset is relative to the next instruction */
256
bpf_insn++;
257
/*
258
* Whereas arm64 branch instructions encode the offset
259
* from the branch itself, so we must subtract 1 from the
260
* instruction offset.
261
*/
262
return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1);
263
}
264
265
static void jit_fill_hole(void *area, unsigned int size)
266
{
267
__le32 *ptr;
268
/* We are guaranteed to have aligned memory. */
269
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
270
*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
271
}
272
273
int bpf_arch_text_invalidate(void *dst, size_t len)
274
{
275
if (!aarch64_insn_set(dst, AARCH64_BREAK_FAULT, len))
276
return -EINVAL;
277
278
return 0;
279
}
280
281
static inline int epilogue_offset(const struct jit_ctx *ctx)
282
{
283
int to = ctx->epilogue_offset;
284
int from = ctx->idx;
285
286
return to - from;
287
}
288
289
static bool is_addsub_imm(u32 imm)
290
{
291
/* Either imm12 or shifted imm12. */
292
return !(imm & ~0xfff) || !(imm & ~0xfff000);
293
}
294
295
static inline void emit_a64_add_i(const bool is64, const int dst, const int src,
296
const int tmp, const s32 imm, struct jit_ctx *ctx)
297
{
298
if (is_addsub_imm(imm)) {
299
emit(A64_ADD_I(is64, dst, src, imm), ctx);
300
} else if (is_addsub_imm(-(u32)imm)) {
301
emit(A64_SUB_I(is64, dst, src, -imm), ctx);
302
} else {
303
emit_a64_mov_i(is64, tmp, imm, ctx);
304
emit(A64_ADD(is64, dst, src, tmp), ctx);
305
}
306
}
307
308
/*
309
* There are 3 types of AArch64 LDR/STR (immediate) instruction:
310
* Post-index, Pre-index, Unsigned offset.
311
*
312
* For BPF ldr/str, the "unsigned offset" type is sufficient.
313
*
314
* "Unsigned offset" type LDR(immediate) format:
315
*
316
* 3 2 1 0
317
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
318
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
319
* |x x|1 1 1 0 0 1 0 1| imm12 | Rn | Rt |
320
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
321
* scale
322
*
323
* "Unsigned offset" type STR(immediate) format:
324
* 3 2 1 0
325
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
326
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
327
* |x x|1 1 1 0 0 1 0 0| imm12 | Rn | Rt |
328
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
329
* scale
330
*
331
* The offset is calculated from imm12 and scale in the following way:
332
*
333
* offset = (u64)imm12 << scale
334
*/
335
static bool is_lsi_offset(int offset, int scale)
336
{
337
if (offset < 0)
338
return false;
339
340
if (offset > (0xFFF << scale))
341
return false;
342
343
if (offset & ((1 << scale) - 1))
344
return false;
345
346
return true;
347
}
348
349
/* generated main prog prologue:
350
* bti c // if CONFIG_ARM64_BTI_KERNEL
351
* mov x9, lr
352
* nop // POKE_OFFSET
353
* paciasp // if CONFIG_ARM64_PTR_AUTH_KERNEL
354
* stp x29, lr, [sp, #-16]!
355
* mov x29, sp
356
* stp xzr, x26, [sp, #-16]!
357
* mov x26, sp
358
* // PROLOGUE_OFFSET
359
* // save callee-saved registers
360
*/
361
static void prepare_bpf_tail_call_cnt(struct jit_ctx *ctx)
362
{
363
const bool is_main_prog = !bpf_is_subprog(ctx->prog);
364
const u8 ptr = bpf2a64[TCCNT_PTR];
365
366
if (is_main_prog) {
367
/* Initialize tail_call_cnt. */
368
emit(A64_PUSH(A64_ZR, ptr, A64_SP), ctx);
369
emit(A64_MOV(1, ptr, A64_SP), ctx);
370
} else
371
emit(A64_PUSH(ptr, ptr, A64_SP), ctx);
372
}
373
374
static void find_used_callee_regs(struct jit_ctx *ctx)
375
{
376
int i;
377
const struct bpf_prog *prog = ctx->prog;
378
const struct bpf_insn *insn = &prog->insnsi[0];
379
int reg_used = 0;
380
381
for (i = 0; i < prog->len; i++, insn++) {
382
if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
383
reg_used |= 1;
384
385
if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
386
reg_used |= 2;
387
388
if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
389
reg_used |= 4;
390
391
if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
392
reg_used |= 8;
393
394
if (insn->dst_reg == BPF_REG_FP || insn->src_reg == BPF_REG_FP) {
395
ctx->fp_used = true;
396
reg_used |= 16;
397
}
398
}
399
400
i = 0;
401
if (reg_used & 1)
402
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_6];
403
404
if (reg_used & 2)
405
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_7];
406
407
if (reg_used & 4)
408
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_8];
409
410
if (reg_used & 8)
411
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_9];
412
413
if (reg_used & 16) {
414
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_FP];
415
if (ctx->priv_sp_used)
416
ctx->used_callee_reg[i++] = bpf2a64[PRIVATE_SP];
417
}
418
419
if (ctx->arena_vm_start)
420
ctx->used_callee_reg[i++] = bpf2a64[ARENA_VM_START];
421
422
ctx->nr_used_callee_reg = i;
423
}
424
425
/* Save callee-saved registers */
426
static void push_callee_regs(struct jit_ctx *ctx)
427
{
428
int reg1, reg2, i;
429
430
/*
431
* Program acting as exception boundary should save all ARM64
432
* Callee-saved registers as the exception callback needs to recover
433
* all ARM64 Callee-saved registers in its epilogue.
434
*/
435
if (ctx->prog->aux->exception_boundary) {
436
emit(A64_PUSH(A64_R(19), A64_R(20), A64_SP), ctx);
437
emit(A64_PUSH(A64_R(21), A64_R(22), A64_SP), ctx);
438
emit(A64_PUSH(A64_R(23), A64_R(24), A64_SP), ctx);
439
emit(A64_PUSH(A64_R(25), A64_R(26), A64_SP), ctx);
440
emit(A64_PUSH(A64_R(27), A64_R(28), A64_SP), ctx);
441
ctx->fp_used = true;
442
} else {
443
find_used_callee_regs(ctx);
444
for (i = 0; i + 1 < ctx->nr_used_callee_reg; i += 2) {
445
reg1 = ctx->used_callee_reg[i];
446
reg2 = ctx->used_callee_reg[i + 1];
447
emit(A64_PUSH(reg1, reg2, A64_SP), ctx);
448
}
449
if (i < ctx->nr_used_callee_reg) {
450
reg1 = ctx->used_callee_reg[i];
451
/* keep SP 16-byte aligned */
452
emit(A64_PUSH(reg1, A64_ZR, A64_SP), ctx);
453
}
454
}
455
}
456
457
/* Restore callee-saved registers */
458
static void pop_callee_regs(struct jit_ctx *ctx)
459
{
460
struct bpf_prog_aux *aux = ctx->prog->aux;
461
int reg1, reg2, i;
462
463
/*
464
* Program acting as exception boundary pushes R23 and R24 in addition
465
* to BPF callee-saved registers. Exception callback uses the boundary
466
* program's stack frame, so recover these extra registers in the above
467
* two cases.
468
*/
469
if (aux->exception_boundary || aux->exception_cb) {
470
emit(A64_POP(A64_R(27), A64_R(28), A64_SP), ctx);
471
emit(A64_POP(A64_R(25), A64_R(26), A64_SP), ctx);
472
emit(A64_POP(A64_R(23), A64_R(24), A64_SP), ctx);
473
emit(A64_POP(A64_R(21), A64_R(22), A64_SP), ctx);
474
emit(A64_POP(A64_R(19), A64_R(20), A64_SP), ctx);
475
} else {
476
i = ctx->nr_used_callee_reg - 1;
477
if (ctx->nr_used_callee_reg % 2 != 0) {
478
reg1 = ctx->used_callee_reg[i];
479
emit(A64_POP(reg1, A64_ZR, A64_SP), ctx);
480
i--;
481
}
482
while (i > 0) {
483
reg1 = ctx->used_callee_reg[i - 1];
484
reg2 = ctx->used_callee_reg[i];
485
emit(A64_POP(reg1, reg2, A64_SP), ctx);
486
i -= 2;
487
}
488
}
489
}
490
491
static void emit_percpu_ptr(const u8 dst_reg, void __percpu *ptr,
492
struct jit_ctx *ctx)
493
{
494
const u8 tmp = bpf2a64[TMP_REG_1];
495
496
emit_a64_mov_i64(dst_reg, (__force const u64)ptr, ctx);
497
if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
498
emit(A64_MRS_TPIDR_EL2(tmp), ctx);
499
else
500
emit(A64_MRS_TPIDR_EL1(tmp), ctx);
501
emit(A64_ADD(1, dst_reg, dst_reg, tmp), ctx);
502
}
503
504
#define BTI_INSNS (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) ? 1 : 0)
505
#define PAC_INSNS (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) ? 1 : 0)
506
507
/* Offset of nop instruction in bpf prog entry to be poked */
508
#define POKE_OFFSET (BTI_INSNS + 1)
509
510
/* Tail call offset to jump into */
511
#define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 4)
512
513
static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
514
{
515
const struct bpf_prog *prog = ctx->prog;
516
const bool is_main_prog = !bpf_is_subprog(prog);
517
const u8 fp = bpf2a64[BPF_REG_FP];
518
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
519
const u8 priv_sp = bpf2a64[PRIVATE_SP];
520
void __percpu *priv_stack_ptr;
521
int cur_offset;
522
523
/*
524
* BPF prog stack layout
525
*
526
* high
527
* original A64_SP => 0:+-----+ BPF prologue
528
* |FP/LR|
529
* current A64_FP => -16:+-----+
530
* | ... | callee saved registers
531
* BPF fp register => -64:+-----+ <= (BPF_FP)
532
* | |
533
* | ... | BPF prog stack
534
* | |
535
* +-----+ <= (BPF_FP - prog->aux->stack_depth)
536
* |RSVD | padding
537
* current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size)
538
* | |
539
* | ... | Function call stack
540
* | |
541
* +-----+
542
* low
543
*
544
*/
545
546
emit_kcfi(is_main_prog ? cfi_bpf_hash : cfi_bpf_subprog_hash, ctx);
547
const int idx0 = ctx->idx;
548
549
/* bpf function may be invoked by 3 instruction types:
550
* 1. bl, attached via freplace to bpf prog via short jump
551
* 2. br, attached via freplace to bpf prog via long jump
552
* 3. blr, working as a function pointer, used by emit_call.
553
* So BTI_JC should used here to support both br and blr.
554
*/
555
emit_bti(A64_BTI_JC, ctx);
556
557
emit(A64_MOV(1, A64_R(9), A64_LR), ctx);
558
emit(A64_NOP, ctx);
559
560
if (!prog->aux->exception_cb) {
561
/* Sign lr */
562
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
563
emit(A64_PACIASP, ctx);
564
565
/* Save FP and LR registers to stay align with ARM64 AAPCS */
566
emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
567
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
568
569
prepare_bpf_tail_call_cnt(ctx);
570
571
if (!ebpf_from_cbpf && is_main_prog) {
572
cur_offset = ctx->idx - idx0;
573
if (cur_offset != PROLOGUE_OFFSET) {
574
pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
575
cur_offset, PROLOGUE_OFFSET);
576
return -1;
577
}
578
/* BTI landing pad for the tail call, done with a BR */
579
emit_bti(A64_BTI_J, ctx);
580
}
581
push_callee_regs(ctx);
582
} else {
583
/*
584
* Exception callback receives FP of Main Program as third
585
* parameter
586
*/
587
emit(A64_MOV(1, A64_FP, A64_R(2)), ctx);
588
/*
589
* Main Program already pushed the frame record and the
590
* callee-saved registers. The exception callback will not push
591
* anything and re-use the main program's stack.
