Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/net/bpf_jit_comp.c
26442 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* BPF JIT compiler for ARM64
4
*
5
* Copyright (C) 2014-2016 Zi Shen Lim <[email protected]>
6
*/
7
8
#define pr_fmt(fmt) "bpf_jit: " fmt
9
10
#include <linux/arm-smccc.h>
11
#include <linux/bitfield.h>
12
#include <linux/bpf.h>
13
#include <linux/cfi.h>
14
#include <linux/filter.h>
15
#include <linux/memory.h>
16
#include <linux/printk.h>
17
#include <linux/slab.h>
18
19
#include <asm/asm-extable.h>
20
#include <asm/byteorder.h>
21
#include <asm/cacheflush.h>
22
#include <asm/cpufeature.h>
23
#include <asm/debug-monitors.h>
24
#include <asm/insn.h>
25
#include <asm/text-patching.h>
26
#include <asm/set_memory.h>
27
28
#include "bpf_jit.h"
29
30
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
31
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
32
#define TCCNT_PTR (MAX_BPF_JIT_REG + 2)
33
#define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
34
#define PRIVATE_SP (MAX_BPF_JIT_REG + 4)
35
#define ARENA_VM_START (MAX_BPF_JIT_REG + 5)
36
37
#define check_imm(bits, imm) do { \
38
if ((((imm) > 0) && ((imm) >> (bits))) || \
39
(((imm) < 0) && (~(imm) >> (bits)))) { \
40
pr_info("[%2d] imm=%d(0x%x) out of range\n", \
41
i, imm, imm); \
42
return -EINVAL; \
43
} \
44
} while (0)
45
#define check_imm19(imm) check_imm(19, imm)
46
#define check_imm26(imm) check_imm(26, imm)
47
48
/* Map BPF registers to A64 registers */
49
static const int bpf2a64[] = {
50
/* return value from in-kernel function, and exit value from eBPF */
51
[BPF_REG_0] = A64_R(7),
52
/* arguments from eBPF program to in-kernel function */
53
[BPF_REG_1] = A64_R(0),
54
[BPF_REG_2] = A64_R(1),
55
[BPF_REG_3] = A64_R(2),
56
[BPF_REG_4] = A64_R(3),
57
[BPF_REG_5] = A64_R(4),
58
/* callee saved registers that in-kernel function will preserve */
59
[BPF_REG_6] = A64_R(19),
60
[BPF_REG_7] = A64_R(20),
61
[BPF_REG_8] = A64_R(21),
62
[BPF_REG_9] = A64_R(22),
63
/* read-only frame pointer to access stack */
64
[BPF_REG_FP] = A64_R(25),
65
/* temporary registers for BPF JIT */
66
[TMP_REG_1] = A64_R(10),
67
[TMP_REG_2] = A64_R(11),
68
[TMP_REG_3] = A64_R(12),
69
/* tail_call_cnt_ptr */
70
[TCCNT_PTR] = A64_R(26),
71
/* temporary register for blinding constants */
72
[BPF_REG_AX] = A64_R(9),
73
/* callee saved register for private stack pointer */
74
[PRIVATE_SP] = A64_R(27),
75
/* callee saved register for kern_vm_start address */
76
[ARENA_VM_START] = A64_R(28),
77
};
78
79
struct jit_ctx {
80
const struct bpf_prog *prog;
81
int idx;
82
int epilogue_offset;
83
int *offset;
84
int exentry_idx;
85
int nr_used_callee_reg;
86
u8 used_callee_reg[8]; /* r6~r9, fp, arena_vm_start */
87
__le32 *image;
88
__le32 *ro_image;
89
u32 stack_size;
90
u64 user_vm_start;
91
u64 arena_vm_start;
92
bool fp_used;
93
bool priv_sp_used;
94
bool write;
95
};
96
97
struct bpf_plt {
98
u32 insn_ldr; /* load target */
99
u32 insn_br; /* branch to target */
100
u64 target; /* target value */
101
};
102
103
#define PLT_TARGET_SIZE sizeof_field(struct bpf_plt, target)
104
#define PLT_TARGET_OFFSET offsetof(struct bpf_plt, target)
105
106
/* Memory size/value to protect private stack overflow/underflow */
107
#define PRIV_STACK_GUARD_SZ 16
108
#define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL
109
110
static inline void emit(const u32 insn, struct jit_ctx *ctx)
111
{
112
if (ctx->image != NULL && ctx->write)
113
ctx->image[ctx->idx] = cpu_to_le32(insn);
114
115
ctx->idx++;
116
}
117
118
static inline void emit_u32_data(const u32 data, struct jit_ctx *ctx)
119
{
120
if (ctx->image != NULL && ctx->write)
121
ctx->image[ctx->idx] = data;
122
123
ctx->idx++;
124
}
125
126
static inline void emit_a64_mov_i(const int is64, const int reg,
127
const s32 val, struct jit_ctx *ctx)
128
{
129
u16 hi = val >> 16;
130
u16 lo = val & 0xffff;
131
132
if (hi & 0x8000) {
133
if (hi == 0xffff) {
134
emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
135
} else {
136
emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
137
if (lo != 0xffff)
138
emit(A64_MOVK(is64, reg, lo, 0), ctx);
139
}
140
} else {
141
emit(A64_MOVZ(is64, reg, lo, 0), ctx);
142
if (hi)
143
emit(A64_MOVK(is64, reg, hi, 16), ctx);
144
}
145
}
146
147
static int i64_i16_blocks(const u64 val, bool inverse)
148
{
149
return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
150
(((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
151
(((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
152
(((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
153
}
154
155
static inline void emit_a64_mov_i64(const int reg, const u64 val,
156
struct jit_ctx *ctx)
157
{
158
u64 nrm_tmp = val, rev_tmp = ~val;
159
bool inverse;
160
int shift;
161
162
if (!(nrm_tmp >> 32))
163
return emit_a64_mov_i(0, reg, (u32)val, ctx);
164
165
inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
166
shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
167
(fls64(nrm_tmp) - 1)), 16), 0);
168
if (inverse)
169
emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
170
else
171
emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
172
shift -= 16;
173
while (shift >= 0) {
174
if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
175
emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
176
shift -= 16;
177
}
178
}
179
180
static inline void emit_bti(u32 insn, struct jit_ctx *ctx)
181
{
182
if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
183
emit(insn, ctx);
184
}
185
186
static inline void emit_kcfi(u32 hash, struct jit_ctx *ctx)
187
{
188
if (IS_ENABLED(CONFIG_CFI_CLANG))
189
emit_u32_data(hash, ctx);
190
}
191
192
/*
193
* Kernel addresses in the vmalloc space use at most 48 bits, and the
194
* remaining bits are guaranteed to be 0x1. So we can compose the address
195
* with a fixed length movn/movk/movk sequence.
196
*/
197
static inline void emit_addr_mov_i64(const int reg, const u64 val,
198
struct jit_ctx *ctx)
199
{
200
u64 tmp = val;
201
int shift = 0;
202
203
emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
204
while (shift < 32) {
205
tmp >>= 16;
206
shift += 16;
207
emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
208
}
209
}
210
211
static bool should_emit_indirect_call(long target, const struct jit_ctx *ctx)
212
{
213
long offset;
214
215
/* when ctx->ro_image is not allocated or the target is unknown,
216
* emit indirect call
217
*/
218
if (!ctx->ro_image || !target)
219
return true;
220
221
offset = target - (long)&ctx->ro_image[ctx->idx];
222
return offset < -SZ_128M || offset >= SZ_128M;
223
}
224
225
static void emit_direct_call(u64 target, struct jit_ctx *ctx)
226
{
227
u32 insn;
228
unsigned long pc;
229
230
pc = (unsigned long)&ctx->ro_image[ctx->idx];
231
insn = aarch64_insn_gen_branch_imm(pc, target, AARCH64_INSN_BRANCH_LINK);
232
emit(insn, ctx);
233
}
234
235
static void emit_indirect_call(u64 target, struct jit_ctx *ctx)
236
{
237
u8 tmp;
238
239
tmp = bpf2a64[TMP_REG_1];
240
emit_addr_mov_i64(tmp, target, ctx);
241
emit(A64_BLR(tmp), ctx);
242
}
243
244
static void emit_call(u64 target, struct jit_ctx *ctx)
245
{
246
if (should_emit_indirect_call((long)target, ctx))
247
emit_indirect_call(target, ctx);
248
else
249
emit_direct_call(target, ctx);
250
}
251
252
static inline int bpf2a64_offset(int bpf_insn, int off,
253
const struct jit_ctx *ctx)
254
{
255
/* BPF JMP offset is relative to the next instruction */
256
bpf_insn++;
257
/*
258
* Whereas arm64 branch instructions encode the offset
259
* from the branch itself, so we must subtract 1 from the
260
* instruction offset.