592
*
593
* 12 registers are on the stack
594
*/
595
emit(A64_SUB_I(1, A64_SP, A64_FP, 96), ctx);
596
}
597
598
/* Stack must be multiples of 16B */
599
ctx->stack_size = round_up(prog->aux->stack_depth, 16);
600
601
if (ctx->fp_used) {
602
if (ctx->priv_sp_used) {
603
/* Set up private stack pointer */
604
priv_stack_ptr = prog->aux->priv_stack_ptr + PRIV_STACK_GUARD_SZ;
605
emit_percpu_ptr(priv_sp, priv_stack_ptr, ctx);
606
emit(A64_ADD_I(1, fp, priv_sp, ctx->stack_size), ctx);
607
} else {
608
/* Set up BPF prog stack base register */
609
emit(A64_MOV(1, fp, A64_SP), ctx);
610
}
611
}
612
613
/* Set up function call stack */
614
if (ctx->stack_size && !ctx->priv_sp_used)
615
emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
616
617
if (ctx->arena_vm_start)
618
emit_a64_mov_i64(arena_vm_base, ctx->arena_vm_start, ctx);
619
620
return 0;
621
}
622
623
static int emit_bpf_tail_call(struct jit_ctx *ctx)
624
{
625
/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
626
const u8 r2 = bpf2a64[BPF_REG_2];
627
const u8 r3 = bpf2a64[BPF_REG_3];
628
629
const u8 tmp = bpf2a64[TMP_REG_1];
630
const u8 prg = bpf2a64[TMP_REG_2];
631
const u8 tcc = bpf2a64[TMP_REG_3];
632
const u8 ptr = bpf2a64[TCCNT_PTR];
633
size_t off;
634
__le32 *branch1 = NULL;
635
__le32 *branch2 = NULL;
636
__le32 *branch3 = NULL;
637
638
/* if (index >= array->map.max_entries)
639
* goto out;
640
*/
641
off = offsetof(struct bpf_array, map.max_entries);
642
emit_a64_mov_i64(tmp, off, ctx);
643
emit(A64_LDR32(tmp, r2, tmp), ctx);
644
emit(A64_MOV(0, r3, r3), ctx);
645
emit(A64_CMP(0, r3, tmp), ctx);
646
branch1 = ctx->image + ctx->idx;
647
emit(A64_NOP, ctx);
648
649
/*
650
* if ((*tail_call_cnt_ptr) >= MAX_TAIL_CALL_CNT)
651
* goto out;
652
*/
653
emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
654
emit(A64_LDR64I(tcc, ptr, 0), ctx);
655
emit(A64_CMP(1, tcc, tmp), ctx);
656
branch2 = ctx->image + ctx->idx;
657
emit(A64_NOP, ctx);
658
659
/* (*tail_call_cnt_ptr)++; */
660
emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
661
662
/* prog = array->ptrs[index];
663
* if (prog == NULL)
664
* goto out;
665
*/
666
off = offsetof(struct bpf_array, ptrs);
667
emit_a64_mov_i64(tmp, off, ctx);
668
emit(A64_ADD(1, tmp, r2, tmp), ctx);
669
emit(A64_LSL(1, prg, r3, 3), ctx);
670
emit(A64_LDR64(prg, tmp, prg), ctx);
671
branch3 = ctx->image + ctx->idx;
672
emit(A64_NOP, ctx);
673
674
/* Update tail_call_cnt if the slot is populated. */
675
emit(A64_STR64I(tcc, ptr, 0), ctx);
676
677
/* restore SP */
678
if (ctx->stack_size && !ctx->priv_sp_used)
679
emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
680
681
pop_callee_regs(ctx);
682
683
/* goto *(prog->bpf_func + prologue_offset); */
684
off = offsetof(struct bpf_prog, bpf_func);
685
emit_a64_mov_i64(tmp, off, ctx);
686
emit(A64_LDR64(tmp, prg, tmp), ctx);
687
emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
688
emit(A64_BR(tmp), ctx);
689
690
if (ctx->image) {
691
off = &ctx->image[ctx->idx] - branch1;
692
*branch1 = cpu_to_le32(A64_B_(A64_COND_CS, off));
693
694
off = &ctx->image[ctx->idx] - branch2;
695
*branch2 = cpu_to_le32(A64_B_(A64_COND_CS, off));
696
697
off = &ctx->image[ctx->idx] - branch3;
698
*branch3 = cpu_to_le32(A64_CBZ(1, prg, off));
699
}
700
701
return 0;
702
}
703
704
static int emit_atomic_ld_st(const struct bpf_insn *insn, struct jit_ctx *ctx)
705
{
706
const s32 imm = insn->imm;
707
const s16 off = insn->off;
708
const u8 code = insn->code;
709
const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC;
710
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
711
const u8 dst = bpf2a64[insn->dst_reg];
712
const u8 src = bpf2a64[insn->src_reg];
713
const u8 tmp = bpf2a64[TMP_REG_1];
714
u8 reg;
715
716
switch (imm) {
717
case BPF_LOAD_ACQ:
718
reg = src;
719
break;
720
case BPF_STORE_REL:
721
reg = dst;
722
break;
723
default:
724
pr_err_once("unknown atomic load/store op code %02x\n", imm);
725
return -EINVAL;
726
}
727
728
if (off) {
729
emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
730
reg = tmp;
731
}
732
if (arena) {
733
emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx);
734
reg = tmp;
735
}
736
737
switch (imm) {
738
case BPF_LOAD_ACQ:
739
switch (BPF_SIZE(code)) {
740
case BPF_B:
741
emit(A64_LDARB(dst, reg), ctx);
742
break;
743
case BPF_H:
744
emit(A64_LDARH(dst, reg), ctx);
745
break;
746
case BPF_W:
747
emit(A64_LDAR32(dst, reg), ctx);
748
break;
749
case BPF_DW:
750
emit(A64_LDAR64(dst, reg), ctx);
751
break;
752
}
753
break;
754
case BPF_STORE_REL:
755
switch (BPF_SIZE(code)) {
756
case BPF_B:
757
emit(A64_STLRB(src, reg), ctx);
758
break;
759
case BPF_H:
760
emit(A64_STLRH(src, reg), ctx);
761
break;
762
case BPF_W:
763
emit(A64_STLR32(src, reg), ctx);
764
break;
765
case BPF_DW:
766
emit(A64_STLR64(src, reg), ctx);
767
break;
768
}
769
break;
770
default:
771
pr_err_once("unexpected atomic load/store op code %02x\n",
772
imm);
773
return -EINVAL;
774
}
775
776
return 0;
777
}
778
779
static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
780
{
781
const u8 code = insn->code;
782
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
783
const u8 dst = bpf2a64[insn->dst_reg];
784
const u8 src = bpf2a64[insn->src_reg];
785
const u8 tmp = bpf2a64[TMP_REG_1];
786
const u8 tmp2 = bpf2a64[TMP_REG_2];
787
const bool isdw = BPF_SIZE(code) == BPF_DW;
788
const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC;
789
const s16 off = insn->off;
790
u8 reg = dst;
791
792
if (off) {
793
emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
794
reg = tmp;
795
}
796
if (arena) {
797
emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx);
798
reg = tmp;
799
}
800
801
switch (insn->imm) {
802
/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
803
case BPF_ADD:
804
emit(A64_STADD(isdw, reg, src), ctx);
805
break;
806
case BPF_AND:
807
emit(A64_MVN(isdw, tmp2, src), ctx);
808
emit(A64_STCLR(isdw, reg, tmp2), ctx);
809
break;
810
case BPF_OR:
811
emit(A64_STSET(isdw, reg, src), ctx);
812
break;
813
case BPF_XOR:
814
emit(A64_STEOR(isdw, reg, src), ctx);
815
break;
816
/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
817
case BPF_ADD | BPF_FETCH:
818
emit(A64_LDADDAL(isdw, src, reg, src), ctx);
819
break;
820
case BPF_AND | BPF_FETCH:
821
emit(A64_MVN(isdw, tmp2, src), ctx);
822
emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx);
823
break;
824
case BPF_OR | BPF_FETCH:
825
emit(A64_LDSETAL(isdw, src, reg, src), ctx);
826
break;
827
case BPF_XOR | BPF_FETCH:
828
emit(A64_LDEORAL(isdw, src, reg, src), ctx);
829
break;
830
/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
831
case BPF_XCHG:
832
emit(A64_SWPAL(isdw, src, reg, src), ctx);
833
break;
834
/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
835
case BPF_CMPXCHG:
836
emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx);
837
break;
838
default:
839
pr_err_once("unknown atomic op code %02x\n", insn->imm);
840
return -EINVAL;
841
}
842
843
return 0;
844
}
845
846
static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
847
{
848
const u8 code = insn->code;
849
const u8 dst = bpf2a64[insn->dst_reg];
850
const u8 src = bpf2a64[insn->src_reg];
851
const u8 tmp = bpf2a64[TMP_REG_1];
852
const u8 tmp2 = bpf2a64[TMP_REG_2];
853
const u8 tmp3 = bpf2a64[TMP_REG_3];
854
const int i = insn - ctx->prog->insnsi;
855
const s32 imm = insn->imm;
856
const s16 off = insn->off;
857
const bool isdw = BPF_SIZE(code) == BPF_DW;
858
u8 reg = dst;
859
s32 jmp_offset;
860
861
if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
862
/* ll_sc based atomics don't support unsafe pointers yet. */
863
pr_err_once("unknown atomic opcode %02x\n", code);
864
return -EINVAL;
865
}
866
867
if (off) {
868
emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
869
reg = tmp;
870
}
871
872
if (imm == BPF_ADD || imm == BPF_AND ||
873
imm == BPF_OR || imm == BPF_XOR) {
874
/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
875
emit(A64_LDXR(isdw, tmp2, reg), ctx);
876
if (imm == BPF_ADD)
877
emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
878
else if (imm == BPF_AND)
879
emit(A64_AND(isdw, tmp2, tmp2, src), ctx);
880
else if (imm == BPF_OR)
881
emit(A64_ORR(isdw, tmp2, tmp2, src), ctx);
882
else
883
emit(A64_EOR(isdw, tmp2, tmp2, src), ctx);
884
emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
885
jmp_offset = -3;
886
check_imm19(jmp_offset);
887
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
888
} else if (imm == (BPF_ADD | BPF_FETCH) ||
889
imm == (BPF_AND | BPF_FETCH) ||
890
imm == (BPF_OR | BPF_FETCH) ||
891
imm == (BPF_XOR | BPF_FETCH)) {
892
/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
893
const u8 ax = bpf2a64[BPF_REG_AX];
894
895
emit(A64_MOV(isdw, ax, src), ctx);
896
emit(A64_LDXR(isdw, src, reg), ctx);
897
if (imm == (BPF_ADD | BPF_FETCH))
898
emit(A64_ADD(isdw, tmp2, src, ax), ctx);
899
else if (imm == (BPF_AND | BPF_FETCH))
900
emit(A64_AND(isdw, tmp2, src, ax), ctx);
901
else if (imm == (BPF_OR | BPF_FETCH))
902
emit(A64_ORR(isdw, tmp2, src, ax), ctx);
903
else
904
emit(A64_EOR(isdw, tmp2, src, ax), ctx);
905
emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
906
jmp_offset = -3;
907
check_imm19(jmp_offset);
908
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
909
emit(A64_DMB_ISH, ctx);
910
} else if (imm == BPF_XCHG) {
911
/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
912
emit(A64_MOV(isdw, tmp2, src), ctx);
913
emit(A64_LDXR(isdw, src, reg), ctx);
914
emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
915
jmp_offset = -2;
916
check_imm19(jmp_offset);
917
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
918
emit(A64_DMB_ISH, ctx);
919
} else if (imm == BPF_CMPXCHG) {
920
/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
921
const u8 r0 = bpf2a64[BPF_REG_0];
922
923
emit(A64_MOV(isdw, tmp2, r0), ctx);
924
emit(A64_LDXR(isdw, r0, reg), ctx);
925
emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx);
926
jmp_offset = 4;
927
check_imm19(jmp_offset);
928
emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx);
929
emit(A64_STLXR(isdw, src, reg, tmp3), ctx);
930
jmp_offset = -4;
931
check_imm19(jmp_offset);
932
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
933
emit(A64_DMB_ISH, ctx);
934
} else {
935
pr_err_once("unknown atomic op code %02x\n", imm);
936
return -EINVAL;
937
}
938
939
return 0;
940
}
941
942
void dummy_tramp(void);
943
944
asm (
945
" .pushsection .text, \"ax\", @progbits\n"
946
" .global dummy_tramp\n"
947
" .type dummy_tramp, %function\n"
948
"dummy_tramp:"
949
#if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)
950
" bti j\n" /* dummy_tramp is called via "br x10" */
951
#endif
952
" mov x10, x30\n"
953
" mov x30, x9\n"
954
" ret x10\n"
955
" .size dummy_tramp, .-dummy_tramp\n"
956
" .popsection\n"
957
);
958
959
/* build a plt initialized like this:
960
*
961
* plt:
962
* ldr tmp, target
963
* br tmp
964
* target:
965
* .quad dummy_tramp
966
*
967
* when a long jump trampoline is attached, target is filled with the
968
* trampoline address, and when the trampoline is removed, target is
969
* restored to dummy_tramp address.
970
*/
971
static void build_plt(struct jit_ctx *ctx)
972
{
973
const u8 tmp = bpf2a64[TMP_REG_1];
974
struct bpf_plt *plt = NULL;
975
976
/* make sure target is 64-bit aligned */
977
if ((ctx->idx + PLT_TARGET_OFFSET / AARCH64_INSN_SIZE) % 2)
978
emit(A64_NOP, ctx);
979
980
plt = (struct bpf_plt *)(ctx->image + ctx->idx);
981
/* plt is called via bl, no BTI needed here */
982
emit(A64_LDR64LIT(tmp, 2 * AARCH64_INSN_SIZE), ctx);
983
emit(A64_BR(tmp), ctx);
984
985
if (ctx->image)
986
plt->target = (u64)&dummy_tramp;
987
}
988
989
/* Clobbers BPF registers 1-4, aka x0-x3 */
990
static void __maybe_unused build_bhb_mitigation(struct jit_ctx *ctx)
991
{
992
const u8 r1 = bpf2a64[BPF_REG_1]; /* aka x0 */
993
u8 k = get_spectre_bhb_loop_value();
994
995
if (!IS_ENABLED(CONFIG_MITIGATE_SPECTRE_BRANCH_HISTORY) ||
996
cpu_mitigations_off() || __nospectre_bhb ||
997
arm64_get_spectre_v2_state() == SPECTRE_VULNERABLE)
998
return;
999
1000
if (ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN))
1001
return;
1002
1003
if (supports_clearbhb(SCOPE_SYSTEM)) {
1004
emit(aarch64_insn_gen_hint(AARCH64_INSN_HINT_CLEARBHB), ctx);
1005
return;
1006
}
1007
1008
if (k) {
1009
emit_a64_mov_i64(r1, k, ctx);
1010
emit(A64_B(1), ctx);
1011
emit(A64_SUBS_I(true, r1, r1, 1), ctx);
1012
emit(A64_B_(A64_COND_NE, -2), ctx);
1013
emit(aarch64_insn_gen_dsb(AARCH64_INSN_MB_ISH), ctx);
1014
emit(aarch64_insn_get_isb_value(), ctx);
1015
}
1016
1017
if (is_spectre_bhb_fw_mitigated()) {
1018
emit(A64_ORR_I(false, r1, AARCH64_INSN_REG_ZR,
1019
ARM_SMCCC_ARCH_WORKAROUND_3), ctx);
1020
switch (arm_smccc_1_1_get_conduit()) {
1021
case SMCCC_CONDUIT_HVC:
1022
emit(aarch64_insn_get_hvc_value(), ctx);
1023
break;
1024
case SMCCC_CONDUIT_SMC:
1025
emit(aarch64_insn_get_smc_value(), ctx);
1026
break;
1027
default:
1028
pr_err_once("Firmware mitigation enabled with unknown conduit\n");
1029
}
1030
}
1031
}
1032
1033
static void build_epilogue(struct jit_ctx *ctx, bool was_classic)
1034
{
1035
const u8 r0 = bpf2a64[BPF_REG_0];
1036
const u8 ptr = bpf2a64[TCCNT_PTR];
1037
1038
/* We're done with BPF stack */
1039
if (ctx->stack_size && !ctx->priv_sp_used)
1040
emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
1041
1042
pop_callee_regs(ctx);
1043
1044
emit(A64_POP(A64_ZR, ptr, A64_SP), ctx);
1045
1046
if (was_classic)
1047
build_bhb_mitigation(ctx);
1048
1049
/* Restore FP/LR registers */
1050
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
1051
1052
/* Move the return value from bpf:r0 (aka x7) to x0 */
1053
emit(A64_MOV(1, A64_R(0), r0), ctx);
1054
1055
/* Authenticate lr */
1056
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
1057
emit(A64_AUTIASP, ctx);
1058
1059
emit(A64_RET(A64_LR), ctx);
1060
}
1061
1062
/*
1063
* Metadata encoding for exception handling in JITed code.