261
*/
262
return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1);
263
}
264
265
static void jit_fill_hole(void *area, unsigned int size)
266
{
267
__le32 *ptr;
268
/* We are guaranteed to have aligned memory. */
269
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
270
*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
271
}
272
273
int bpf_arch_text_invalidate(void *dst, size_t len)
274
{
275
if (!aarch64_insn_set(dst, AARCH64_BREAK_FAULT, len))
276
return -EINVAL;
277
278
return 0;
279
}
280
281
static inline int epilogue_offset(const struct jit_ctx *ctx)
282
{
283
int to = ctx->epilogue_offset;
284
int from = ctx->idx;
285
286
return to - from;
287
}
288
289
static bool is_addsub_imm(u32 imm)
290
{
291
/* Either imm12 or shifted imm12. */
292
return !(imm & ~0xfff) || !(imm & ~0xfff000);
293
}
294
295
static inline void emit_a64_add_i(const bool is64, const int dst, const int src,
296
const int tmp, const s32 imm, struct jit_ctx *ctx)
297
{
298
if (is_addsub_imm(imm)) {
299
emit(A64_ADD_I(is64, dst, src, imm), ctx);
300
} else if (is_addsub_imm(-(u32)imm)) {
301
emit(A64_SUB_I(is64, dst, src, -imm), ctx);
302
} else {
303
emit_a64_mov_i(is64, tmp, imm, ctx);
304
emit(A64_ADD(is64, dst, src, tmp), ctx);
305
}
306
}
307
308
/*
309
* There are 3 types of AArch64 LDR/STR (immediate) instruction:
310
* Post-index, Pre-index, Unsigned offset.
311
*
312
* For BPF ldr/str, the "unsigned offset" type is sufficient.
313
*
314
* "Unsigned offset" type LDR(immediate) format:
315
*
316
* 3 2 1 0
317
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
318
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
319
* |x x|1 1 1 0 0 1 0 1| imm12 | Rn | Rt |
320
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
321
* scale
322
*
323
* "Unsigned offset" type STR(immediate) format:
324
* 3 2 1 0
325
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
326
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
327
* |x x|1 1 1 0 0 1 0 0| imm12 | Rn | Rt |
328
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
329
* scale
330
*
331
* The offset is calculated from imm12 and scale in the following way:
332
*
333
* offset = (u64)imm12 << scale
334
*/
335
static bool is_lsi_offset(int offset, int scale)
336
{
337
if (offset < 0)
338
return false;
339
340
if (offset > (0xFFF << scale))
341
return false;
342
343
if (offset & ((1 << scale) - 1))
344
return false;
345
346
return true;
347
}
348
349
/* generated main prog prologue:
350
* bti c // if CONFIG_ARM64_BTI_KERNEL
351
* mov x9, lr
352
* nop // POKE_OFFSET
353
* paciasp // if CONFIG_ARM64_PTR_AUTH_KERNEL
354
* stp x29, lr, [sp, #-16]!
355
* mov x29, sp
356
* stp xzr, x26, [sp, #-16]!
357
* mov x26, sp
358
* // PROLOGUE_OFFSET
359
* // save callee-saved registers
360
*/
361
static void prepare_bpf_tail_call_cnt(struct jit_ctx *ctx)
362
{
363
const bool is_main_prog = !bpf_is_subprog(ctx->prog);
364
const u8 ptr = bpf2a64[TCCNT_PTR];
365
366
if (is_main_prog) {
367
/* Initialize tail_call_cnt. */
368
emit(A64_PUSH(A64_ZR, ptr, A64_SP), ctx);
369
emit(A64_MOV(1, ptr, A64_SP), ctx);
370
} else
371
emit(A64_PUSH(ptr, ptr, A64_SP), ctx);
372
}
373
374
static void find_used_callee_regs(struct jit_ctx *ctx)
375
{
376
int i;
377
const struct bpf_prog *prog = ctx->prog;
378
const struct bpf_insn *insn = &prog->insnsi[0];
379
int reg_used = 0;
380
381
for (i = 0; i < prog->len; i++, insn++) {
382
if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
383
reg_used |= 1;
384
385
if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
386
reg_used |= 2;
387
388
if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
389
reg_used |= 4;
390
391
if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
392
reg_used |= 8;
393
394
if (insn->dst_reg == BPF_REG_FP || insn->src_reg == BPF_REG_FP) {
395
ctx->fp_used = true;
396
reg_used |= 16;
397
}
398
}
399
400
i = 0;
401
if (reg_used & 1)
402
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_6];
403
404
if (reg_used & 2)
405
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_7];
406
407
if (reg_used & 4)
408
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_8];
409
410
if (reg_used & 8)
411
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_9];
412
413
if (reg_used & 16) {
414
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_FP];
415
if (ctx->priv_sp_used)
416
ctx->used_callee_reg[i++] = bpf2a64[PRIVATE_SP];
417
}
418
419
if (ctx->arena_vm_start)
420
ctx->used_callee_reg[i++] = bpf2a64[ARENA_VM_START];
421
422
ctx->nr_used_callee_reg = i;
423
}
424
425
/* Save callee-saved registers */
426
static void push_callee_regs(struct jit_ctx *ctx)
427
{
428
int reg1, reg2, i;
429
430
/*
431
* Program acting as exception boundary should save all ARM64
432
* Callee-saved registers as the exception callback needs to recover
433
* all ARM64 Callee-saved registers in its epilogue.
434
*/
435
if (ctx->prog->aux->exception_boundary) {
436
emit(A64_PUSH(A64_R(19), A64_R(20), A64_SP), ctx);
437
emit(A64_PUSH(A64_R(21), A64_R(22), A64_SP), ctx);
438
emit(A64_PUSH(A64_R(23), A64_R(24), A64_SP), ctx);
439
emit(A64_PUSH(A64_R(25), A64_R(26), A64_SP), ctx);
440
emit(A64_PUSH(A64_R(27), A64_R(28), A64_SP), ctx);
441
ctx->fp_used = true;
442
} else {
443
find_used_callee_regs(ctx);
444
for (i = 0; i + 1 < ctx->nr_used_callee_reg; i += 2) {
445
reg1 = ctx->used_callee_reg[i];
446
reg2 = ctx->used_callee_reg[i + 1];
447
emit(A64_PUSH(reg1, reg2, A64_SP), ctx);
448
}
449
if (i < ctx->nr_used_callee_reg) {
450
reg1 = ctx->used_callee_reg[i];
451
/* keep SP 16-byte aligned */
452
emit(A64_PUSH(reg1, A64_ZR, A64_SP), ctx);
453
}
454
}
455
}
456
457
/* Restore callee-saved registers */
458
static void pop_callee_regs(struct jit_ctx *ctx)
459
{
460
struct bpf_prog_aux *aux = ctx->prog->aux;
461
int reg1, reg2, i;
462
463
/*
464
* Program acting as exception boundary pushes R23 and R24 in addition
465
* to BPF callee-saved registers. Exception callback uses the boundary
466
* program's stack frame, so recover these extra registers in the above
467
* two cases.
468
*/
469
if (aux->exception_boundary || aux->exception_cb) {
470
emit(A64_POP(A64_R(27), A64_R(28), A64_SP), ctx);
471
emit(A64_POP(A64_R(25), A64_R(26), A64_SP), ctx);
472
emit(A64_POP(A64_R(23), A64_R(24), A64_SP), ctx);
473
emit(A64_POP(A64_R(21), A64_R(22), A64_SP), ctx);
474
emit(A64_POP(A64_R(19), A64_R(20), A64_SP), ctx);
475
} else {
476
i = ctx->nr_used_callee_reg - 1;
477
if (ctx->nr_used_callee_reg % 2 != 0) {
478
reg1 = ctx->used_callee_reg[i];
479
emit(A64_POP(reg1, A64_ZR, A64_SP), ctx);
480
i--;
481
}
482
while (i > 0) {
483
reg1 = ctx->used_callee_reg[i - 1];
484
reg2 = ctx->used_callee_reg[i];
485
emit(A64_POP(reg1, reg2, A64_SP), ctx);
486
i -= 2;
487
}
488
}
489
}
490
491
static void emit_percpu_ptr(const u8 dst_reg, void __percpu *ptr,
492
struct jit_ctx *ctx)
493
{
494
const u8 tmp = bpf2a64[TMP_REG_1];
495
496
emit_a64_mov_i64(dst_reg, (__force const u64)ptr, ctx);
497
if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
498
emit(A64_MRS_TPIDR_EL2(tmp), ctx);
499
else
500
emit(A64_MRS_TPIDR_EL1(tmp), ctx);
501
emit(A64_ADD(1, dst_reg, dst_reg, tmp), ctx);
502
}
503
504
#define BTI_INSNS (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) ? 1 : 0)
505
#define PAC_INSNS (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) ? 1 : 0)
506
507
/* Offset of nop instruction in bpf prog entry to be poked */
508
#define POKE_OFFSET (BTI_INSNS + 1)
509
510
/* Tail call offset to jump into */
511
#define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 4)
512
513
static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
514
{
515
const struct bpf_prog *prog = ctx->prog;
516
const bool is_main_prog = !bpf_is_subprog(prog);
517
const u8 fp = bpf2a64[BPF_REG_FP];
518
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
519
const u8 priv_sp = bpf2a64[PRIVATE_SP];
520
void __percpu *priv_stack_ptr;
521
int cur_offset;
522
523
/*
524
* BPF prog stack layout
525
*
526
* high
527
* original A64_SP => 0:+-----+ BPF prologue
528
* |FP/LR|
529
* current A64_FP => -16:+-----+
530
* | ... | callee saved registers
531
* BPF fp register => -64:+-----+ <= (BPF_FP)
532
* | |
533
* | ... | BPF prog stack
534
* | |
535
* +-----+ <= (BPF_FP - prog->aux->stack_depth)
536
* |RSVD | padding
537
* current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size)
538
* | |
539
* | ... | Function call stack
540
* | |
541
* +-----+
542
* low
543
*
544
*/
545
546
emit_kcfi(is_main_prog ? cfi_bpf_hash : cfi_bpf_subprog_hash, ctx);
547
const int idx0 = ctx->idx;
548
549
/* bpf function may be invoked by 3 instruction types:
550
* 1. bl, attached via freplace to bpf prog via short jump
551
* 2. br, attached via freplace to bpf prog via long jump
552
* 3. blr, working as a function pointer, used by emit_call.