1064
*
1065
* Format of `fixup` field in `struct exception_table_entry`:
1066
*
1067
* Bit layout of `fixup` (32-bit):
1068
*
1069
* +-----------+--------+-----------+-----------+----------+
1070
* | 31-27 | 26-22 | 21 | 20-16 | 15-0 |
1071
* | | | | | |
1072
* | FIXUP_REG | Unused | ARENA_ACC | ARENA_REG | OFFSET |
1073
* +-----------+--------+-----------+-----------+----------+
1074
*
1075
* - OFFSET (16 bits): Offset used to compute address for Load/Store instruction.
1076
* - ARENA_REG (5 bits): Register that is used to calculate the address for load/store when
1077
* accessing the arena region.
1078
* - ARENA_ACCESS (1 bit): This bit is set when the faulting instruction accessed the arena region.
1079
* - FIXUP_REG (5 bits): Destination register for the load instruction (cleared on fault) or set to
1080
* DONT_CLEAR if it is a store instruction.
1081
*/
1082
1083
#define BPF_FIXUP_OFFSET_MASK GENMASK(15, 0)
1084
#define BPF_FIXUP_ARENA_REG_MASK GENMASK(20, 16)
1085
#define BPF_ARENA_ACCESS BIT(21)
1086
#define BPF_FIXUP_REG_MASK GENMASK(31, 27)
1087
#define DONT_CLEAR 5 /* Unused ARM64 register from BPF's POV */
1088
1089
bool ex_handler_bpf(const struct exception_table_entry *ex,
1090
struct pt_regs *regs)
1091
{
1092
int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
1093
s16 off = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
1094
int arena_reg = FIELD_GET(BPF_FIXUP_ARENA_REG_MASK, ex->fixup);
1095
bool is_arena = !!(ex->fixup & BPF_ARENA_ACCESS);
1096
bool is_write = (dst_reg == DONT_CLEAR);
1097
unsigned long addr;
1098
1099
if (is_arena) {
1100
addr = regs->regs[arena_reg] + off;
1101
bpf_prog_report_arena_violation(is_write, addr, regs->pc);
1102
}
1103
1104
if (dst_reg != DONT_CLEAR)
1105
regs->regs[dst_reg] = 0;
1106
/* Skip the faulting instruction */
1107
regs->pc += AARCH64_INSN_SIZE;
1108
1109
return true;
1110
}
1111
1112
/* For accesses to BTF pointers, add an entry to the exception table */
1113
static int add_exception_handler(const struct bpf_insn *insn,
1114
struct jit_ctx *ctx,
1115
int dst_reg)
1116
{
1117
off_t ins_offset;
1118
s16 off = insn->off;
1119
bool is_arena;
1120
int arena_reg;
1121
unsigned long pc;
1122
struct exception_table_entry *ex;
1123
1124
if (!ctx->image)
1125
/* First pass */
1126
return 0;
1127
1128
if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
1129
BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
1130
BPF_MODE(insn->code) != BPF_PROBE_MEM32 &&
1131
BPF_MODE(insn->code) != BPF_PROBE_MEM32SX &&
1132
BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
1133
return 0;
1134
1135
is_arena = (BPF_MODE(insn->code) == BPF_PROBE_MEM32) ||
1136
(BPF_MODE(insn->code) == BPF_PROBE_MEM32SX) ||
1137
(BPF_MODE(insn->code) == BPF_PROBE_ATOMIC);
1138
1139
if (!ctx->prog->aux->extable ||
1140
WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries))
1141
return -EINVAL;
1142
1143
ex = &ctx->prog->aux->extable[ctx->exentry_idx];
1144
pc = (unsigned long)&ctx->ro_image[ctx->idx - 1];
1145
1146
/*
1147
* This is the relative offset of the instruction that may fault from
1148
* the exception table itself. This will be written to the exception
1149
* table and if this instruction faults, the destination register will
1150
* be set to '0' and the execution will jump to the next instruction.
1151
*/
1152
ins_offset = pc - (long)&ex->insn;
1153
if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
1154
return -ERANGE;
1155
1156
/*
1157
* The offsets above have been calculated using the RO buffer but we
1158
* need to use the R/W buffer for writes.
1159
* switch ex to rw buffer for writing.
1160
*/
1161
ex = (void *)ctx->image + ((void *)ex - (void *)ctx->ro_image);
1162
1163
ex->insn = ins_offset;
1164
1165
if (BPF_CLASS(insn->code) != BPF_LDX)
1166
dst_reg = DONT_CLEAR;
1167
1168
ex->fixup = FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
1169
1170
if (is_arena) {
1171
ex->fixup |= BPF_ARENA_ACCESS;
1172
/*
1173
* insn->src_reg/dst_reg holds the address in the arena region with upper 32-bits
1174
* being zero because of a preceding addr_space_cast(r<n>, 0x0, 0x1) instruction.
1175
* This address is adjusted with the addition of arena_vm_start (see the
1176
* implementation of BPF_PROBE_MEM32 and BPF_PROBE_ATOMIC) before being used for the
1177
* memory access. Pass the reg holding the unmodified 32-bit address to
1178
* ex_handler_bpf.
1179
*/
1180
if (BPF_CLASS(insn->code) == BPF_LDX)
1181
arena_reg = bpf2a64[insn->src_reg];
1182
else
1183
arena_reg = bpf2a64[insn->dst_reg];
1184
1185
ex->fixup |= FIELD_PREP(BPF_FIXUP_OFFSET_MASK, off) |
1186
FIELD_PREP(BPF_FIXUP_ARENA_REG_MASK, arena_reg);
1187
}
1188
1189
ex->type = EX_TYPE_BPF;
1190
1191
ctx->exentry_idx++;
1192
return 0;
1193
}
1194
1195
/* JITs an eBPF instruction.
1196
* Returns:
1197
* 0 - successfully JITed an 8-byte eBPF instruction.
1198
* >0 - successfully JITed a 16-byte eBPF instruction.
1199
* <0 - failed to JIT.
1200
*/
1201
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
1202
bool extra_pass)
1203
{
1204
const u8 code = insn->code;
1205
u8 dst = bpf2a64[insn->dst_reg];
1206
u8 src = bpf2a64[insn->src_reg];
1207
const u8 tmp = bpf2a64[TMP_REG_1];
1208
const u8 tmp2 = bpf2a64[TMP_REG_2];
1209
const u8 tmp3 = bpf2a64[TMP_REG_3];
1210
const u8 fp = bpf2a64[BPF_REG_FP];
1211
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
1212
const u8 priv_sp = bpf2a64[PRIVATE_SP];
1213
const s16 off = insn->off;
1214
const s32 imm = insn->imm;
1215
const int i = insn - ctx->prog->insnsi;
1216
const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
1217
BPF_CLASS(code) == BPF_JMP;
1218
u8 jmp_cond;
1219
s32 jmp_offset;
1220
u32 a64_insn;
1221
u8 src_adj;
1222
u8 dst_adj;
1223
int off_adj;
1224
int ret;
1225
bool sign_extend;
1226
1227
switch (code) {
1228
/* dst = src */
1229
case BPF_ALU | BPF_MOV | BPF_X:
1230
case BPF_ALU64 | BPF_MOV | BPF_X:
1231
if (insn_is_cast_user(insn)) {
1232
emit(A64_MOV(0, tmp, src), ctx); // 32-bit mov clears the upper 32 bits
1233
emit_a64_mov_i(0, dst, ctx->user_vm_start >> 32, ctx);
1234
emit(A64_LSL(1, dst, dst, 32), ctx);
1235
emit(A64_CBZ(1, tmp, 2), ctx);
1236
emit(A64_ORR(1, tmp, dst, tmp), ctx);
1237
emit(A64_MOV(1, dst, tmp), ctx);
1238
break;
1239
} else if (insn_is_mov_percpu_addr(insn)) {
1240
if (dst != src)
1241
emit(A64_MOV(1, dst, src), ctx);
1242
if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
1243
emit(A64_MRS_TPIDR_EL2(tmp), ctx);
1244
else
1245
emit(A64_MRS_TPIDR_EL1(tmp), ctx);
1246
emit(A64_ADD(1, dst, dst, tmp), ctx);
1247
break;
1248
}
1249
switch (insn->off) {
1250
case 0:
1251
emit(A64_MOV(is64, dst, src), ctx);
1252
break;
1253
case 8:
1254
emit(A64_SXTB(is64, dst, src), ctx);
1255
break;
1256
case 16:
1257
emit(A64_SXTH(is64, dst, src), ctx);
1258
break;
1259
case 32:
1260
emit(A64_SXTW(is64, dst, src), ctx);
1261
break;
1262
}
1263
break;
1264
/* dst = dst OP src */
1265
case BPF_ALU | BPF_ADD | BPF_X:
1266
case BPF_ALU64 | BPF_ADD | BPF_X:
1267
emit(A64_ADD(is64, dst, dst, src), ctx);
1268
break;
1269
case BPF_ALU | BPF_SUB | BPF_X:
1270
case BPF_ALU64 | BPF_SUB | BPF_X:
1271
emit(A64_SUB(is64, dst, dst, src), ctx);
1272
break;
1273
case BPF_ALU | BPF_AND | BPF_X:
1274
case BPF_ALU64 | BPF_AND | BPF_X:
1275
emit(A64_AND(is64, dst, dst, src), ctx);
1276
break;
1277
case BPF_ALU | BPF_OR | BPF_X:
1278
case BPF_ALU64 | BPF_OR | BPF_X:
1279
emit(A64_ORR(is64, dst, dst, src), ctx);
1280
break;
1281
case BPF_ALU | BPF_XOR | BPF_X:
1282
case BPF_ALU64 | BPF_XOR | BPF_X:
1283
emit(A64_EOR(is64, dst, dst, src), ctx);
1284
break;
1285
case BPF_ALU | BPF_MUL | BPF_X:
1286
case BPF_ALU64 | BPF_MUL | BPF_X:
1287
emit(A64_MUL(is64, dst, dst, src), ctx);
1288
break;
1289
case BPF_ALU | BPF_DIV | BPF_X:
1290
case BPF_ALU64 | BPF_DIV | BPF_X:
1291
if (!off)
1292
emit(A64_UDIV(is64, dst, dst, src), ctx);
1293
else
1294
emit(A64_SDIV(is64, dst, dst, src), ctx);
1295
break;
1296
case BPF_ALU | BPF_MOD | BPF_X:
1297
case BPF_ALU64 | BPF_MOD | BPF_X:
1298
if (!off)
1299
emit(A64_UDIV(is64, tmp, dst, src), ctx);
1300
else
1301
emit(A64_SDIV(is64, tmp, dst, src), ctx);
1302
emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
1303
break;
1304
case BPF_ALU | BPF_LSH | BPF_X:
1305
case BPF_ALU64 | BPF_LSH | BPF_X:
1306
emit(A64_LSLV(is64, dst, dst, src), ctx);
1307
break;
1308
case BPF_ALU | BPF_RSH | BPF_X:
1309
case BPF_ALU64 | BPF_RSH | BPF_X:
1310
emit(A64_LSRV(is64, dst, dst, src), ctx);
1311
break;
1312
case BPF_ALU | BPF_ARSH | BPF_X:
1313
case BPF_ALU64 | BPF_ARSH | BPF_X:
1314
emit(A64_ASRV(is64, dst, dst, src), ctx);
1315
break;
1316
/* dst = -dst */
1317
case BPF_ALU | BPF_NEG:
1318
case BPF_ALU64 | BPF_NEG:
1319
emit(A64_NEG(is64, dst, dst), ctx);
1320
break;
1321
/* dst = BSWAP##imm(dst) */
1322
case BPF_ALU | BPF_END | BPF_FROM_LE:
1323
case BPF_ALU | BPF_END | BPF_FROM_BE:
1324
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1325
#ifdef CONFIG_CPU_BIG_ENDIAN
1326
if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_BE)
1327
goto emit_bswap_uxt;
1328
#else /* !CONFIG_CPU_BIG_ENDIAN */
1329
if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_LE)
1330
goto emit_bswap_uxt;
1331
#endif
1332
switch (imm) {
1333
case 16:
1334
emit(A64_REV16(is64, dst, dst), ctx);
1335
/* zero-extend 16 bits into 64 bits */
1336
emit(A64_UXTH(is64, dst, dst), ctx);
1337
break;
1338
case 32:
1339
emit(A64_REV32(0, dst, dst), ctx);
1340
/* upper 32 bits already cleared */
1341
break;
1342
case 64:
1343
emit(A64_REV64(dst, dst), ctx);
1344
break;
1345
}
1346
break;
1347
emit_bswap_uxt:
1348
switch (imm) {
1349
case 16:
1350
/* zero-extend 16 bits into 64 bits */
1351
emit(A64_UXTH(is64, dst, dst), ctx);
1352
break;
1353
case 32:
1354
/* zero-extend 32 bits into 64 bits */
1355
emit(A64_UXTW(is64, dst, dst), ctx);
1356
break;
1357
case 64:
1358
/* nop */
1359
break;
1360
}
1361
break;
1362
/* dst = imm */
1363
case BPF_ALU | BPF_MOV | BPF_K:
1364
case BPF_ALU64 | BPF_MOV | BPF_K:
1365
emit_a64_mov_i(is64, dst, imm, ctx);
1366
break;
1367
/* dst = dst OP imm */
1368
case BPF_ALU | BPF_ADD | BPF_K:
1369
case BPF_ALU64 | BPF_ADD | BPF_K:
1370
emit_a64_add_i(is64, dst, dst, tmp, imm, ctx);
1371
break;
1372
case BPF_ALU | BPF_SUB | BPF_K:
1373
case BPF_ALU64 | BPF_SUB | BPF_K:
1374
if (is_addsub_imm(imm)) {
1375
emit(A64_SUB_I(is64, dst, dst, imm), ctx);
1376
} else if (is_addsub_imm(-(u32)imm)) {
1377
emit(A64_ADD_I(is64, dst, dst, -imm), ctx);
1378
} else {
1379
emit_a64_mov_i(is64, tmp, imm, ctx);
1380
emit(A64_SUB(is64, dst, dst, tmp), ctx);
1381
}
1382
break;
1383
case BPF_ALU | BPF_AND | BPF_K:
1384
case BPF_ALU64 | BPF_AND | BPF_K:
1385
a64_insn = A64_AND_I(is64, dst, dst, imm);
1386
if (a64_insn != AARCH64_BREAK_FAULT) {
1387
emit(a64_insn, ctx);
1388
} else {
1389
emit_a64_mov_i(is64, tmp, imm, ctx);
1390
emit(A64_AND(is64, dst, dst, tmp), ctx);
1391
}
1392
break;
1393
case BPF_ALU | BPF_OR | BPF_K:
1394
case BPF_ALU64 | BPF_OR | BPF_K:
1395
a64_insn = A64_ORR_I(is64, dst, dst, imm);
1396
if (a64_insn != AARCH64_BREAK_FAULT) {
1397
emit(a64_insn, ctx);
1398
} else {
1399
emit_a64_mov_i(is64, tmp, imm, ctx);
1400
emit(A64_ORR(is64, dst, dst, tmp), ctx);
1401
}
1402
break;
1403
case BPF_ALU | BPF_XOR | BPF_K:
1404
case BPF_ALU64 | BPF_XOR | BPF_K:
1405
a64_insn = A64_EOR_I(is64, dst, dst, imm);
1406
if (a64_insn != AARCH64_BREAK_FAULT) {
1407
emit(a64_insn, ctx);
1408
} else {
1409
emit_a64_mov_i(is64, tmp, imm, ctx);
1410
emit(A64_EOR(is64, dst, dst, tmp), ctx);
1411
}
1412
break;
1413
case BPF_ALU | BPF_MUL | BPF_K:
1414
case BPF_ALU64 | BPF_MUL | BPF_K:
1415
emit_a64_mov_i(is64, tmp, imm, ctx);
1416
emit(A64_MUL(is64, dst, dst, tmp), ctx);
1417
break;
1418
case BPF_ALU | BPF_DIV | BPF_K:
1419
case BPF_ALU64 | BPF_DIV | BPF_K:
1420
emit_a64_mov_i(is64, tmp, imm, ctx);
1421
if (!off)
1422
emit(A64_UDIV(is64, dst, dst, tmp), ctx);
1423
else
1424
emit(A64_SDIV(is64, dst, dst, tmp), ctx);
1425
break;
1426
case BPF_ALU | BPF_MOD | BPF_K:
1427
case BPF_ALU64 | BPF_MOD | BPF_K:
1428
emit_a64_mov_i(is64, tmp2, imm, ctx);
1429
if (!off)
1430
emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
1431
else
1432
emit(A64_SDIV(is64, tmp, dst, tmp2), ctx);
1433
emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
1434
break;
1435
case BPF_ALU | BPF_LSH | BPF_K:
1436
case BPF_ALU64 | BPF_LSH | BPF_K:
1437
emit(A64_LSL(is64, dst, dst, imm), ctx);
1438
break;
1439
case BPF_ALU | BPF_RSH | BPF_K:
1440
case BPF_ALU64 | BPF_RSH | BPF_K:
1441
emit(A64_LSR(is64, dst, dst, imm), ctx);
1442
break;
1443
case BPF_ALU | BPF_ARSH | BPF_K:
1444
case BPF_ALU64 | BPF_ARSH | BPF_K:
1445
emit(A64_ASR(is64, dst, dst, imm), ctx);
1446
break;
1447
1448
/* JUMP reg */
1449
case BPF_JMP | BPF_JA | BPF_X:
1450
emit(A64_BR(dst), ctx);
1451
break;
1452
/* JUMP off */
1453
case BPF_JMP | BPF_JA:
1454
case BPF_JMP32 | BPF_JA:
1455
if (BPF_CLASS(code) == BPF_JMP)
1456
jmp_offset = bpf2a64_offset(i, off, ctx);
1457
else
1458
jmp_offset = bpf2a64_offset(i, imm, ctx);
1459
check_imm26(jmp_offset);
1460
emit(A64_B(jmp_offset), ctx);
1461
break;
1462
/* IF (dst COND src) JUMP off */
1463
case BPF_JMP | BPF_JEQ | BPF_X:
1464
case BPF_JMP | BPF_JGT | BPF_X:
1465
case BPF_JMP | BPF_JLT | BPF_X:
1466
case BPF_JMP | BPF_JGE | BPF_X:
1467
case BPF_JMP | BPF_JLE | BPF_X:
1468
case BPF_JMP | BPF_JNE | BPF_X:
1469
case BPF_JMP | BPF_JSGT | BPF_X:
1470
case BPF_JMP | BPF_JSLT | BPF_X:
1471
case BPF_JMP | BPF_JSGE | BPF_X:
1472
case BPF_JMP | BPF_JSLE | BPF_X:
1473
case BPF_JMP32 | BPF_JEQ | BPF_X:
1474
case BPF_JMP32 | BPF_JGT | BPF_X:
1475
case BPF_JMP32 | BPF_JLT | BPF_X:
1476
case BPF_JMP32 | BPF_JGE | BPF_X:
1477
case BPF_JMP32 | BPF_JLE | BPF_X:
1478
case BPF_JMP32 | BPF_JNE | BPF_X:
1479
case BPF_JMP32 | BPF_JSGT | BPF_X:
1480
case BPF_JMP32 | BPF_JSLT | BPF_X:
1481
case BPF_JMP32 | BPF_JSGE | BPF_X:
1482
case BPF_JMP32 | BPF_JSLE | BPF_X:
1483
emit(A64_CMP(is64, dst, src), ctx);
1484
emit_cond_jmp:
1485
jmp_offset = bpf2a64_offset(i, off, ctx);
1486
check_imm19(jmp_offset);
1487
switch (BPF_OP(code)) {
1488
case BPF_JEQ:
1489
jmp_cond = A64_COND_EQ;
1490
break;
1491
case BPF_JGT:
1492
jmp_cond = A64_COND_HI;
1493
break;
1494
case BPF_JLT:
1495
jmp_cond = A64_COND_CC;
1496
break;
1497
case BPF_JGE:
1498
jmp_cond = A64_COND_CS;
1499
break;
1500
case BPF_JLE:
1501
jmp_cond = A64_COND_LS;
1502
break;
1503
case BPF_JSET:
1504
case BPF_JNE:
1505
jmp_cond = A64_COND_NE;
1506
break;
1507
case BPF_JSGT:
1508
jmp_cond = A64_COND_GT;
1509
break;
1510
case BPF_JSLT:
1511
jmp_cond = A64_COND_LT;
1512
break;
1513
case BPF_JSGE:
1514
jmp_cond = A64_COND_GE;
1515
break;
1516
case BPF_JSLE:
1517
jmp_cond = A64_COND_LE;
1518
break;
1519
default:
1520
return -EFAULT;
1521
}
1522
emit(A64_B_(jmp_cond, jmp_offset), ctx);
1523
break;
1524
case BPF_JMP | BPF_JSET | BPF_X:
1525
case BPF_JMP32 | BPF_JSET | BPF_X:
1526
emit(A64_TST(is64, dst, src), ctx);
1527
goto emit_cond_jmp;
1528
/* IF (dst COND imm) JUMP off */
1529
case BPF_JMP | BPF_JEQ | BPF_K:
1530
case BPF_JMP | BPF_JGT | BPF_K:
1531
case BPF_JMP | BPF_JLT | BPF_K:
1532
case BPF_JMP | BPF_JGE | BPF_K:
1533
case BPF_JMP | BPF_JLE | BPF_K:
1534
case BPF_JMP | BPF_JNE | BPF_K:
1535
case BPF_JMP | BPF_JSGT | BPF_K:
1536
case BPF_JMP | BPF_JSLT | BPF_K:
1537
case BPF_JMP | BPF_JSGE | BPF_K:
1538
case BPF_JMP | BPF_JSLE | BPF_K:
1539
case BPF_JMP32 | BPF_JEQ | BPF_K:
1540
case BPF_JMP32 | BPF_JGT | BPF_K:
1541
case BPF_JMP32 | BPF_JLT | BPF_K:
1542
case BPF_JMP32 | BPF_JGE | BPF_K:
1543
case BPF_JMP32 | BPF_JLE | BPF_K:
1544
case BPF_JMP32 | BPF_JNE | BPF_K:
1545
case BPF_JMP32 | BPF_JSGT | BPF_K:
1546
case BPF_JMP32 | BPF_JSLT | BPF_K:
1547
case BPF_JMP32 | BPF_JSGE | BPF_K:
1548
case BPF_JMP32 | BPF_JSLE | BPF_K:
1549
if (is_addsub_imm(imm)) {
1550
emit(A64_CMP_I(is64, dst, imm), ctx);
1551
} else if (is_addsub_imm(-(u32)imm)) {
1552
emit(A64_CMN_I(is64, dst, -imm), ctx);
1553
} else {
1554
emit_a64_mov_i(is64, tmp, imm, ctx);
1555
emit(A64_CMP(is64, dst, tmp), ctx);
1556
}
1557
goto emit_cond_jmp;
1558
case BPF_JMP | BPF_JSET | BPF_K:
1559
case BPF_JMP32 | BPF_JSET | BPF_K:
1560
a64_insn = A64_TST_I(is64, dst, imm);
1561
if (a64_insn != AARCH64_BREAK_FAULT) {
1562
emit(a64_insn, ctx);
1563
} else {
1564
emit_a64_mov_i(is64, tmp, imm, ctx);
1565
emit(A64_TST(is64, dst, tmp), ctx);
1566
}
1567
goto emit_cond_jmp;
1568
/* function call */
1569
case BPF_JMP | BPF_CALL:
1570
{
1571
const u8 r0 = bpf2a64[BPF_REG_0];
1572
bool func_addr_fixed;
1573
u64 func_addr;
1574
u32 cpu_offset;
1575
1576
/* Implement helper call to bpf_get_smp_processor_id() inline */
1577
if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1578
cpu_offset = offsetof(struct thread_info, cpu);
1579
1580
emit(A64_MRS_SP_EL0(tmp), ctx);
1581
if (is_lsi_offset(cpu_offset, 2)) {
1582
emit(A64_LDR32I(r0, tmp, cpu_offset), ctx);
1583
} else {
1584
emit_a64_mov_i(1, tmp2, cpu_offset, ctx);
1585
emit(A64_LDR32(r0, tmp, tmp2), ctx);
1586
}
1587
break;
1588
}
1589
1590
/* Implement helper call to bpf_get_current_task/_btf() inline */
1591
if (insn->src_reg == 0 && (insn->imm == BPF_FUNC_get_current_task ||
1592
insn->imm == BPF_FUNC_get_current_task_btf)) {
1593
emit(A64_MRS_SP_EL0(r0), ctx);
1594
break;
1595
}
1596
1597
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1598
&func_addr, &func_addr_fixed);
1599
if (ret < 0)
1600
return ret;
1601
emit_call(func_addr, ctx);
1602
/*
1603
* Call to arch_bpf_timed_may_goto() is emitted by the
1604
* verifier and called with custom calling convention with
1605
* first argument and return value in BPF_REG_AX (x9).