553
* So BTI_JC should used here to support both br and blr.
554
*/
555
emit_bti(A64_BTI_JC, ctx);
556
557
emit(A64_MOV(1, A64_R(9), A64_LR), ctx);
558
emit(A64_NOP, ctx);
559
560
if (!prog->aux->exception_cb) {
561
/* Sign lr */
562
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
563
emit(A64_PACIASP, ctx);
564
565
/* Save FP and LR registers to stay align with ARM64 AAPCS */
566
emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
567
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
568
569
prepare_bpf_tail_call_cnt(ctx);
570
571
if (!ebpf_from_cbpf && is_main_prog) {
572
cur_offset = ctx->idx - idx0;
573
if (cur_offset != PROLOGUE_OFFSET) {
574
pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
575
cur_offset, PROLOGUE_OFFSET);
576
return -1;
577
}
578
/* BTI landing pad for the tail call, done with a BR */
579
emit_bti(A64_BTI_J, ctx);
580
}
581
push_callee_regs(ctx);
582
} else {
583
/*
584
* Exception callback receives FP of Main Program as third
585
* parameter
586
*/
587
emit(A64_MOV(1, A64_FP, A64_R(2)), ctx);
588
/*
589
* Main Program already pushed the frame record and the
590
* callee-saved registers. The exception callback will not push
591
* anything and re-use the main program's stack.
592
*
593
* 12 registers are on the stack
594
*/
595
emit(A64_SUB_I(1, A64_SP, A64_FP, 96), ctx);
596
}
597
598
/* Stack must be multiples of 16B */
599
ctx->stack_size = round_up(prog->aux->stack_depth, 16);
600
601
if (ctx->fp_used) {
602
if (ctx->priv_sp_used) {
603
/* Set up private stack pointer */
604
priv_stack_ptr = prog->aux->priv_stack_ptr + PRIV_STACK_GUARD_SZ;
605
emit_percpu_ptr(priv_sp, priv_stack_ptr, ctx);
606
emit(A64_ADD_I(1, fp, priv_sp, ctx->stack_size), ctx);
607
} else {
608
/* Set up BPF prog stack base register */
609
emit(A64_MOV(1, fp, A64_SP), ctx);
610
}
611
}
612
613
/* Set up function call stack */
614
if (ctx->stack_size && !ctx->priv_sp_used)
615
emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
616
617
if (ctx->arena_vm_start)
618
emit_a64_mov_i64(arena_vm_base, ctx->arena_vm_start, ctx);
619
620
return 0;
621
}
622
623
static int emit_bpf_tail_call(struct jit_ctx *ctx)
624
{
625
/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
626
const u8 r2 = bpf2a64[BPF_REG_2];
627
const u8 r3 = bpf2a64[BPF_REG_3];
628
629
const u8 tmp = bpf2a64[TMP_REG_1];
630
const u8 prg = bpf2a64[TMP_REG_2];
631
const u8 tcc = bpf2a64[TMP_REG_3];
632
const u8 ptr = bpf2a64[TCCNT_PTR];
633
size_t off;
634
__le32 *branch1 = NULL;
635
__le32 *branch2 = NULL;
636
__le32 *branch3 = NULL;
637
638
/* if (index >= array->map.max_entries)
639
* goto out;
640
*/
641
off = offsetof(struct bpf_array, map.max_entries);
642
emit_a64_mov_i64(tmp, off, ctx);
643
emit(A64_LDR32(tmp, r2, tmp), ctx);
644
emit(A64_MOV(0, r3, r3), ctx);
645
emit(A64_CMP(0, r3, tmp), ctx);
646
branch1 = ctx->image + ctx->idx;
647
emit(A64_NOP, ctx);
648
649
/*
650
* if ((*tail_call_cnt_ptr) >= MAX_TAIL_CALL_CNT)
651
* goto out;
652
*/
653
emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
654
emit(A64_LDR64I(tcc, ptr, 0), ctx);
655
emit(A64_CMP(1, tcc, tmp), ctx);
656
branch2 = ctx->image + ctx->idx;
657
emit(A64_NOP, ctx);
658
659
/* (*tail_call_cnt_ptr)++; */
660
emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
661
662
/* prog = array->ptrs[index];
663
* if (prog == NULL)
664
* goto out;
665
*/
666
off = offsetof(struct bpf_array, ptrs);
667
emit_a64_mov_i64(tmp, off, ctx);
668
emit(A64_ADD(1, tmp, r2, tmp), ctx);
669
emit(A64_LSL(1, prg, r3, 3), ctx);
670
emit(A64_LDR64(prg, tmp, prg), ctx);
671
branch3 = ctx->image + ctx->idx;
672
emit(A64_NOP, ctx);
673
674
/* Update tail_call_cnt if the slot is populated. */
675
emit(A64_STR64I(tcc, ptr, 0), ctx);
676
677
/* restore SP */
678
if (ctx->stack_size && !ctx->priv_sp_used)
679
emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
680
681
pop_callee_regs(ctx);
682
683
/* goto *(prog->bpf_func + prologue_offset); */
684
off = offsetof(struct bpf_prog, bpf_func);
685
emit_a64_mov_i64(tmp, off, ctx);
686
emit(A64_LDR64(tmp, prg, tmp), ctx);
687
emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
688
emit(A64_BR(tmp), ctx);
689
690
if (ctx->image) {
691
off = &ctx->image[ctx->idx] - branch1;
692
*branch1 = cpu_to_le32(A64_B_(A64_COND_CS, off));
693
694
off = &ctx->image[ctx->idx] - branch2;
695
*branch2 = cpu_to_le32(A64_B_(A64_COND_CS, off));
696
697
off = &ctx->image[ctx->idx] - branch3;
698
*branch3 = cpu_to_le32(A64_CBZ(1, prg, off));
699
}
700
701
return 0;
702
}
703
704
static int emit_atomic_ld_st(const struct bpf_insn *insn, struct jit_ctx *ctx)
705
{
706
const s32 imm = insn->imm;
707
const s16 off = insn->off;
708
const u8 code = insn->code;
709
const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC;
710
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
711
const u8 dst = bpf2a64[insn->dst_reg];
712
const u8 src = bpf2a64[insn->src_reg];
713
const u8 tmp = bpf2a64[TMP_REG_1];
714
u8 reg;
715
716
switch (imm) {
717
case BPF_LOAD_ACQ:
718
reg = src;
719
break;
720
case BPF_STORE_REL:
721
reg = dst;
722
break;
723
default:
724
pr_err_once("unknown atomic load/store op code %02x\n", imm);
725
return -EINVAL;
726
}
727
728
if (off) {
729
emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
730
reg = tmp;
731
}
732
if (arena) {
733
emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx);
734
reg = tmp;
735
}
736
737
switch (imm) {
738
case BPF_LOAD_ACQ:
739
switch (BPF_SIZE(code)) {
740
case BPF_B:
741
emit(A64_LDARB(dst, reg), ctx);
742
break;
743
case BPF_H:
744
emit(A64_LDARH(dst, reg), ctx);
745
break;
746
case BPF_W:
747
emit(A64_LDAR32(dst, reg), ctx);
748
break;
749
case BPF_DW:
750
emit(A64_LDAR64(dst, reg), ctx);
751
break;
752
}
753
break;
754
case BPF_STORE_REL:
755
switch (BPF_SIZE(code)) {
756
case BPF_B:
757
emit(A64_STLRB(src, reg), ctx);
758
break;
759
case BPF_H:
760
emit(A64_STLRH(src, reg), ctx);
761
break;
762
case BPF_W:
763
emit(A64_STLR32(src, reg), ctx);
764
break;
765
case BPF_DW:
766
emit(A64_STLR64(src, reg), ctx);
767
break;
768
}
769
break;
770
default:
771
pr_err_once("unexpected atomic load/store op code %02x\n",
772
imm);
773
return -EINVAL;
774
}
775
776
return 0;
777
}
778
779
#ifdef CONFIG_ARM64_LSE_ATOMICS
780