1606
*/
1607
if (func_addr != (u64)arch_bpf_timed_may_goto)
1608
emit(A64_MOV(1, r0, A64_R(0)), ctx);
1609
break;
1610
}
1611
/* tail call */
1612
case BPF_JMP | BPF_TAIL_CALL:
1613
if (emit_bpf_tail_call(ctx))
1614
return -EFAULT;
1615
break;
1616
/* function return */
1617
case BPF_JMP | BPF_EXIT:
1618
/* Optimization: when last instruction is EXIT,
1619
simply fallthrough to epilogue. */
1620
if (i == ctx->prog->len - 1)
1621
break;
1622
jmp_offset = epilogue_offset(ctx);
1623
check_imm26(jmp_offset);
1624
emit(A64_B(jmp_offset), ctx);
1625
break;
1626
1627
/* dst = imm64 */
1628
case BPF_LD | BPF_IMM | BPF_DW:
1629
{
1630
const struct bpf_insn insn1 = insn[1];
1631
u64 imm64;
1632
1633
imm64 = (u64)insn1.imm << 32 | (u32)imm;
1634
if (bpf_pseudo_func(insn))
1635
emit_addr_mov_i64(dst, imm64, ctx);
1636
else
1637
emit_a64_mov_i64(dst, imm64, ctx);
1638
1639
return 1;
1640
}
1641
1642
/* LDX: dst = (u64)*(unsigned size *)(src + off) */
1643
case BPF_LDX | BPF_MEM | BPF_W:
1644
case BPF_LDX | BPF_MEM | BPF_H:
1645
case BPF_LDX | BPF_MEM | BPF_B:
1646
case BPF_LDX | BPF_MEM | BPF_DW:
1647
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1648
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1649
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1650
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1651
/* LDXS: dst_reg = (s64)*(signed size *)(src_reg + off) */
1652
case BPF_LDX | BPF_MEMSX | BPF_B:
1653
case BPF_LDX | BPF_MEMSX | BPF_H:
1654
case BPF_LDX | BPF_MEMSX | BPF_W:
1655
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1656
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1657
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1658
case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1659
case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1660
case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1661
case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1662
case BPF_LDX | BPF_PROBE_MEM32SX | BPF_B:
1663
case BPF_LDX | BPF_PROBE_MEM32SX | BPF_H:
1664
case BPF_LDX | BPF_PROBE_MEM32SX | BPF_W:
1665
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
1666
BPF_MODE(insn->code) == BPF_PROBE_MEM32SX) {
1667
emit(A64_ADD(1, tmp2, src, arena_vm_base), ctx);
1668
src = tmp2;
1669
}
1670
if (src == fp) {
1671
src_adj = ctx->priv_sp_used ? priv_sp : A64_SP;
1672
off_adj = off + ctx->stack_size;
1673
} else {
1674
src_adj = src;
1675
off_adj = off;
1676
}
1677
sign_extend = (BPF_MODE(insn->code) == BPF_MEMSX ||
1678
BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1679
BPF_MODE(insn->code) == BPF_PROBE_MEM32SX);
1680
switch (BPF_SIZE(code)) {
1681
case BPF_W:
1682
if (is_lsi_offset(off_adj, 2)) {
1683
if (sign_extend)
1684
emit(A64_LDRSWI(dst, src_adj, off_adj), ctx);
1685
else
1686
emit(A64_LDR32I(dst, src_adj, off_adj), ctx);
1687
} else {
1688
emit_a64_mov_i(1, tmp, off, ctx);
1689
if (sign_extend)
1690
emit(A64_LDRSW(dst, src, tmp), ctx);
1691
else
1692
emit(A64_LDR32(dst, src, tmp), ctx);
1693
}
1694
break;
1695
case BPF_H:
1696
if (is_lsi_offset(off_adj, 1)) {
1697
if (sign_extend)
1698
emit(A64_LDRSHI(dst, src_adj, off_adj), ctx);
1699
else
1700
emit(A64_LDRHI(dst, src_adj, off_adj), ctx);
1701
} else {
1702
emit_a64_mov_i(1, tmp, off, ctx);
1703
if (sign_extend)
1704
emit(A64_LDRSH(dst, src, tmp), ctx);
1705
else
1706
emit(A64_LDRH(dst, src, tmp), ctx);
1707
}
1708
break;
1709
case BPF_B:
1710
if (is_lsi_offset(off_adj, 0)) {
1711
if (sign_extend)
1712
emit(A64_LDRSBI(dst, src_adj, off_adj), ctx);
1713
else
1714
emit(A64_LDRBI(dst, src_adj, off_adj), ctx);
1715
} else {
1716
emit_a64_mov_i(1, tmp, off, ctx);
1717
if (sign_extend)
1718
emit(A64_LDRSB(dst, src, tmp), ctx);
1719
else
1720
emit(A64_LDRB(dst, src, tmp), ctx);
1721
}
1722
break;
1723
case BPF_DW:
1724
if (is_lsi_offset(off_adj, 3)) {
1725
emit(A64_LDR64I(dst, src_adj, off_adj), ctx);
1726
} else {
1727
emit_a64_mov_i(1, tmp, off, ctx);
1728
emit(A64_LDR64(dst, src, tmp), ctx);
1729
}
1730
break;
1731
}
1732
1733
ret = add_exception_handler(insn, ctx, dst);
1734
if (ret)
1735
return ret;
1736
break;
1737
1738
/* speculation barrier against v1 and v4 */
1739
case BPF_ST | BPF_NOSPEC:
1740
if (alternative_has_cap_likely(ARM64_HAS_SB)) {
1741
emit(A64_SB, ctx);
1742
} else {
1743
emit(A64_DSB_NSH, ctx);
1744
emit(A64_ISB, ctx);
1745
}
1746
break;
1747
1748
/* ST: *(size *)(dst + off) = imm */
1749
case BPF_ST | BPF_MEM | BPF_W:
1750
case BPF_ST | BPF_MEM | BPF_H:
1751
case BPF_ST | BPF_MEM | BPF_B:
1752
case BPF_ST | BPF_MEM | BPF_DW:
1753
case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1754
case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1755
case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1756
case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1757
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1758
emit(A64_ADD(1, tmp3, dst, arena_vm_base), ctx);
1759
dst = tmp3;
1760
}
1761
if (dst == fp) {
1762
dst_adj = ctx->priv_sp_used ? priv_sp : A64_SP;
1763
off_adj = off + ctx->stack_size;
1764
} else {
1765
dst_adj = dst;
1766
off_adj = off;
1767
}
1768
/* Load imm to a register then store it */
1769
emit_a64_mov_i(1, tmp, imm, ctx);
1770
switch (BPF_SIZE(code)) {
1771
case BPF_W:
1772
if (is_lsi_offset(off_adj, 2)) {
1773
emit(A64_STR32I(tmp, dst_adj, off_adj), ctx);
1774
} else {
1775
emit_a64_mov_i(1, tmp2, off, ctx);
1776
emit(A64_STR32(tmp, dst, tmp2), ctx);
1777
}
1778
break;
1779
case BPF_H:
1780
if (is_lsi_offset(off_adj, 1)) {
1781
emit(A64_STRHI(tmp, dst_adj, off_adj), ctx);
1782
} else {
1783
emit_a64_mov_i(1, tmp2, off, ctx);
1784
emit(A64_STRH(tmp, dst, tmp2), ctx);
1785
}
1786
break;
1787
case BPF_B:
1788
if (is_lsi_offset(off_adj, 0)) {
1789
emit(A64_STRBI(tmp, dst_adj, off_adj), ctx);
1790
} else {
1791
emit_a64_mov_i(1, tmp2, off, ctx);
1792
emit(A64_STRB(tmp, dst, tmp2), ctx);
1793
}
1794
break;
1795
case BPF_DW:
1796
if (is_lsi_offset(off_adj, 3)) {
1797
emit(A64_STR64I(tmp, dst_adj, off_adj), ctx);
1798
} else {
1799
emit_a64_mov_i(1, tmp2, off, ctx);
1800
emit(A64_STR64(tmp, dst, tmp2), ctx);
1801
}
1802
break;
1803
}
1804
1805
ret = add_exception_handler(insn, ctx, dst);
1806
if (ret)
1807
return ret;
1808
break;
1809
1810
/* STX: *(size *)(dst + off) = src */
1811
case BPF_STX | BPF_MEM | BPF_W:
1812
case BPF_STX | BPF_MEM | BPF_H:
1813
case BPF_STX | BPF_MEM | BPF_B:
1814
case BPF_STX | BPF_MEM | BPF_DW:
1815
case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1816
case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1817
case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1818
case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1819
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1820
emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx);
1821
dst = tmp2;
1822
}
1823
if (dst == fp) {
1824
dst_adj = ctx->priv_sp_used ? priv_sp : A64_SP;
1825
off_adj = off + ctx->stack_size;
1826
} else {
1827
dst_adj = dst;
1828
off_adj = off;
1829
}
1830
switch (BPF_SIZE(code)) {
1831
case BPF_W:
1832
if (is_lsi_offset(off_adj, 2)) {
1833
emit(A64_STR32I(src, dst_adj, off_adj), ctx);
1834
} else {
1835
emit_a64_mov_i(1, tmp, off, ctx);
1836
emit(A64_STR32(src, dst, tmp), ctx);
1837
}
1838
break;
1839
case BPF_H:
1840
if (is_lsi_offset(off_adj, 1)) {
1841
emit(A64_STRHI(src, dst_adj, off_adj), ctx);
1842
} else {
1843
emit_a64_mov_i(1, tmp, off, ctx);
1844
emit(A64_STRH(src, dst, tmp), ctx);
1845
}
1846
break;
1847
case BPF_B:
1848
if (is_lsi_offset(off_adj, 0)) {
1849
emit(A64_STRBI(src, dst_adj, off_adj), ctx);
1850
} else {
1851
emit_a64_mov_i(1, tmp, off, ctx);
1852
emit(A64_STRB(src, dst, tmp), ctx);
1853
}
1854
break;
1855
case BPF_DW:
1856
if (is_lsi_offset(off_adj, 3)) {
1857
emit(A64_STR64I(src, dst_adj, off_adj), ctx);
1858
} else {
1859
emit_a64_mov_i(1, tmp, off, ctx);
1860
emit(A64_STR64(src, dst, tmp), ctx);
1861
}
1862
break;
1863
}
1864
1865
ret = add_exception_handler(insn, ctx, dst);
1866
if (ret)
1867
return ret;
1868
break;
1869
1870
case BPF_STX | BPF_ATOMIC | BPF_B:
1871
case BPF_STX | BPF_ATOMIC | BPF_H:
1872
case BPF_STX | BPF_ATOMIC | BPF_W:
1873
case BPF_STX | BPF_ATOMIC | BPF_DW:
1874
case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
1875
case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
1876
case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1877
case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1878
if (bpf_atomic_is_load_store(insn))
1879
ret = emit_atomic_ld_st(insn, ctx);
1880
else if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
1881
ret = emit_lse_atomic(insn, ctx);
1882
else
1883
ret = emit_ll_sc_atomic(insn, ctx);
1884
if (ret)
1885
return ret;
1886
1887
if (BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) {
1888
ret = add_exception_handler(insn, ctx, dst);
1889
if (ret)
1890
return ret;
1891
}
1892
break;
1893
1894
default:
1895
pr_err_once("unknown opcode %02x\n", code);
1896
return -EINVAL;
1897
}
1898
1899
return 0;
1900
}
1901
1902
static int build_body(struct jit_ctx *ctx, bool extra_pass)
1903
{
1904
const struct bpf_prog *prog = ctx->prog;
1905
int i;
1906
1907
/*
1908
* - offset[0] offset of the end of prologue,
1909
* start of the 1st instruction.
1910
* - offset[1] - offset of the end of 1st instruction,
1911
* start of the 2nd instruction
1912
* [....]
1913
* - offset[3] - offset of the end of 3rd instruction,
1914
* start of 4th instruction
1915
*/
1916
for (i = 0; i < prog->len; i++) {
1917
const struct bpf_insn *insn = &prog->insnsi[i];
1918
int ret;
1919
1920
ctx->offset[i] = ctx->idx;
1921
ret = build_insn(insn, ctx, extra_pass);
1922
if (ret > 0) {
1923
i++;
1924
ctx->offset[i] = ctx->idx;
1925
continue;
1926
}
1927
if (ret)
1928
return ret;
1929
}
1930
/*
1931
* offset is allocated with prog->len + 1 so fill in
1932
* the last element with the offset after the last
1933
* instruction (end of program)
1934
*/
1935
ctx->offset[i] = ctx->idx;
1936
1937
return 0;
1938
}
1939
1940
static int validate_code(struct jit_ctx *ctx)
1941
{
1942
int i;
1943
1944
for (i = 0; i < ctx->idx; i++) {
1945
u32 a64_insn = le32_to_cpu(ctx->image[i]);
1946
1947
if (a64_insn == AARCH64_BREAK_FAULT)
1948
return -1;
1949
}
1950
return 0;
1951
}
1952
1953
static int validate_ctx(struct jit_ctx *ctx)
1954
{
1955
if (validate_code(ctx))
1956
return -1;
1957
1958
if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries))
1959
return -1;
1960
1961
return 0;
1962
}
1963
1964
static inline void bpf_flush_icache(void *start, void *end)
1965
{
1966
flush_icache_range((unsigned long)start, (unsigned long)end);
1967
}
1968
1969
static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
1970
{
1971
int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
1972
u64 *stack_ptr;
1973
1974
for_each_possible_cpu(cpu) {
1975
stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
1976
stack_ptr[0] = PRIV_STACK_GUARD_VAL;
1977
stack_ptr[1] = PRIV_STACK_GUARD_VAL;
1978
stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
1979
stack_ptr[underflow_idx + 1] = PRIV_STACK_GUARD_VAL;
1980
}
1981
}
1982
1983
static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
1984
struct bpf_prog *prog)
1985
{
1986
int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
1987
u64 *stack_ptr;
1988
1989
for_each_possible_cpu(cpu) {
1990
stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
1991
if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
1992
stack_ptr[1] != PRIV_STACK_GUARD_VAL ||
1993
stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL ||
1994
stack_ptr[underflow_idx + 1] != PRIV_STACK_GUARD_VAL) {
1995
pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
1996
bpf_jit_get_prog_name(prog));
1997
break;
1998
}
1999
}
2000
}
2001
2002
struct arm64_jit_data {
2003
struct bpf_binary_header *header;
2004
u8 *ro_image;
2005
struct bpf_binary_header *ro_header;
2006
struct jit_ctx ctx;
2007
};
2008
2009
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2010
{
2011
int image_size, prog_size, extable_size, extable_align, extable_offset;
2012
struct bpf_prog *tmp, *orig_prog = prog;
2013
struct bpf_binary_header *header;
2014
struct bpf_binary_header *ro_header = NULL;
2015
struct arm64_jit_data *jit_data;
2016
void __percpu *priv_stack_ptr = NULL;
2017
bool was_classic = bpf_prog_was_classic(prog);
2018
int priv_stack_alloc_sz;
2019
bool tmp_blinded = false;
2020
bool extra_pass = false;
2021
struct jit_ctx ctx;
2022
u8 *image_ptr;
2023
u8 *ro_image_ptr;
2024
int body_idx;
2025
int exentry_idx;
2026
2027
if (!prog->jit_requested)
2028
return orig_prog;
2029
2030
tmp = bpf_jit_blind_constants(prog);
2031
/* If blinding was requested and we failed during blinding,
2032
* we must fall back to the interpreter.
2033
*/
2034
if (IS_ERR(tmp))
2035
return orig_prog;
2036
if (tmp != prog) {
2037
tmp_blinded = true;
2038
prog = tmp;
2039
}
2040
2041
jit_data = prog->aux->jit_data;
2042
if (!jit_data) {
2043
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2044
if (!jit_data) {
2045
prog = orig_prog;
2046
goto out;
2047
}
2048
prog->aux->jit_data = jit_data;
2049
}
2050
priv_stack_ptr = prog->aux->priv_stack_ptr;
2051
if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
2052
/* Allocate actual private stack size with verifier-calculated
2053
* stack size plus two memory guards to protect overflow and
2054
* underflow.
2055
*/
2056
priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 16) +
2057
2 * PRIV_STACK_GUARD_SZ;
2058
priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 16, GFP_KERNEL);
2059
if (!priv_stack_ptr) {
2060
prog = orig_prog;
2061
goto out_priv_stack;
2062
}
2063
2064
priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
2065
prog->aux->priv_stack_ptr = priv_stack_ptr;
2066
}
2067
if (jit_data->ctx.offset) {
2068
ctx = jit_data->ctx;
2069
ro_image_ptr = jit_data->ro_image;
2070
ro_header = jit_data->ro_header;
2071
header = jit_data->header;
2072
image_ptr = (void *)header + ((void *)ro_image_ptr
2073
- (void *)ro_header);
2074
extra_pass = true;
2075
prog_size = sizeof(u32) * ctx.idx;
2076
goto skip_init_ctx;
2077
}
2078
memset(&ctx, 0, sizeof(ctx));
2079
ctx.prog = prog;
2080
2081
ctx.offset = kvcalloc(prog->len + 1, sizeof(int), GFP_KERNEL);
2082
if (ctx.offset == NULL) {
2083
prog = orig_prog;
2084
goto out_off;
2085
}
2086
2087
ctx.user_vm_start = bpf_arena_get_user_vm_start(prog->aux->arena);
2088
ctx.arena_vm_start = bpf_arena_get_kern_vm_start(prog->aux->arena);
2089
2090
if (priv_stack_ptr)
2091
ctx.priv_sp_used = true;
2092
2093
/* Pass 1: Estimate the maximum image size.
2094
*
2095
* BPF line info needs ctx->offset[i] to be the offset of
2096
* instruction[i] in jited image, so build prologue first.
2097
*/
2098
if (build_prologue(&ctx, was_classic)) {
2099
prog = orig_prog;
2100
goto out_off;
2101
}
2102
2103
if (build_body(&ctx, extra_pass)) {
2104
prog = orig_prog;
2105
goto out_off;
2106
}
2107
2108
ctx.epilogue_offset = ctx.idx;
2109
build_epilogue(&ctx, was_classic);
2110
build_plt(&ctx);
2111
2112
extable_align = __alignof__(struct exception_table_entry);
2113
extable_size = prog->aux->num_exentries *
2114
sizeof(struct exception_table_entry);
2115
2116
/* Now we know the maximum image size. */
2117
prog_size = sizeof(u32) * ctx.idx;
2118
/* also allocate space for plt target */
2119
extable_offset = round_up(prog_size + PLT_TARGET_SIZE, extable_align);
2120
image_size = extable_offset + extable_size;
2121
ro_header = bpf_jit_binary_pack_alloc(image_size, &ro_image_ptr,
2122
sizeof(u32), &header, &image_ptr,
2123
jit_fill_hole);
2124
if (!ro_header) {
2125
prog = orig_prog;
2126
goto out_off;
2127
}
2128
2129
/* Pass 2: Determine jited position and result for each instruction */
2130
2131
/*
2132
* Use the image(RW) for writing the JITed instructions. But also save
2133
* the ro_image(RX) for calculating the offsets in the image. The RW
2134
* image will be later copied to the RX image from where the program
2135
* will run. The bpf_jit_binary_pack_finalize() will do this copy in the
2136
* final step.
2137
*/
2138
ctx.image = (__le32 *)image_ptr;
2139
ctx.ro_image = (__le32 *)ro_image_ptr;
2140
if (extable_size)
2141
prog->aux->extable = (void *)ro_image_ptr + extable_offset;
2142
skip_init_ctx:
2143
ctx.idx = 0;
2144
ctx.exentry_idx = 0;
2145
ctx.write = true;
2146
2147
build_prologue(&ctx, was_classic);
2148
2149
/* Record exentry_idx and body_idx before first build_body */
2150
exentry_idx = ctx.exentry_idx;
2151
body_idx = ctx.idx;
2152
/* Dont write body instructions to memory for now */
2153
ctx.write = false;
2154
2155
if (build_body(&ctx, extra_pass)) {
2156
prog = orig_prog;
2157
goto out_free_hdr;
2158
}
2159
2160
ctx.epilogue_offset = ctx.idx;
2161
ctx.exentry_idx = exentry_idx;
2162
ctx.idx = body_idx;
2163
ctx.write = true;
2164
2165
/* Pass 3: Adjust jump offset and write final image */
2166
if (build_body(&ctx, extra_pass) ||
2167
WARN_ON_ONCE(ctx.idx != ctx.epilogue_offset)) {
2168
prog = orig_prog;
2169
goto out_free_hdr;
2170
}
2171
2172
build_epilogue(&ctx, was_classic);
2173
build_plt(&ctx);
2174
2175
/* Extra pass to validate JITed code. */
2176
if (validate_ctx(&ctx)) {
2177
prog = orig_prog;
2178
goto out_free_hdr;
2179
}
2180
2181
/* update the real prog size */
2182
prog_size = sizeof(u32) * ctx.idx;
2183
2184
/* And we're done. */
2185
if (bpf_jit_enable > 1)
2186
bpf_jit_dump(prog->len, prog_size, 2, ctx.image);
2187
2188
if (!prog->is_func || extra_pass) {
2189
/* The jited image may shrink since the jited result for
2190
* BPF_CALL to subprog may be changed from indirect call
2191
* to direct call.
2192
*/
2193
if (extra_pass && ctx.idx > jit_data->ctx.idx) {
2194
pr_err_once("multi-func JIT bug %d > %d\n",
2195
ctx.idx, jit_data->ctx.idx);
2196
prog->bpf_func = NULL;
2197
prog->jited = 0;
2198
prog->jited_len = 0;
2199
goto out_free_hdr;
2200
}
2201
if (WARN_ON(bpf_jit_binary_pack_finalize(ro_header, header))) {
2202
/* ro_header has been freed */
2203
ro_header = NULL;
2204
prog = orig_prog;
2205
goto out_off;
2206
}
2207
/*
2208
* The instructions have now been copied to the ROX region from
2209
* where they will execute. Now the data cache has to be cleaned to
2210
* the PoU and the I-cache has to be invalidated for the VAs.
2211
*/
2212
bpf_flush_icache(ro_header, ctx.ro_image + ctx.idx);
2213
} else {
2214
jit_data->ctx = ctx;
2215
jit_data->ro_image = ro_image_ptr;
2216
jit_data->header = header;
2217
jit_data->ro_header = ro_header;
2218
}
2219
2220
prog->bpf_func = (void *)ctx.ro_image + cfi_get_offset();
2221
prog->jited = 1;
2222
prog->jited_len = prog_size - cfi_get_offset();
2223
2224
if (!prog->is_func || extra_pass) {
2225
int i;
2226
2227
/* offset[prog->len] is the size of program */
2228
for (i = 0; i <= prog->len; i++)
2229
ctx.offset[i] *= AARCH64_INSN_SIZE;
2230
bpf_prog_fill_jited_linfo(prog, ctx.offset + 1);
2231
/*
2232
* The bpf_prog_update_insn_ptrs function expects offsets to
2233
* point to the first byte of the jitted instruction (unlike
2234
* the bpf_prog_fill_jited_linfo above, which, for historical
2235
* reasons, expects to point to the next instruction)
2236
*/
2237
bpf_prog_update_insn_ptrs(prog, ctx.offset, ctx.ro_image);
2238
out_off:
2239
if (!ro_header && priv_stack_ptr) {
2240
free_percpu(priv_stack_ptr);
2241
prog->aux->priv_stack_ptr = NULL;
2242
}
2243
kvfree(ctx.offset);
2244
out_priv_stack:
2245
kfree(jit_data);
2246
prog->aux->jit_data = NULL;
2247
}
2248
out:
2249
if (tmp_blinded)
2250
bpf_jit_prog_release_other(prog, prog == orig_prog ?
2251
tmp : orig_prog);
2252
return prog;
2253
2254
out_free_hdr:
2255
if (header) {
2256
bpf_arch_text_copy(&ro_header->size, &header->size,
2257
sizeof(header->size));
2258
bpf_jit_binary_pack_free(ro_header, header);
2259
}
2260
goto out_off;
2261
}
2262
2263
bool bpf_jit_supports_private_stack(void)
2264
{
2265
return true;
2266
}
2267
2268
bool bpf_jit_supports_kfunc_call(void)
2269
{
2270
return true;
2271
}
2272
2273
void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2274
{
2275
if (!aarch64_insn_copy(dst, src, len))
2276
return ERR_PTR(-EINVAL);
2277
return dst;
2278
}
2279
2280
u64 bpf_jit_alloc_exec_limit(void)
2281
{
2282
return VMALLOC_END - VMALLOC_START;
2283
}
2284
2285
/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2286
bool bpf_jit_supports_subprog_tailcalls(void)
2287
{
2288
return true;
2289
}
2290
2291
static void invoke_bpf_prog(struct jit_ctx *ctx, struct bpf_tramp_link *l,
2292
int bargs_off, int retval_off, int run_ctx_off,
2293
bool save_ret)
2294
{
2295
__le32 *branch;
2296
u64 enter_prog;
2297
u64 exit_prog;
2298
struct bpf_prog *p = l->link.prog;
2299
int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2300
2301
enter_prog = (u64)bpf_trampoline_enter(p);
2302
exit_prog = (u64)bpf_trampoline_exit(p);
2303
2304
if (l->cookie == 0) {
2305
/* if cookie is zero, one instruction is enough to store it */
2306
emit(A64_STR64I(A64_ZR, A64_SP, run_ctx_off + cookie_off), ctx);
2307
} else {
2308
emit_a64_mov_i64(A64_R(10), l->cookie, ctx);
2309
emit(A64_STR64I(A64_R(10), A64_SP, run_ctx_off + cookie_off),
2310
ctx);
2311
}
2312
2313
/* save p to callee saved register x19 to avoid loading p with mov_i64
2314
* each time.
2315
*/
2316
emit_addr_mov_i64(A64_R(19), (const u64)p, ctx);
2317
2318
/* arg1: prog */
2319
emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
2320
/* arg2: &run_ctx */
2321
emit(A64_ADD_I(1, A64_R(1), A64_SP, run_ctx_off), ctx);
2322
2323
emit_call(enter_prog, ctx);
2324
2325
/* save return value to callee saved register x20 */
2326
emit(A64_MOV(1, A64_R(20), A64_R(0)), ctx);
2327
2328
/* if (__bpf_prog_enter(prog) == 0)
2329
* goto skip_exec_of_prog;
2330
*/
2331
branch = ctx->image + ctx->idx;
2332
emit(A64_NOP, ctx);
2333
2334
emit(A64_ADD_I(1, A64_R(0), A64_SP, bargs_off), ctx);
2335
if (!p->jited)
2336
emit_addr_mov_i64(A64_R(1), (const u64)p->insnsi, ctx);
2337
2338
emit_call((const u64)p->bpf_func, ctx);
2339
2340
if (save_ret)
2341
emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
2342
2343
if (ctx->image) {
2344
int offset = &ctx->image[ctx->idx] - branch;
2345
*branch = cpu_to_le32(A64_CBZ(1, A64_R(0), offset));
2346
}
2347
2348
/* arg1: prog */
2349
emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
2350
/* arg2: start time */
2351
emit(A64_MOV(1, A64_R(1), A64_R(20)), ctx);
2352
/* arg3: &run_ctx */
2353
emit(A64_ADD_I(1, A64_R(2), A64_SP, run_ctx_off), ctx);
2354
2355
emit_call(exit_prog, ctx);
2356
}
2357
2358
static void invoke_bpf_mod_ret(struct jit_ctx *ctx, struct bpf_tramp_links *tl,
2359
int bargs_off, int retval_off, int run_ctx_off,
2360
__le32 **branches)
2361
{
2362
int i;
2363
2364
/* The first fmod_ret program will receive a garbage return value.
2365
* Set this to 0 to avoid confusing the program.
2366
*/
2367
emit(A64_STR64I(A64_ZR, A64_SP, retval_off), ctx);
2368
for (i = 0; i < tl->nr_links; i++) {
2369
invoke_bpf_prog(ctx, tl->links[i], bargs_off, retval_off,
2370
run_ctx_off, true);
2371
/* if (*(u64 *)(sp + retval_off) != 0)
2372
* goto do_fexit;
2373
*/
2374
emit(A64_LDR64I(A64_R(10), A64_SP, retval_off), ctx);
2375
/* Save the location of branch, and generate a nop.
2376
* This nop will be replaced with a cbnz later.
2377
*/
2378
branches[i] = ctx->image + ctx->idx;
2379
emit(A64_NOP, ctx);
2380
}
2381
}
2382
2383
struct arg_aux {
2384
/* how many args are passed through registers, the rest of the args are
2385
* passed through stack
2386
*/
2387
int args_in_regs;
2388
/* how many registers are used to pass arguments */
2389
int regs_for_args;
2390
/* how much stack is used for additional args passed to bpf program
2391
* that did not fit in original function registers
2392
*/
2393
int bstack_for_args;
2394
/* home much stack is used for additional args passed to the
2395
* original function when called from trampoline (this one needs
2396
* arguments to be properly aligned)
2397
*/
2398
int ostack_for_args;
2399
};
2400
2401
static int calc_arg_aux(const struct btf_func_model *m,
2402
struct arg_aux *a)
2403
{
2404
int stack_slots, nregs, slots, i;
2405
2406
/* verifier ensures m->nr_args <= MAX_BPF_FUNC_ARGS */
2407
for (i = 0, nregs = 0; i < m->nr_args; i++) {
2408
slots = (m->arg_size[i] + 7) / 8;
2409
if (nregs + slots <= 8) /* passed through register ? */
2410
nregs += slots;
2411
else
2412
break;
2413
}
2414
2415
a->args_in_regs = i;
2416
a->regs_for_args = nregs;
2417
a->ostack_for_args = 0;
2418
a->bstack_for_args = 0;
2419
2420
/* the rest arguments are passed through stack */
2421
for (; i < m->nr_args; i++) {
2422
stack_slots = (m->arg_size[i] + 7) / 8;
2423
a->bstack_for_args += stack_slots * 8;
2424
a->ostack_for_args = a->ostack_for_args + stack_slots * 8;
2425
}
2426
2427
return 0;
2428
}
2429
2430
static void clear_garbage(struct jit_ctx *ctx, int reg, int effective_bytes)
2431
{
2432
if (effective_bytes) {
2433
int garbage_bits = 64 - 8 * effective_bytes;
2434
#ifdef CONFIG_CPU_BIG_ENDIAN
2435
/* garbage bits are at the right end */
2436
emit(A64_LSR(1, reg, reg, garbage_bits), ctx);
2437
emit(A64_LSL(1, reg, reg, garbage_bits), ctx);
2438
#else
2439
/* garbage bits are at the left end */
2440
emit(A64_LSL(1, reg, reg, garbage_bits), ctx);
2441
emit(A64_LSR(1, reg, reg, garbage_bits), ctx);
2442
#endif
2443
}
2444
}
2445
2446
static void save_args(struct jit_ctx *ctx, int bargs_off, int oargs_off,
2447
const struct btf_func_model *m,
2448
const struct arg_aux *a,
2449
bool for_call_origin)
2450
{
2451
int i;
2452
int reg;
2453
int doff;
2454
int soff;
2455
int slots;
2456
u8 tmp = bpf2a64[TMP_REG_1];
2457
2458
/* store arguments to the stack for the bpf program, or restore
2459
* arguments from stack for the original function
2460
*/
2461
for (reg = 0; reg < a->regs_for_args; reg++) {
2462
emit(for_call_origin ?