static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
781
{
782
const u8 code = insn->code;
783
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
784
const u8 dst = bpf2a64[insn->dst_reg];
785
const u8 src = bpf2a64[insn->src_reg];
786
const u8 tmp = bpf2a64[TMP_REG_1];
787
const u8 tmp2 = bpf2a64[TMP_REG_2];
788
const bool isdw = BPF_SIZE(code) == BPF_DW;
789
const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC;
790
const s16 off = insn->off;
791
u8 reg = dst;
792
793
if (off) {
794
emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
795
reg = tmp;
796
}
797
if (arena) {
798
emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx);
799
reg = tmp;
800
}
801
802
switch (insn->imm) {
803
/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
804
case BPF_ADD:
805
emit(A64_STADD(isdw, reg, src), ctx);
806
break;
807
case BPF_AND:
808
emit(A64_MVN(isdw, tmp2, src), ctx);
809
emit(A64_STCLR(isdw, reg, tmp2), ctx);
810
break;
811
case BPF_OR:
812
emit(A64_STSET(isdw, reg, src), ctx);
813
break;
814
case BPF_XOR:
815
emit(A64_STEOR(isdw, reg, src), ctx);
816
break;
817
/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
818
case BPF_ADD | BPF_FETCH:
819
emit(A64_LDADDAL(isdw, src, reg, src), ctx);
820
break;
821
case BPF_AND | BPF_FETCH:
822
emit(A64_MVN(isdw, tmp2, src), ctx);
823
emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx);
824
break;
825
case BPF_OR | BPF_FETCH:
826
emit(A64_LDSETAL(isdw, src, reg, src), ctx);
827
break;
828
case BPF_XOR | BPF_FETCH:
829
emit(A64_LDEORAL(isdw, src, reg, src), ctx);
830
break;
831
/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
832
case BPF_XCHG:
833
emit(A64_SWPAL(isdw, src, reg, src), ctx);
834
break;
835
/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
836
case BPF_CMPXCHG:
837
emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx);
838
break;
839
default:
840
pr_err_once("unknown atomic op code %02x\n", insn->imm);
841
return -EINVAL;
842
}
843
844
return 0;
845
}
846
#else
847
static inline int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
848
{
849
return -EINVAL;
850
}
851
#endif
852
853
static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
854
{
855
const u8 code = insn->code;
856
const u8 dst = bpf2a64[insn->dst_reg];
857
const u8 src = bpf2a64[insn->src_reg];
858
const u8 tmp = bpf2a64[TMP_REG_1];
859
const u8 tmp2 = bpf2a64[TMP_REG_2];
860
const u8 tmp3 = bpf2a64[TMP_REG_3];
861
const int i = insn - ctx->prog->insnsi;
862
const s32 imm = insn->imm;
863
const s16 off = insn->off;
864
const bool isdw = BPF_SIZE(code) == BPF_DW;
865
u8 reg = dst;
866
s32 jmp_offset;
867
868
if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
869
/* ll_sc based atomics don't support unsafe pointers yet. */
870
pr_err_once("unknown atomic opcode %02x\n", code);
871
return -EINVAL;
872
}
873
874
if (off) {
875
emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
876
reg = tmp;
877
}
878
879
if (imm == BPF_ADD || imm == BPF_AND ||
880
imm == BPF_OR || imm == BPF_XOR) {
881
/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
882
emit(A64_LDXR(isdw, tmp2, reg), ctx);
883
if (imm == BPF_ADD)
884
emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
885
else if (imm == BPF_AND)
886
emit(A64_AND(isdw, tmp2, tmp2, src), ctx);
887
else if (imm == BPF_OR)
888
emit(A64_ORR(isdw, tmp2, tmp2, src), ctx);
889
else
890
emit(A64_EOR(isdw, tmp2, tmp2, src), ctx);
891
emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
892
jmp_offset = -3;
893
check_imm19(jmp_offset);
894
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
895
} else if (imm == (BPF_ADD | BPF_FETCH) ||
896
imm == (BPF_AND | BPF_FETCH) ||
897
imm == (BPF_OR | BPF_FETCH) ||
898
imm == (BPF_XOR | BPF_FETCH)) {
899
/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
900
const u8 ax = bpf2a64[BPF_REG_AX];
901
902
emit(A64_MOV(isdw, ax, src), ctx);
903
emit(A64_LDXR(isdw, src, reg), ctx);
904
if (imm == (BPF_ADD | BPF_FETCH))
905
emit(A64_ADD(isdw, tmp2, src, ax), ctx);
906
else if (imm == (BPF_AND | BPF_FETCH))
907
emit(A64_AND(isdw, tmp2, src, ax), ctx);
908
else if (imm == (BPF_OR | BPF_FETCH))
909
emit(A64_ORR(isdw, tmp2, src, ax), ctx);
910
else
911
emit(A64_EOR(isdw, tmp2, src, ax), ctx);
912
emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
913
jmp_offset = -3;
914
check_imm19(jmp_offset);
915
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
916
emit(A64_DMB_ISH, ctx);
917
} else if (imm == BPF_XCHG) {
918
/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
919
emit(A64_MOV(isdw, tmp2, src), ctx);
920
emit(A64_LDXR(isdw, src, reg), ctx);
921
emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
922
jmp_offset = -2;
923
check_imm19(jmp_offset);
924
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
925
emit(A64_DMB_ISH, ctx);
926
} else if (imm == BPF_CMPXCHG) {
927
/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
928
const u8 r0 = bpf2a64[BPF_REG_0];
929
930
emit(A64_MOV(isdw, tmp2, r0), ctx);
931
emit(A64_LDXR(isdw, r0, reg), ctx);
932
emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx);
933
jmp_offset = 4;
934
check_imm19(jmp_offset);
935
emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx);
936
emit(A64_STLXR(isdw, src, reg, tmp3), ctx);
937
jmp_offset = -4;
938
check_imm19(jmp_offset);
939
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
940
emit(A64_DMB_ISH, ctx);
941
} else {
942
pr_err_once("unknown atomic op code %02x\n", imm);
943
return -EINVAL;
944
}
945
946
return 0;
947
}
948
949
void dummy_tramp(void);
950
951
asm (
952
" .pushsection .text, \"ax\", @progbits\n"
953
" .global dummy_tramp\n"
954
" .type dummy_tramp, %function\n"
955
"dummy_tramp:"
956
#if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)
957
" bti j\n" /* dummy_tramp is called via "br x10" */
958
#endif
959
" mov x10, x30\n"
960
" mov x30, x9\n"
961
" ret x10\n"
962
" .size dummy_tramp, .-dummy_tramp\n"
963
" .popsection\n"
964
);
965
966
/* build a plt initialized like this:
967
*
968
* plt:
969
* ldr tmp, target
970
* br tmp
971
* target:
972
* .quad dummy_tramp
973
*
974
* when a long jump trampoline is attached, target is filled with the
975
* trampoline address, and when the trampoline is removed, target is
976
* restored to dummy_tramp address.
977
*/
978
static void build_plt(struct jit_ctx *ctx)
979
{
980
const u8 tmp = bpf2a64[TMP_REG_1];
981
struct bpf_plt *plt = NULL;
982
983
/* make sure target is 64-bit aligned */
984
if ((ctx->idx + PLT_TARGET_OFFSET / AARCH64_INSN_SIZE) % 2)
985
emit(A64_NOP, ctx);
986
987
plt = (struct bpf_plt *)(ctx->image + ctx->idx);
988
/* plt is called via bl, no BTI needed here */
989
emit(A64_LDR64LIT(tmp, 2 * AARCH64_INSN_SIZE), ctx);
990
emit(A64_BR(tmp), ctx);
991
992
if (ctx->image)
993
plt->target = (u64)&dummy_tramp;
994
}
995
996
/* Clobbers BPF registers 1-4, aka x0-x3 */
997
static void __maybe_unused build_bhb_mitigation(struct jit_ctx *ctx)
998
{
999
const u8 r1 = bpf2a64[BPF_REG_1]; /* aka x0 */
1000
u8 k = get_spectre_bhb_loop_value();
1001
1002
if (!IS_ENABLED(CONFIG_MITIGATE_SPECTRE_BRANCH_HISTORY) ||
1003
cpu_mitigations_off() || __nospectre_bhb ||
1004
arm64_get_spectre_v2_state() == SPECTRE_VULNERABLE)
1005
return;
1006
1007
if (capable(CAP_SYS_ADMIN))
1008
return;
1009
1010
if (supports_clearbhb(SCOPE_SYSTEM)) {
1011
emit(aarch64_insn_gen_hint(AARCH64_INSN_HINT_CLEARBHB), ctx);
1012
return;
1013
}
1014
1015
if (k) {
1016
emit_a64_mov_i64(r1, k, ctx);
1017
emit(A64_B(1), ctx);
1018
emit(A64_SUBS_I(true, r1, r1, 1), ctx);
1019
emit(A64_B_(A64_COND_NE, -2), ctx);
1020
emit(aarch64_insn_gen_dsb(AARCH64_INSN_MB_ISH), ctx);
1021
emit(aarch64_insn_get_isb_value(), ctx);
1022
}
1023
1024
if (is_spectre_bhb_fw_mitigated()) {
1025
emit(A64_ORR_I(false, r1, AARCH64_INSN_REG_ZR,
1026
ARM_SMCCC_ARCH_WORKAROUND_3), ctx);
1027
switch (arm_smccc_1_1_get_conduit()) {
1028
case SMCCC_CONDUIT_HVC:
1029
emit(aarch64_insn_get_hvc_value(), ctx);
1030
break;
1031
case SMCCC_CONDUIT_SMC:
1032
emit(aarch64_insn_get_smc_value(), ctx);
1033
break;
1034
default:
1035
pr_err_once("Firmware mitigation enabled with unknown conduit\n");
1036
}
1037
}
1038
}
1039
1040
static void build_epilogue(struct jit_ctx *ctx, bool was_classic)
1041
{
1042
const u8 r0 = bpf2a64[BPF_REG_0];
1043
const u8 ptr = bpf2a64[TCCNT_PTR];
1044
1045
/* We're done with BPF stack */
1046
if (ctx->stack_size && !ctx->priv_sp_used)
1047
emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
1048
1049
pop_callee_regs(ctx);
1050
1051
emit(A64_POP(A64_ZR, ptr, A64_SP), ctx);
1052
1053
if (was_classic)
1054
build_bhb_mitigation(ctx);
1055
1056
/* Restore FP/LR registers */
1057
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
1058
1059
/* Move the return value from bpf:r0 (aka x7) to x0 */
1060
emit(A64_MOV(1, A64_R(0), r0), ctx);
1061
1062
/* Authenticate lr */
1063
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
1064
emit(A64_AUTIASP, ctx);
1065
1066
emit(A64_RET(A64_LR), ctx);
1067
}
1068
1069
#define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0)
1070
#define BPF_FIXUP_REG_MASK GENMASK(31, 27)
1071
#define DONT_CLEAR 5 /* Unused ARM64 register from BPF's POV */
1072
1073
bool ex_handler_bpf(const struct exception_table_entry *ex,
1074
struct pt_regs *regs)
1075
{
1076
off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
1077
int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
1078
1079
if (dst_reg != DONT_CLEAR)
1080
regs->regs[dst_reg] = 0;
1081
regs->pc = (unsigned long)&ex->fixup - offset;
1082
return true;
1083
}
1084
1085
/* For accesses to BTF pointers, add an entry to the exception table */
1086
static int add_exception_handler(const struct bpf_insn *insn,
1087
struct jit_ctx *ctx,
1088
int dst_reg)
1089
{
1090
off_t ins_offset;
1091
off_t fixup_offset;
1092
unsigned long pc;
1093
struct exception_table_entry *ex;
1094
1095
if (!ctx->image)
1096
/* First pass */
1097
return 0;
1098
1099
if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
1100
BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
1101
BPF_MODE(insn->code) != BPF_PROBE_MEM32 &&
1102
BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
1103
return 0;
1104
1105
if (!ctx->prog->aux->extable ||
1106
WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries))
1107
return -EINVAL;
1108
1109
ex = &ctx->prog->aux->extable[ctx->exentry_idx];
1110
pc = (unsigned long)&ctx->ro_image[ctx->idx - 1];
1111
1112
/*
1113
* This is the relative offset of the instruction that may fault from
1114
* the exception table itself. This will be written to the exception
1115
* table and if this instruction faults, the destination register will
1116
* be set to '0' and the execution will jump to the next instruction.
1117
*/
1118
ins_offset = pc - (long)&ex->insn;
1119
if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
1120
return -ERANGE;
1121
1122
/*
1123
* Since the extable follows the program, the fixup offset is always
1124
* negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
1125
* to keep things simple, and put the destination register in the upper
1126
* bits. We don't need to worry about buildtime or runtime sort
1127
* modifying the upper bits because the table is already sorted, and
1128
* isn't part of the main exception table.
1129
*
1130
* The fixup_offset is set to the next instruction from the instruction
1131
* that may fault. The execution will jump to this after handling the
1132
* fault.
1133
*/
1134
fixup_offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE);
1135
if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
1136
return -ERANGE;
1137
1138
/*
1139
* The offsets above have been calculated using the RO buffer but we
1140
* need to use the R/W buffer for writes.
1141
* switch ex to rw buffer for writing.
1142
*/
1143
ex = (void *)ctx->image + ((void *)ex - (void *)ctx->ro_image);
1144
1145
ex->insn = ins_offset;
1146
1147
if (BPF_CLASS(insn->code) != BPF_LDX)
1148
dst_reg = DONT_CLEAR;
1149
1150
ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
1151
FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
1152
1153
ex->type = EX_TYPE_BPF;
1154
1155
ctx->exentry_idx++;
1156
return 0;
1157
}
1158
1159
/* JITs an eBPF instruction.
1160
* Returns:
1161
* 0 - successfully JITed an 8-byte eBPF instruction.
1162
* >0 - successfully JITed a 16-byte eBPF instruction.
1163
* <0 - failed to JIT.
1164
*/
1165
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
1166
bool extra_pass)
1167
{
1168
const u8 code = insn->code;
1169
u8 dst = bpf2a64[insn->dst_reg];
1170
u8 src = bpf2a64[insn->src_reg];
1171
const u8 tmp = bpf2a64[TMP_REG_1];
1172
const u8 tmp2 = bpf2a64[TMP_REG_2];
1173
const u8 fp = bpf2a64[BPF_REG_FP];
1174
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
1175
const u8 priv_sp = bpf2a64[PRIVATE_SP];
1176
const s16 off = insn->off;
1177
const s32 imm = insn->imm;
1178
const int i = insn - ctx->prog->insnsi;
1179
const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
1180
BPF_CLASS(code) == BPF_JMP;
1181
u8 jmp_cond;
1182
s32 jmp_offset;
1183
u32 a64_insn;
1184
u8 src_adj;
1185
u8 dst_adj;
1186
int off_adj;
1187
int ret;
1188
bool sign_extend;
1189
1190
switch (code) {
1191
/* dst = src */
1192
case BPF_ALU | BPF_MOV | BPF_X:
1193
case BPF_ALU64 | BPF_MOV | BPF_X:
1194
if (insn_is_cast_user(insn)) {
1195
emit(A64_MOV(0, tmp, src), ctx); // 32-bit mov clears the upper 32 bits
1196
emit_a64_mov_i(0, dst, ctx->user_vm_start >> 32, ctx);
1197
emit(A64_LSL(1, dst, dst, 32), ctx);
1198
emit(A64_CBZ(1, tmp, 2), ctx);