2463
A64_LDR64I(reg, A64_SP, bargs_off) :
2464
A64_STR64I(reg, A64_SP, bargs_off),
2465
ctx);
2466
bargs_off += 8;
2467
}
2468
2469
soff = 32; /* on stack arguments start from FP + 32 */
2470
doff = (for_call_origin ? oargs_off : bargs_off);
2471
2472
/* save on stack arguments */
2473
for (i = a->args_in_regs; i < m->nr_args; i++) {
2474
slots = (m->arg_size[i] + 7) / 8;
2475
/* verifier ensures arg_size <= 16, so slots equals 1 or 2 */
2476
while (slots-- > 0) {
2477
emit(A64_LDR64I(tmp, A64_FP, soff), ctx);
2478
/* if there is unused space in the last slot, clear
2479
* the garbage contained in the space.
2480
*/
2481
if (slots == 0 && !for_call_origin)
2482
clear_garbage(ctx, tmp, m->arg_size[i] % 8);
2483
emit(A64_STR64I(tmp, A64_SP, doff), ctx);
2484
soff += 8;
2485
doff += 8;
2486
}
2487
}
2488
}
2489
2490
static void restore_args(struct jit_ctx *ctx, int bargs_off, int nregs)
2491
{
2492
int reg;
2493
2494
for (reg = 0; reg < nregs; reg++) {
2495
emit(A64_LDR64I(reg, A64_SP, bargs_off), ctx);
2496
bargs_off += 8;
2497
}
2498
}
2499
2500
static bool is_struct_ops_tramp(const struct bpf_tramp_links *fentry_links)
2501
{
2502
return fentry_links->nr_links == 1 &&
2503
fentry_links->links[0]->link.type == BPF_LINK_TYPE_STRUCT_OPS;
2504
}
2505
2506
static void store_func_meta(struct jit_ctx *ctx, u64 func_meta, int func_meta_off)
2507
{
2508
emit_a64_mov_i64(A64_R(10), func_meta, ctx);
2509
emit(A64_STR64I(A64_R(10), A64_SP, func_meta_off), ctx);
2510
}
2511
2512
/* Based on the x86's implementation of arch_prepare_bpf_trampoline().
2513
*
2514
* bpf prog and function entry before bpf trampoline hooked:
2515
* mov x9, lr
2516
* nop
2517
*
2518
* bpf prog and function entry after bpf trampoline hooked:
2519
* mov x9, lr
2520
* bl <bpf_trampoline or plt>
2521
*
2522
*/
2523
static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im,
2524
struct bpf_tramp_links *tlinks, void *func_addr,
2525
const struct btf_func_model *m,
2526
const struct arg_aux *a,
2527
u32 flags)
2528
{
2529
int i;
2530
int stack_size;
2531
int retaddr_off;
2532
int regs_off;
2533
int retval_off;
2534
int bargs_off;
2535
int func_meta_off;
2536
int ip_off;
2537
int run_ctx_off;
2538
int oargs_off;
2539
int nfuncargs;
2540
struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2541
struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2542
struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2543
bool save_ret;
2544
__le32 **branches = NULL;
2545
bool is_struct_ops = is_struct_ops_tramp(fentry);
2546
int cookie_off, cookie_cnt, cookie_bargs_off;
2547
int fsession_cnt = bpf_fsession_cnt(tlinks);
2548
u64 func_meta;
2549
2550
/* trampoline stack layout:
2551
* [ parent ip ]
2552
* [ FP ]
2553
* SP + retaddr_off [ self ip ]
2554
* [ FP ]
2555
*
2556
* [ padding ] align SP to multiples of 16
2557
*
2558
* [ x20 ] callee saved reg x20
2559
* SP + regs_off [ x19 ] callee saved reg x19
2560
*
2561
* SP + retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or
2562
* BPF_TRAMP_F_RET_FENTRY_RET
2563
* [ arg reg N ]
2564
* [ ... ]
2565
* SP + bargs_off [ arg reg 1 ] for bpf
2566
*
2567
* SP + func_meta_off [ regs count, etc ]
2568
*
2569
* SP + ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2570
*
2571
* [ stack cookie N ]
2572
* [ ... ]
2573
* SP + cookie_off [ stack cookie 1 ]
2574
*
2575
* SP + run_ctx_off [ bpf_tramp_run_ctx ]
2576
*
2577
* [ stack arg N ]
2578
* [ ... ]
2579
* SP + oargs_off [ stack arg 1 ] for original func
2580
*/
2581
2582
stack_size = 0;
2583
oargs_off = stack_size;
2584
if (flags & BPF_TRAMP_F_CALL_ORIG)
2585
stack_size += a->ostack_for_args;
2586
2587
run_ctx_off = stack_size;
2588
/* room for bpf_tramp_run_ctx */
2589
stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
2590
2591
cookie_off = stack_size;
2592
/* room for session cookies */
2593
cookie_cnt = bpf_fsession_cookie_cnt(tlinks);
2594
stack_size += cookie_cnt * 8;
2595
2596
ip_off = stack_size;
2597
/* room for IP address argument */
2598
if (flags & BPF_TRAMP_F_IP_ARG)
2599
stack_size += 8;
2600
2601
func_meta_off = stack_size;
2602
/* room for function metadata, such as regs count */
2603
stack_size += 8;
2604
2605
bargs_off = stack_size;
2606
/* room for args */
2607
nfuncargs = a->regs_for_args + a->bstack_for_args / 8;
2608
stack_size += 8 * nfuncargs;
2609
2610
/* room for return value */
2611
retval_off = stack_size;
2612
save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2613
if (save_ret)
2614
stack_size += 8;
2615
2616
/* room for callee saved registers, currently x19 and x20 are used */
2617
regs_off = stack_size;
2618
stack_size += 16;
2619
2620
/* round up to multiples of 16 to avoid SPAlignmentFault */
2621
stack_size = round_up(stack_size, 16);
2622
2623
/* return address locates above FP */
2624
retaddr_off = stack_size + 8;
2625
2626
if (flags & BPF_TRAMP_F_INDIRECT) {
2627
/*
2628
* Indirect call for bpf_struct_ops
2629
*/
2630
emit_kcfi(cfi_get_func_hash(func_addr), ctx);
2631
}
2632
/* bpf trampoline may be invoked by 3 instruction types:
2633
* 1. bl, attached to bpf prog or kernel function via short jump
2634
* 2. br, attached to bpf prog or kernel function via long jump
2635
* 3. blr, working as a function pointer, used by struct_ops.
2636
* So BTI_JC should used here to support both br and blr.
2637
*/
2638
emit_bti(A64_BTI_JC, ctx);
2639
2640
/* x9 is not set for struct_ops */
2641
if (!is_struct_ops) {
2642
/* frame for parent function */
2643
emit(A64_PUSH(A64_FP, A64_R(9), A64_SP), ctx);
2644
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
2645
}
2646
2647
/* frame for patched function for tracing, or caller for struct_ops */
2648
emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
2649
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
2650
2651
/* allocate stack space */
2652
emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx);
2653
2654
if (flags & BPF_TRAMP_F_IP_ARG) {
2655
/* save ip address of the traced function */
2656
emit_addr_mov_i64(A64_R(10), (const u64)func_addr, ctx);
2657
emit(A64_STR64I(A64_R(10), A64_SP, ip_off), ctx);
2658
}
2659
2660
/* save function metadata */
2661
func_meta = nfuncargs;
2662
store_func_meta(ctx, func_meta, func_meta_off);
2663
2664
/* save args for bpf */
2665
save_args(ctx, bargs_off, oargs_off, m, a, false);
2666
2667
/* save callee saved registers */
2668
emit(A64_STR64I(A64_R(19), A64_SP, regs_off), ctx);
2669
emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
2670
2671
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2672
/* for the first pass, assume the worst case */
2673
if (!ctx->image)
2674
ctx->idx += 4;
2675
else
2676
emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
2677
emit_call((const u64)__bpf_tramp_enter, ctx);
2678
}
2679
2680
if (fsession_cnt) {
2681
/* clear all the session cookies' value */
2682
emit(A64_MOVZ(1, A64_R(10), 0, 0), ctx);
2683
for (int i = 0; i < cookie_cnt; i++)
2684
emit(A64_STR64I(A64_R(10), A64_SP, cookie_off + 8 * i), ctx);
2685
/* clear the return value to make sure fentry always gets 0 */
2686
emit(A64_STR64I(A64_R(10), A64_SP, retval_off), ctx);
2687
}
2688
2689
cookie_bargs_off = (bargs_off - cookie_off) / 8;
2690
for (i = 0; i < fentry->nr_links; i++) {
2691
if (bpf_prog_calls_session_cookie(fentry->links[i])) {
2692
u64 meta = func_meta | (cookie_bargs_off << BPF_TRAMP_COOKIE_INDEX_SHIFT);
2693
2694
store_func_meta(ctx, meta, func_meta_off);
2695
cookie_bargs_off--;
2696
}
2697
invoke_bpf_prog(ctx, fentry->links[i], bargs_off,
2698
retval_off, run_ctx_off,
2699
flags & BPF_TRAMP_F_RET_FENTRY_RET);
2700
}
2701
2702
if (fmod_ret->nr_links) {
2703
branches = kcalloc(fmod_ret->nr_links, sizeof(__le32 *),
2704
GFP_KERNEL);
2705
if (!branches)
2706
return -ENOMEM;
2707
2708
invoke_bpf_mod_ret(ctx, fmod_ret, bargs_off, retval_off,
2709
run_ctx_off, branches);
2710
}
2711
2712
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2713
/* save args for original func */
2714
save_args(ctx, bargs_off, oargs_off, m, a, true);
2715
/* call original func */
2716
emit(A64_LDR64I(A64_R(10), A64_SP, retaddr_off), ctx);
2717
emit(A64_ADR(A64_LR, AARCH64_INSN_SIZE * 2), ctx);
2718
emit(A64_RET(A64_R(10)), ctx);
2719
/* store return value */
2720
emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
2721
/* reserve a nop for bpf_tramp_image_put */
2722
im->ip_after_call = ctx->ro_image + ctx->idx;
2723
emit(A64_NOP, ctx);
2724
}
2725
2726
/* update the branches saved in invoke_bpf_mod_ret with cbnz */
2727
for (i = 0; i < fmod_ret->nr_links && ctx->image != NULL; i++) {
2728
int offset = &ctx->image[ctx->idx] - branches[i];
2729
*branches[i] = cpu_to_le32(A64_CBNZ(1, A64_R(10), offset));
2730
}
2731
2732
/* set the "is_return" flag for fsession */
2733
func_meta |= (1ULL << BPF_TRAMP_IS_RETURN_SHIFT);
2734
if (fsession_cnt)
2735
store_func_meta(ctx, func_meta, func_meta_off);
2736
2737
cookie_bargs_off = (bargs_off - cookie_off) / 8;
2738
for (i = 0; i < fexit->nr_links; i++) {
2739
if (bpf_prog_calls_session_cookie(fexit->links[i])) {
2740
u64 meta = func_meta | (cookie_bargs_off << BPF_TRAMP_COOKIE_INDEX_SHIFT);
2741
2742
store_func_meta(ctx, meta, func_meta_off);
2743
cookie_bargs_off--;
2744
}
2745
invoke_bpf_prog(ctx, fexit->links[i], bargs_off, retval_off,
2746
run_ctx_off, false);
2747
}
2748
2749
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2750
im->ip_epilogue = ctx->ro_image + ctx->idx;
2751
/* for the first pass, assume the worst case */
2752
if (!ctx->image)
2753
ctx->idx += 4;
2754
else
2755
emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
2756
emit_call((const u64)__bpf_tramp_exit, ctx);
2757
}
2758
2759
if (flags & BPF_TRAMP_F_RESTORE_REGS)
2760
restore_args(ctx, bargs_off, a->regs_for_args);
2761
2762
/* restore callee saved register x19 and x20 */
2763
emit(A64_LDR64I(A64_R(19), A64_SP, regs_off), ctx);
2764
emit(A64_LDR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
2765
2766
if (save_ret)
2767
emit(A64_LDR64I(A64_R(0), A64_SP, retval_off), ctx);
2768
2769
/* reset SP */
2770
emit(A64_MOV(1, A64_SP, A64_FP), ctx);
2771
2772
if (is_struct_ops) {
2773
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
2774
emit(A64_RET(A64_LR), ctx);
2775
} else {
2776
/* pop frames */
2777
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
2778
emit(A64_POP(A64_FP, A64_R(9), A64_SP), ctx);
2779
2780
if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2781
/* skip patched function, return to parent */
2782
emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
2783
emit(A64_RET(A64_R(9)), ctx);
2784
} else {
2785
/* return to patched function */
2786
emit(A64_MOV(1, A64_R(10), A64_LR), ctx);
2787
emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
2788
emit(A64_RET(A64_R(10)), ctx);
2789
}
2790
}
2791
2792
kfree(branches);
2793
2794
return ctx->idx;
2795
}
2796
2797
bool bpf_jit_supports_fsession(void)
2798
{
2799
return true;
2800
}
2801
2802
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2803
struct bpf_tramp_links *tlinks, void *func_addr)
2804
{
2805
struct jit_ctx ctx = {
2806
.image = NULL,
2807
.idx = 0,
2808
};
2809
struct bpf_tramp_image im;
2810
struct arg_aux aaux;
2811
int ret;
2812
2813
ret = calc_arg_aux(m, &aaux);
2814
if (ret < 0)
2815
return ret;
2816
2817
ret = prepare_trampoline(&ctx, &im, tlinks, func_addr, m, &aaux, flags);
2818
if (ret < 0)
2819
return ret;
2820
2821
return ret < 0 ? ret : ret * AARCH64_INSN_SIZE;
2822
}
2823
2824
void *arch_alloc_bpf_trampoline(unsigned int size)
2825
{
2826
return bpf_prog_pack_alloc(size, jit_fill_hole);
2827
}
2828
2829
void arch_free_bpf_trampoline(void *image, unsigned int size)
2830
{
2831
bpf_prog_pack_free(image, size);
2832
}
2833
2834
int arch_protect_bpf_trampoline(void *image, unsigned int size)
2835
{
2836
return 0;
2837
}
2838
2839
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image,
2840
void *ro_image_end, const struct btf_func_model *m,
2841
u32 flags, struct bpf_tramp_links *tlinks,
2842
void *func_addr)
2843
{
2844
u32 size = ro_image_end - ro_image;
2845
struct arg_aux aaux;
2846
void *image, *tmp;
2847
int ret;
2848
2849
/* image doesn't need to be in module memory range, so we can
2850
* use kvmalloc.