1199
emit(A64_ORR(1, tmp, dst, tmp), ctx);
1200
emit(A64_MOV(1, dst, tmp), ctx);
1201
break;
1202
} else if (insn_is_mov_percpu_addr(insn)) {
1203
if (dst != src)
1204
emit(A64_MOV(1, dst, src), ctx);
1205
if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
1206
emit(A64_MRS_TPIDR_EL2(tmp), ctx);
1207
else
1208
emit(A64_MRS_TPIDR_EL1(tmp), ctx);
1209
emit(A64_ADD(1, dst, dst, tmp), ctx);
1210
break;
1211
}
1212
switch (insn->off) {
1213
case 0:
1214
emit(A64_MOV(is64, dst, src), ctx);
1215
break;
1216
case 8:
1217
emit(A64_SXTB(is64, dst, src), ctx);
1218
break;
1219
case 16:
1220
emit(A64_SXTH(is64, dst, src), ctx);
1221
break;
1222
case 32:
1223
emit(A64_SXTW(is64, dst, src), ctx);
1224
break;
1225
}
1226
break;
1227
/* dst = dst OP src */
1228
case BPF_ALU | BPF_ADD | BPF_X:
1229
case BPF_ALU64 | BPF_ADD | BPF_X:
1230
emit(A64_ADD(is64, dst, dst, src), ctx);
1231
break;
1232
case BPF_ALU | BPF_SUB | BPF_X:
1233
case BPF_ALU64 | BPF_SUB | BPF_X:
1234
emit(A64_SUB(is64, dst, dst, src), ctx);
1235
break;
1236
case BPF_ALU | BPF_AND | BPF_X:
1237
case BPF_ALU64 | BPF_AND | BPF_X:
1238
emit(A64_AND(is64, dst, dst, src), ctx);
1239
break;
1240
case BPF_ALU | BPF_OR | BPF_X:
1241
case BPF_ALU64 | BPF_OR | BPF_X:
1242
emit(A64_ORR(is64, dst, dst, src), ctx);
1243
break;
1244
case BPF_ALU | BPF_XOR | BPF_X:
1245
case BPF_ALU64 | BPF_XOR | BPF_X:
1246
emit(A64_EOR(is64, dst, dst, src), ctx);
1247
break;
1248
case BPF_ALU | BPF_MUL | BPF_X:
1249
case BPF_ALU64 | BPF_MUL | BPF_X:
1250
emit(A64_MUL(is64, dst, dst, src), ctx);
1251
break;
1252
case BPF_ALU | BPF_DIV | BPF_X:
1253
case BPF_ALU64 | BPF_DIV | BPF_X:
1254
if (!off)
1255
emit(A64_UDIV(is64, dst, dst, src), ctx);
1256
else
1257
emit(A64_SDIV(is64, dst, dst, src), ctx);
1258
break;
1259
case BPF_ALU | BPF_MOD | BPF_X:
1260
case BPF_ALU64 | BPF_MOD | BPF_X:
1261
if (!off)
1262
emit(A64_UDIV(is64, tmp, dst, src), ctx);
1263
else
1264
emit(A64_SDIV(is64, tmp, dst, src), ctx);
1265
emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
1266
break;
1267
case BPF_ALU | BPF_LSH | BPF_X:
1268
case BPF_ALU64 | BPF_LSH | BPF_X:
1269
emit(A64_LSLV(is64, dst, dst, src), ctx);
1270
break;
1271
case BPF_ALU | BPF_RSH | BPF_X:
1272
case BPF_ALU64 | BPF_RSH | BPF_X:
1273
emit(A64_LSRV(is64, dst, dst, src), ctx);
1274
break;
1275
case BPF_ALU | BPF_ARSH | BPF_X:
1276
case BPF_ALU64 | BPF_ARSH | BPF_X:
1277
emit(A64_ASRV(is64, dst, dst, src), ctx);
1278
break;
1279
/* dst = -dst */
1280
case BPF_ALU | BPF_NEG:
1281
case BPF_ALU64 | BPF_NEG:
1282
emit(A64_NEG(is64, dst, dst), ctx);
1283
break;
1284
/* dst = BSWAP##imm(dst) */
1285
case BPF_ALU | BPF_END | BPF_FROM_LE:
1286
case BPF_ALU | BPF_END | BPF_FROM_BE:
1287
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1288
#ifdef CONFIG_CPU_BIG_ENDIAN
1289
if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_BE)
1290
goto emit_bswap_uxt;
1291
#else /* !CONFIG_CPU_BIG_ENDIAN */
1292
if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_LE)
1293
goto emit_bswap_uxt;
1294
#endif
1295
switch (imm) {
1296
case 16:
1297
emit(A64_REV16(is64, dst, dst), ctx);
1298
/* zero-extend 16 bits into 64 bits */
1299
emit(A64_UXTH(is64, dst, dst), ctx);
1300
break;
1301
case 32:
1302
emit(A64_REV32(0, dst, dst), ctx);
1303
/* upper 32 bits already cleared */
1304
break;
1305
case 64:
1306
emit(A64_REV64(dst, dst), ctx);
1307
break;
1308
}
1309
break;
1310
emit_bswap_uxt:
1311
switch (imm) {
1312
case 16:
1313
/* zero-extend 16 bits into 64 bits */
1314
emit(A64_UXTH(is64, dst, dst), ctx);
1315
break;
1316
case 32:
1317
/* zero-extend 32 bits into 64 bits */
1318
emit(A64_UXTW(is64, dst, dst), ctx);
1319
break;
1320
case 64:
1321
/* nop */
1322
break;
1323
}
1324
break;
1325
/* dst = imm */
1326
case BPF_ALU | BPF_MOV | BPF_K:
1327
case BPF_ALU64 | BPF_MOV | BPF_K:
1328
emit_a64_mov_i(is64, dst, imm, ctx);
1329
break;
1330
/* dst = dst OP imm */
1331
case BPF_ALU | BPF_ADD | BPF_K:
1332
case BPF_ALU64 | BPF_ADD | BPF_K:
1333
emit_a64_add_i(is64, dst, dst, tmp, imm, ctx);
1334
break;
1335
case BPF_ALU | BPF_SUB | BPF_K:
1336
case BPF_ALU64 | BPF_SUB | BPF_K:
1337
if (is_addsub_imm(imm)) {
1338
emit(A64_SUB_I(is64, dst, dst, imm), ctx);
1339
} else if (is_addsub_imm(-(u32)imm)) {
1340
emit(A64_ADD_I(is64, dst, dst, -imm), ctx);
1341
} else {
1342
emit_a64_mov_i(is64, tmp, imm, ctx);
1343
emit(A64_SUB(is64, dst, dst, tmp), ctx);
1344
}
1345
break;
1346
case BPF_ALU | BPF_AND | BPF_K:
1347
case BPF_ALU64 | BPF_AND | BPF_K:
1348
a64_insn = A64_AND_I(is64, dst, dst, imm);
1349
if (a64_insn != AARCH64_BREAK_FAULT) {
1350
emit(a64_insn, ctx);
1351
} else {
1352
emit_a64_mov_i(is64, tmp, imm, ctx);
1353
emit(A64_AND(is64, dst, dst, tmp), ctx);
1354
}
1355
break;
1356
case BPF_ALU | BPF_OR | BPF_K:
1357
case BPF_ALU64 | BPF_OR | BPF_K:
1358
a64_insn = A64_ORR_I(is64, dst, dst, imm);
1359
if (a64_insn != AARCH64_BREAK_FAULT) {
1360
emit(a64_insn, ctx);
1361
} else {
1362
emit_a64_mov_i(is64, tmp, imm, ctx);
1363
emit(A64_ORR(is64, dst, dst, tmp), ctx);
1364
}
1365
break;
1366
case BPF_ALU | BPF_XOR | BPF_K:
1367
case BPF_ALU64 | BPF_XOR | BPF_K:
1368
a64_insn = A64_EOR_I(is64, dst, dst, imm);
1369
if (a64_insn != AARCH64_BREAK_FAULT) {
1370
emit(a64_insn, ctx);
1371
} else {
1372
emit_a64_mov_i(is64, tmp, imm, ctx);
1373
emit(A64_EOR(is64, dst, dst, tmp), ctx);
1374
}
1375
break;
1376
case BPF_ALU | BPF_MUL | BPF_K:
1377
case BPF_ALU64 | BPF_MUL | BPF_K:
1378
emit_a64_mov_i(is64, tmp, imm, ctx);
1379
emit(A64_MUL(is64, dst, dst, tmp), ctx);
1380
break;
1381
case BPF_ALU | BPF_DIV | BPF_K:
1382
case BPF_ALU64 | BPF_DIV | BPF_K:
1383
emit_a64_mov_i(is64, tmp, imm, ctx);
1384
if (!off)
1385
emit(A64_UDIV(is64, dst, dst, tmp), ctx);
1386
else
1387
emit(A64_SDIV(is64, dst, dst, tmp), ctx);
1388
break;
1389
case BPF_ALU | BPF_MOD | BPF_K:
1390
case BPF_ALU64 | BPF_MOD | BPF_K:
1391
emit_a64_mov_i(is64, tmp2, imm, ctx);
1392
if (!off)
1393
emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
1394
else
1395
emit(A64_SDIV(is64, tmp, dst, tmp2), ctx);
1396
emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
1397
break;
1398
case BPF_ALU | BPF_LSH | BPF_K:
1399
case BPF_ALU64 | BPF_LSH | BPF_K:
1400
emit(A64_LSL(is64, dst, dst, imm), ctx);
1401
break;
1402
case BPF_ALU | BPF_RSH | BPF_K:
1403
case BPF_ALU64 | BPF_RSH | BPF_K:
1404
emit(A64_LSR(is64, dst, dst, imm), ctx);
1405
break;
1406
case BPF_ALU | BPF_ARSH | BPF_K:
1407
case BPF_ALU64 | BPF_ARSH | BPF_K:
1408
emit(A64_ASR(is64, dst, dst, imm), ctx);
1409
break;
1410
1411
/* JUMP off */
1412
case BPF_JMP | BPF_JA:
1413
case BPF_JMP32 | BPF_JA:
1414
if (BPF_CLASS(code) == BPF_JMP)
1415
jmp_offset = bpf2a64_offset(i, off, ctx);
1416
else
1417
jmp_offset = bpf2a64_offset(i, imm, ctx);
1418
check_imm26(jmp_offset);
1419
emit(A64_B(jmp_offset), ctx);
1420
break;
1421
/* IF (dst COND src) JUMP off */
1422
case BPF_JMP | BPF_JEQ | BPF_X:
1423
case BPF_JMP | BPF_JGT | BPF_X:
1424
case BPF_JMP | BPF_JLT | BPF_X:
1425
case BPF_JMP | BPF_JGE | BPF_X:
1426
case BPF_JMP | BPF_JLE | BPF_X:
1427
case BPF_JMP | BPF_JNE | BPF_X:
1428
case BPF_JMP | BPF_JSGT | BPF_X:
1429
case BPF_JMP | BPF_JSLT | BPF_X:
1430
case BPF_JMP | BPF_JSGE | BPF_X:
1431
case BPF_JMP | BPF_JSLE | BPF_X:
1432
case BPF_JMP32 | BPF_JEQ | BPF_X:
1433
case BPF_JMP32 | BPF_JGT | BPF_X:
1434
case BPF_JMP32 | BPF_JLT | BPF_X:
1435
case BPF_JMP32 | BPF_JGE | BPF_X:
1436
case BPF_JMP32 | BPF_JLE | BPF_X:
1437
case BPF_JMP32 | BPF_JNE | BPF_X:
1438
case BPF_JMP32 | BPF_JSGT | BPF_X:
1439
case BPF_JMP32 | BPF_JSLT | BPF_X:
1440
case BPF_JMP32 | BPF_JSGE | BPF_X:
1441
case BPF_JMP32 | BPF_JSLE | BPF_X:
1442
emit(A64_CMP(is64, dst, src), ctx);
1443
emit_cond_jmp:
1444
jmp_offset = bpf2a64_offset(i, off, ctx);
1445
check_imm19(jmp_offset);
1446
switch (BPF_OP(code)) {
1447
case BPF_JEQ:
1448
jmp_cond = A64_COND_EQ;
1449
break;
1450
case BPF_JGT:
1451
jmp_cond = A64_COND_HI;
1452
break;
1453
case BPF_JLT:
1454
jmp_cond = A64_COND_CC;
1455
break;
1456
case BPF_JGE:
1457
jmp_cond = A64_COND_CS;
1458
break;
1459
case BPF_JLE:
1460
jmp_cond = A64_COND_LS;
1461
break;
1462
case BPF_JSET:
1463
case BPF_JNE:
1464
jmp_cond = A64_COND_NE;
1465
break;
1466
case BPF_JSGT:
1467
jmp_cond = A64_COND_GT;
1468
break;
1469
case BPF_JSLT:
1470
jmp_cond = A64_COND_LT;
1471
break;
1472
case BPF_JSGE:
1473
jmp_cond = A64_COND_GE;
1474
break;
1475
case BPF_JSLE:
1476
jmp_cond = A64_COND_LE;
1477
break;
1478
default:
1479
return -EFAULT;
1480
}
1481
emit(A64_B_(jmp_cond, jmp_offset), ctx);
1482
break;
1483
case BPF_JMP | BPF_JSET | BPF_X:
1484
case BPF_JMP32 | BPF_JSET | BPF_X:
1485
emit(A64_TST(is64, dst, src), ctx);
1486
goto emit_cond_jmp;
1487
/* IF (dst COND imm) JUMP off */
1488
case BPF_JMP | BPF_JEQ | BPF_K:
1489
case BPF_JMP | BPF_JGT | BPF_K:
1490
case BPF_JMP | BPF_JLT | BPF_K:
1491
case BPF_JMP | BPF_JGE | BPF_K:
1492
case BPF_JMP | BPF_JLE | BPF_K:
1493
case BPF_JMP | BPF_JNE | BPF_K:
1494
case BPF_JMP | BPF_JSGT | BPF_K:
1495
case BPF_JMP | BPF_JSLT | BPF_K:
1496
case BPF_JMP | BPF_JSGE | BPF_K:
1497
case BPF_JMP | BPF_JSLE | BPF_K:
1498
case BPF_JMP32 | BPF_JEQ | BPF_K:
1499
case BPF_JMP32 | BPF_JGT | BPF_K:
1500
case BPF_JMP32 | BPF_JLT | BPF_K:
1501
case BPF_JMP32 | BPF_JGE | BPF_K:
1502
case BPF_JMP32 | BPF_JLE | BPF_K:
1503
case BPF_JMP32 | BPF_JNE | BPF_K:
1504
case BPF_JMP32 | BPF_JSGT | BPF_K:
1505
case BPF_JMP32 | BPF_JSLT | BPF_K:
1506
case BPF_JMP32 | BPF_JSGE | BPF_K:
1507
case BPF_JMP32 | BPF_JSLE | BPF_K:
1508
if (is_addsub_imm(imm)) {
1509
emit(A64_CMP_I(is64, dst, imm), ctx);
1510
} else if (is_addsub_imm(-(u32)imm)) {
1511
emit(A64_CMN_I(is64, dst, -imm), ctx);
1512
} else {
1513
emit_a64_mov_i(is64, tmp, imm, ctx);
1514
emit(A64_CMP(is64, dst, tmp), ctx);
1515
}
1516
goto emit_cond_jmp;
1517
case BPF_JMP | BPF_JSET | BPF_K:
1518
case BPF_JMP32 | BPF_JSET | BPF_K:
1519
a64_insn = A64_TST_I(is64, dst, imm);
1520
if (a64_insn != AARCH64_BREAK_FAULT) {
1521
emit(a64_insn, ctx);
1522
} else {
1523
emit_a64_mov_i(is64, tmp, imm, ctx);
1524
emit(A64_TST(is64, dst, tmp), ctx);
1525
}
1526
goto emit_cond_jmp;
1527
/* function call */
1528
case BPF_JMP | BPF_CALL:
1529
{
1530
const u8 r0 = bpf2a64[BPF_REG_0];
1531
bool func_addr_fixed;
1532
u64 func_addr;
1533
u32 cpu_offset;
1534
1535
/* Implement helper call to bpf_get_smp_processor_id() inline */
1536
if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1537
cpu_offset = offsetof(struct thread_info, cpu);
1538
1539
emit(A64_MRS_SP_EL0(tmp), ctx);
1540
if (is_lsi_offset(cpu_offset, 2)) {
1541
emit(A64_LDR32I(r0, tmp, cpu_offset), ctx);
1542
} else {
1543
emit_a64_mov_i(1, tmp2, cpu_offset, ctx);
1544
emit(A64_LDR32(r0, tmp, tmp2), ctx);
1545
}
1546
break;
1547
}
1548
1549
/* Implement helper call to bpf_get_current_task/_btf() inline */
1550
if (insn->src_reg == 0 && (insn->imm == BPF_FUNC_get_current_task ||
1551
insn->imm == BPF_FUNC_get_current_task_btf)) {
1552
emit(A64_MRS_SP_EL0(r0), ctx);
1553
break;
1554
}
1555
1556
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1557
&func_addr, &func_addr_fixed);
1558
if (ret < 0)
1559
return ret;
1560
emit_call(func_addr, ctx);
1561
emit(A64_MOV(1, r0, A64_R(0)), ctx);
1562
break;
1563
}
1564
/* tail call */
1565
case BPF_JMP | BPF_TAIL_CALL:
1566
if (emit_bpf_tail_call(ctx))
1567
return -EFAULT;
1568
break;
1569
/* function return */
1570
case BPF_JMP | BPF_EXIT:
1571
/* Optimization: when last instruction is EXIT,
1572
simply fallthrough to epilogue. */
1573
if (i == ctx->prog->len - 1)
1574
break;
1575
jmp_offset = epilogue_offset(ctx);
1576
check_imm26(jmp_offset);
1577
emit(A64_B(jmp_offset), ctx);
1578
break;
1579
1580
/* dst = imm64 */
1581
case BPF_LD | BPF_IMM | BPF_DW:
1582
{
1583
const struct bpf_insn insn1 = insn[1];
1584
u64 imm64;
1585
1586
imm64 = (u64)insn1.imm << 32 | (u32)imm;
1587
if (bpf_pseudo_func(insn))
1588
emit_addr_mov_i64(dst, imm64, ctx);
1589
else
1590
emit_a64_mov_i64(dst, imm64, ctx);
1591
1592
return 1;
1593
}
1594
1595
/* LDX: dst = (u64)*(unsigned size *)(src + off) */
1596
case BPF_LDX | BPF_MEM | BPF_W:
1597
case BPF_LDX | BPF_MEM | BPF_H:
1598
case BPF_LDX | BPF_MEM | BPF_B:
1599
case BPF_LDX | BPF_MEM | BPF_DW:
1600
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1601
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1602
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1603
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1604
/* LDXS: dst_reg = (s64)*(signed size *)(src_reg + off) */
1605
case BPF_LDX | BPF_MEMSX | BPF_B:
1606
case BPF_LDX | BPF_MEMSX | BPF_H:
1607
case BPF_LDX | BPF_MEMSX | BPF_W:
1608
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1609
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1610
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1611
case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1612
case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1613
case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1614
case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1615
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1616
emit(A64_ADD(1, tmp2, src, arena_vm_base), ctx);
1617
src = tmp2;
1618
}
1619
if (src == fp) {
1620
src_adj = ctx->priv_sp_used ? priv_sp : A64_SP;
1621
off_adj = off + ctx->stack_size;
1622
} else {
1623
src_adj = src;
1624
off_adj = off;
1625
}
1626
sign_extend = (BPF_MODE(insn->code) == BPF_MEMSX ||
1627
BPF_MODE(insn->code) == BPF_PROBE_MEMSX);
1628
switch (BPF_SIZE(code)) {
1629
case BPF_W:
1630
if (is_lsi_offset(off_adj, 2)) {
1631
if (sign_extend)
1632
emit(A64_LDRSWI(dst, src_adj, off_adj), ctx);
1633
else
1634
emit(A64_LDR32I(dst, src_adj, off_adj), ctx);
1635
} else {
1636
emit_a64_mov_i(1, tmp, off, ctx);
1637
if (sign_extend)
1638
emit(A64_LDRSW(dst, src, tmp), ctx);
1639
else
1640
emit(A64_LDR32(dst, src, tmp), ctx);
1641
}
1642
break;
1643
case BPF_H:
1644
if (is_lsi_offset(off_adj, 1)) {
1645
if (sign_extend)
1646
emit(A64_LDRSHI(dst, src_adj, off_adj), ctx);
1647
else
1648
emit(A64_LDRHI(dst, src_adj, off_adj), ctx);
1649
} else {
1650
emit_a64_mov_i(1, tmp, off, ctx);
1651
if (sign_extend)
1652
emit(A64_LDRSH(dst, src, tmp), ctx);
1653
else
1654
emit(A64_LDRH(dst, src, tmp), ctx);
1655
}
1656
break;
1657
case BPF_B:
1658
if (is_lsi_offset(off_adj, 0)) {
1659
if (sign_extend)
1660
emit(A64_LDRSBI(dst, src_adj, off_adj), ctx);
1661
else
1662
emit(A64_LDRBI(dst, src_adj, off_adj), ctx);
1663
} else {
1664
emit_a64_mov_i(1, tmp, off, ctx);
1665
if (sign_extend)
1666
emit(A64_LDRSB(dst, src, tmp), ctx);