2851
*/
2852
image = kvmalloc(size, GFP_KERNEL);
2853
if (!image)
2854
return -ENOMEM;
2855
2856
struct jit_ctx ctx = {
2857
.image = image,
2858
.ro_image = ro_image,
2859
.idx = 0,
2860
.write = true,
2861
};
2862
2863
2864
jit_fill_hole(image, (unsigned int)(ro_image_end - ro_image));
2865
ret = calc_arg_aux(m, &aaux);
2866
if (ret)
2867
goto out;
2868
ret = prepare_trampoline(&ctx, im, tlinks, func_addr, m, &aaux, flags);
2869
2870
if (ret > 0 && validate_code(&ctx) < 0) {
2871
ret = -EINVAL;
2872
goto out;
2873
}
2874
2875
if (ret > 0)
2876
ret *= AARCH64_INSN_SIZE;
2877
2878
tmp = bpf_arch_text_copy(ro_image, image, size);
2879
if (IS_ERR(tmp)) {
2880
ret = PTR_ERR(tmp);
2881
goto out;
2882
}
2883
2884
out:
2885
kvfree(image);
2886
return ret;
2887
}
2888
2889
static bool is_long_jump(void *ip, void *target)
2890
{
2891
long offset;
2892
2893
/* NULL target means this is a NOP */
2894
if (!target)
2895
return false;
2896
2897
offset = (long)target - (long)ip;
2898
return offset < -SZ_128M || offset >= SZ_128M;
2899
}
2900
2901
static int gen_branch_or_nop(enum aarch64_insn_branch_type type, void *ip,
2902
void *addr, void *plt, u32 *insn)
2903
{
2904
void *target;
2905
2906
if (!addr) {
2907
*insn = aarch64_insn_gen_nop();
2908
return 0;
2909
}
2910
2911
if (is_long_jump(ip, addr))
2912
target = plt;
2913
else
2914
target = addr;
2915
2916
*insn = aarch64_insn_gen_branch_imm((unsigned long)ip,
2917
(unsigned long)target,
2918
type);
2919
2920
return *insn != AARCH64_BREAK_FAULT ? 0 : -EFAULT;
2921
}
2922
2923
/* Replace the branch instruction from @ip to @old_addr in a bpf prog or a bpf
2924
* trampoline with the branch instruction from @ip to @new_addr. If @old_addr
2925
* or @new_addr is NULL, the old or new instruction is NOP.
2926
*
2927
* When @ip is the bpf prog entry, a bpf trampoline is being attached or
2928
* detached. Since bpf trampoline and bpf prog are allocated separately with
2929
* vmalloc, the address distance may exceed 128MB, the maximum branch range.
2930
* So long jump should be handled.
2931
*
2932
* When a bpf prog is constructed, a plt pointing to empty trampoline
2933
* dummy_tramp is placed at the end:
2934
*
2935
* bpf_prog:
2936
* mov x9, lr
2937
* nop // patchsite
2938
* ...
2939
* ret
2940
*
2941
* plt:
2942
* ldr x10, target
2943
* br x10
2944
* target:
2945
* .quad dummy_tramp // plt target
2946
*
2947
* This is also the state when no trampoline is attached.
2948
*
2949
* When a short-jump bpf trampoline is attached, the patchsite is patched
2950
* to a bl instruction to the trampoline directly:
2951
*
2952
* bpf_prog:
2953
* mov x9, lr
2954
* bl <short-jump bpf trampoline address> // patchsite
2955
* ...
2956
* ret
2957
*
2958
* plt:
2959
* ldr x10, target
2960
* br x10
2961
* target:
2962
* .quad dummy_tramp // plt target
2963
*
2964
* When a long-jump bpf trampoline is attached, the plt target is filled with
2965
* the trampoline address and the patchsite is patched to a bl instruction to
2966
* the plt:
2967
*
2968
* bpf_prog:
2969
* mov x9, lr
2970
* bl plt // patchsite
2971
* ...
2972
* ret
2973
*
2974
* plt:
2975
* ldr x10, target
2976
* br x10
2977
* target:
2978
* .quad <long-jump bpf trampoline address> // plt target
2979
*
2980
* The dummy_tramp is used to prevent another CPU from jumping to unknown
2981
* locations during the patching process, making the patching process easier.
2982
*/
2983
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
2984
enum bpf_text_poke_type new_t, void *old_addr,
2985
void *new_addr)
2986
{
2987
int ret;
2988
u32 old_insn;
2989
u32 new_insn;
2990
u32 replaced;
2991
struct bpf_plt *plt = NULL;
2992
unsigned long size = 0UL;
2993
unsigned long offset = ~0UL;
2994
enum aarch64_insn_branch_type branch_type;
2995
char namebuf[KSYM_NAME_LEN];
2996
void *image = NULL;
2997
u64 plt_target = 0ULL;
2998
bool poking_bpf_entry;
2999
3000
if (!__bpf_address_lookup((unsigned long)ip, &size, &offset, namebuf))
3001
/* Only poking bpf text is supported. Since kernel function
3002
* entry is set up by ftrace, we reply on ftrace to poke kernel
3003
* functions.
3004
*/
3005
return -ENOTSUPP;
3006
3007
image = ip - offset;
3008
/* zero offset means we're poking bpf prog entry */
3009
poking_bpf_entry = (offset == 0UL);
3010
3011
/* bpf prog entry, find plt and the real patchsite */
3012
if (poking_bpf_entry) {
3013
/* plt locates at the end of bpf prog */
3014
plt = image + size - PLT_TARGET_OFFSET;
3015
3016
/* skip to the nop instruction in bpf prog entry:
3017
* bti c // if BTI enabled
3018
* mov x9, x30
3019
* nop
3020
*/
3021
ip = image + POKE_OFFSET * AARCH64_INSN_SIZE;
3022
}
3023
3024
/* long jump is only possible at bpf prog entry */
3025
if (WARN_ON((is_long_jump(ip, new_addr) || is_long_jump(ip, old_addr)) &&
3026
!poking_bpf_entry))
3027
return -EINVAL;
3028
3029
branch_type = old_t == BPF_MOD_CALL ? AARCH64_INSN_BRANCH_LINK :
3030
AARCH64_INSN_BRANCH_NOLINK;
3031
if (gen_branch_or_nop(branch_type, ip, old_addr, plt, &old_insn) < 0)
3032
return -EFAULT;
3033
3034
branch_type = new_t == BPF_MOD_CALL ? AARCH64_INSN_BRANCH_LINK :
3035
AARCH64_INSN_BRANCH_NOLINK;
3036
if (gen_branch_or_nop(branch_type, ip, new_addr, plt, &new_insn) < 0)
3037
return -EFAULT;
3038
3039
if (is_long_jump(ip, new_addr))
3040
plt_target = (u64)new_addr;
3041
else if (is_long_jump(ip, old_addr))
3042
/* if the old target is a long jump and the new target is not,
3043
* restore the plt target to dummy_tramp, so there is always a
3044
* legal and harmless address stored in plt target, and we'll
3045
* never jump from plt to an unknown place.
3046
*/
3047
plt_target = (u64)&dummy_tramp;
3048
3049
if (plt_target) {
3050
/* non-zero plt_target indicates we're patching a bpf prog,
3051
* which is read only.
3052
*/
3053
if (set_memory_rw(PAGE_MASK & ((uintptr_t)&plt->target), 1))
3054
return -EFAULT;
3055
WRITE_ONCE(plt->target, plt_target);
3056
set_memory_ro(PAGE_MASK & ((uintptr_t)&plt->target), 1);
3057
/* since plt target points to either the new trampoline
3058
* or dummy_tramp, even if another CPU reads the old plt
3059
* target value before fetching the bl instruction to plt,
3060
* it will be brought back by dummy_tramp, so no barrier is
3061
* required here.
3062
*/
3063
}
3064
3065
/* if the old target and the new target are both long jumps, no
3066
* patching is required
3067
*/
3068
if (old_insn == new_insn)
3069
return 0;
3070
3071
mutex_lock(&text_mutex);
3072
if (aarch64_insn_read(ip, &replaced)) {
3073
ret = -EFAULT;
3074
goto out;
3075
}
3076
3077
if (replaced != old_insn) {
3078
ret = -EFAULT;
3079
goto out;
3080
}
3081
3082
/* We call aarch64_insn_patch_text_nosync() to replace instruction
3083
* atomically, so no other CPUs will fetch a half-new and half-old
3084
* instruction. But there is chance that another CPU executes the
3085
* old instruction after the patching operation finishes (e.g.,
3086
* pipeline not flushed, or icache not synchronized yet).
3087
*
3088
* 1. when a new trampoline is attached, it is not a problem for
3089
* different CPUs to jump to different trampolines temporarily.
3090
*
3091
* 2. when an old trampoline is freed, we should wait for all other
3092
* CPUs to exit the trampoline and make sure the trampoline is no
3093
* longer reachable, since bpf_tramp_image_put() function already
3094
* uses percpu_ref and task-based rcu to do the sync, no need to call
3095
* the sync version here, see bpf_tramp_image_put() for details.
3096
*/
3097
ret = aarch64_insn_patch_text_nosync(ip, new_insn);
3098
out:
3099
mutex_unlock(&text_mutex);
3100
3101
return ret;
3102
}
3103
3104
bool bpf_jit_supports_ptr_xchg(void)
3105
{
3106
return true;
3107
}
3108
3109
bool bpf_jit_supports_exceptions(void)
3110
{
3111
/* We unwind through both kernel frames starting from within bpf_throw
3112
* call and BPF frames. Therefore we require FP unwinder to be enabled
3113
* to walk kernel frames and reach BPF frames in the stack trace.
3114
* ARM64 kernel is always compiled with CONFIG_FRAME_POINTER=y
3115
*/
3116
return true;
3117
}
3118
3119
bool bpf_jit_supports_arena(void)
3120
{
3121
return true;
3122
}
3123
3124
bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3125
{
3126
if (!in_arena)
3127
return true;
3128
switch (insn->code) {
3129
case BPF_STX | BPF_ATOMIC | BPF_W:
3130
case BPF_STX | BPF_ATOMIC | BPF_DW:
3131
if (!bpf_atomic_is_load_store(insn) &&
3132
!cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
3133
return false;
3134
}
3135
return true;
3136
}
3137
3138
bool bpf_jit_supports_percpu_insn(void)
3139
{
3140
return true;
3141
}
3142
3143
bool bpf_jit_bypass_spec_v4(void)
3144
{
3145
/* In case of arm64, we rely on the firmware mitigation of Speculative
3146
* Store Bypass as controlled via the ssbd kernel parameter. Whenever
3147
* the mitigation is enabled, it works for all of the kernel code with
3148
* no need to provide any additional instructions. Therefore, skip
3149
* inserting nospec insns against Spectre v4.
3150
*/
3151
return true;
3152
}
3153
3154
bool bpf_jit_supports_timed_may_goto(void)
3155
{
3156
return true;
3157
}
3158
3159
bool bpf_jit_inlines_helper_call(s32 imm)
3160
{
3161
switch (imm) {
3162
case BPF_FUNC_get_smp_processor_id:
3163
case BPF_FUNC_get_current_task:
3164
case BPF_FUNC_get_current_task_btf:
3165
return true;
3166
default:
3167
return false;
3168
}
3169
}
3170
3171
void bpf_jit_free(struct bpf_prog *prog)
3172
{
3173
if (prog->jited) {
3174
struct arm64_jit_data *jit_data = prog->aux->jit_data;
3175
struct bpf_binary_header *hdr;
3176
void __percpu *priv_stack_ptr;
3177
int priv_stack_alloc_sz;
3178
3179
/*
3180
* If we fail the final pass of JIT (from jit_subprogs),
3181
* the program may not be finalized yet. Call finalize here
3182
* before freeing it.
3183
*/
3184
if (jit_data) {
3185
bpf_jit_binary_pack_finalize(jit_data->ro_header, jit_data->header);
3186
kfree(jit_data);
3187
}
3188
prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3189
hdr = bpf_jit_binary_pack_hdr(prog);
3190
bpf_jit_binary_pack_free(hdr, NULL);
3191
priv_stack_ptr = prog->aux->priv_stack_ptr;
3192
if (priv_stack_ptr) {
3193
priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 16) +
3194
2 * PRIV_STACK_GUARD_SZ;
3195
priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3196
free_percpu(prog->aux->priv_stack_ptr);
3197
}
3198
WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3199
}
3200
3201
bpf_prog_unlock_free(prog);
3202
}
3203
3204