1667
else
1668
emit(A64_LDRB(dst, src, tmp), ctx);
1669
}
1670
break;
1671
case BPF_DW:
1672
if (is_lsi_offset(off_adj, 3)) {
1673
emit(A64_LDR64I(dst, src_adj, off_adj), ctx);
1674
} else {
1675
emit_a64_mov_i(1, tmp, off, ctx);
1676
emit(A64_LDR64(dst, src, tmp), ctx);
1677
}
1678
break;
1679
}
1680
1681
ret = add_exception_handler(insn, ctx, dst);
1682
if (ret)
1683
return ret;
1684
break;
1685
1686
/* speculation barrier against v1 and v4 */
1687
case BPF_ST | BPF_NOSPEC:
1688
if (alternative_has_cap_likely(ARM64_HAS_SB)) {
1689
emit(A64_SB, ctx);
1690
} else {
1691
emit(A64_DSB_NSH, ctx);
1692
emit(A64_ISB, ctx);
1693
}
1694
break;
1695
1696
/* ST: *(size *)(dst + off) = imm */
1697
case BPF_ST | BPF_MEM | BPF_W:
1698
case BPF_ST | BPF_MEM | BPF_H:
1699
case BPF_ST | BPF_MEM | BPF_B:
1700
case BPF_ST | BPF_MEM | BPF_DW:
1701
case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1702
case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1703
case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1704
case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1705
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1706
emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx);
1707
dst = tmp2;
1708
}
1709
if (dst == fp) {
1710
dst_adj = ctx->priv_sp_used ? priv_sp : A64_SP;
1711
off_adj = off + ctx->stack_size;
1712
} else {
1713
dst_adj = dst;
1714
off_adj = off;
1715
}
1716
/* Load imm to a register then store it */
1717
emit_a64_mov_i(1, tmp, imm, ctx);
1718
switch (BPF_SIZE(code)) {
1719
case BPF_W:
1720
if (is_lsi_offset(off_adj, 2)) {
1721
emit(A64_STR32I(tmp, dst_adj, off_adj), ctx);
1722
} else {
1723
emit_a64_mov_i(1, tmp2, off, ctx);
1724
emit(A64_STR32(tmp, dst, tmp2), ctx);
1725
}
1726
break;
1727
case BPF_H:
1728
if (is_lsi_offset(off_adj, 1)) {
1729
emit(A64_STRHI(tmp, dst_adj, off_adj), ctx);
1730
} else {
1731
emit_a64_mov_i(1, tmp2, off, ctx);
1732
emit(A64_STRH(tmp, dst, tmp2), ctx);
1733
}
1734
break;
1735
case BPF_B:
1736
if (is_lsi_offset(off_adj, 0)) {
1737
emit(A64_STRBI(tmp, dst_adj, off_adj), ctx);
1738
} else {
1739
emit_a64_mov_i(1, tmp2, off, ctx);
1740
emit(A64_STRB(tmp, dst, tmp2), ctx);
1741
}
1742
break;
1743
case BPF_DW:
1744
if (is_lsi_offset(off_adj, 3)) {
1745
emit(A64_STR64I(tmp, dst_adj, off_adj), ctx);
1746
} else {
1747
emit_a64_mov_i(1, tmp2, off, ctx);
1748
emit(A64_STR64(tmp, dst, tmp2), ctx);
1749
}
1750
break;
1751
}
1752
1753
ret = add_exception_handler(insn, ctx, dst);
1754
if (ret)
1755
return ret;
1756
break;
1757
1758
/* STX: *(size *)(dst + off) = src */
1759
case BPF_STX | BPF_MEM | BPF_W:
1760
case BPF_STX | BPF_MEM | BPF_H:
1761
case BPF_STX | BPF_MEM | BPF_B:
1762
case BPF_STX | BPF_MEM | BPF_DW:
1763
case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1764
case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1765
case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1766
case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1767
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1768
emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx);
1769
dst = tmp2;
1770
}
1771
if (dst == fp) {
1772
dst_adj = ctx->priv_sp_used ? priv_sp : A64_SP;
1773
off_adj = off + ctx->stack_size;
1774
} else {
1775
dst_adj = dst;
1776
off_adj = off;
1777
}
1778
switch (BPF_SIZE(code)) {
1779
case BPF_W:
1780
if (is_lsi_offset(off_adj, 2)) {
1781
emit(A64_STR32I(src, dst_adj, off_adj), ctx);
1782
} else {
1783
emit_a64_mov_i(1, tmp, off, ctx);
1784
emit(A64_STR32(src, dst, tmp), ctx);
1785
}
1786
break;
1787
case BPF_H:
1788
if (is_lsi_offset(off_adj, 1)) {
1789
emit(A64_STRHI(src, dst_adj, off_adj), ctx);
1790
} else {
1791
emit_a64_mov_i(1, tmp, off, ctx);
1792
emit(A64_STRH(src, dst, tmp), ctx);
1793
}
1794
break;
1795
case BPF_B:
1796
if (is_lsi_offset(off_adj, 0)) {
1797
emit(A64_STRBI(src, dst_adj, off_adj), ctx);
1798
} else {
1799
emit_a64_mov_i(1, tmp, off, ctx);
1800
emit(A64_STRB(src, dst, tmp), ctx);
1801
}
1802
break;
1803
case BPF_DW:
1804
if (is_lsi_offset(off_adj, 3)) {
1805
emit(A64_STR64I(src, dst_adj, off_adj), ctx);
1806
} else {
1807
emit_a64_mov_i(1, tmp, off, ctx);
1808
emit(A64_STR64(src, dst, tmp), ctx);
1809
}
1810
break;
1811
}
1812
1813
ret = add_exception_handler(insn, ctx, dst);
1814
if (ret)
1815
return ret;
1816
break;
1817
1818
case BPF_STX | BPF_ATOMIC | BPF_B:
1819
case BPF_STX | BPF_ATOMIC | BPF_H:
1820
case BPF_STX | BPF_ATOMIC | BPF_W:
1821
case BPF_STX | BPF_ATOMIC | BPF_DW:
1822
case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
1823
case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
1824
case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1825
case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1826
if (bpf_atomic_is_load_store(insn))
1827
ret = emit_atomic_ld_st(insn, ctx);
1828
else if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
1829
ret = emit_lse_atomic(insn, ctx);
1830
else
1831
ret = emit_ll_sc_atomic(insn, ctx);
1832
if (ret)
1833
return ret;
1834
1835
ret = add_exception_handler(insn, ctx, dst);
1836
if (ret)
1837
return ret;
1838
break;
1839
1840
default:
1841
pr_err_once("unknown opcode %02x\n", code);
1842
return -EINVAL;
1843
}
1844
1845
return 0;
1846
}
1847
1848
static int build_body(struct jit_ctx *ctx, bool extra_pass)
1849
{
1850
const struct bpf_prog *prog = ctx->prog;
1851
int i;
1852
1853
/*
1854
* - offset[0] offset of the end of prologue,
1855
* start of the 1st instruction.
1856
* - offset[1] - offset of the end of 1st instruction,
1857
* start of the 2nd instruction
1858
* [....]
1859
* - offset[3] - offset of the end of 3rd instruction,
1860
* start of 4th instruction
1861
*/
1862
for (i = 0; i < prog->len; i++) {
1863
const struct bpf_insn *insn = &prog->insnsi[i];
1864
int ret;
1865
1866
ctx->offset[i] = ctx->idx;
1867
ret = build_insn(insn, ctx, extra_pass);
1868
if (ret > 0) {
1869
i++;
1870
ctx->offset[i] = ctx->idx;
1871
continue;
1872
}
1873
if (ret)
1874
return ret;
1875
}
1876
/*
1877
* offset is allocated with prog->len + 1 so fill in
1878
* the last element with the offset after the last
1879
* instruction (end of program)
1880
*/
1881
ctx->offset[i] = ctx->idx;
1882
1883
return 0;
1884
}
1885
1886
static int validate_code(struct jit_ctx *ctx)
1887
{
1888
int i;
1889
1890
for (i = 0; i < ctx->idx; i++) {
1891
u32 a64_insn = le32_to_cpu(ctx->image[i]);
1892
1893
if (a64_insn == AARCH64_BREAK_FAULT)
1894
return -1;
1895
}
1896
return 0;
1897
}
1898
1899
static int validate_ctx(struct jit_ctx *ctx)
1900
{
1901
if (validate_code(ctx))
1902
return -1;
1903
1904
if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries))
1905
return -1;
1906
1907
return 0;
1908
}
1909
1910
static inline void bpf_flush_icache(void *start, void *end)
1911
{
1912
flush_icache_range((unsigned long)start, (unsigned long)end);
1913
}
1914
1915
static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
1916
{
1917
int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
1918
u64 *stack_ptr;
1919
1920
for_each_possible_cpu(cpu) {
1921
stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
1922
stack_ptr[0] = PRIV_STACK_GUARD_VAL;
1923
stack_ptr[1] = PRIV_STACK_GUARD_VAL;
1924
stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
1925
stack_ptr[underflow_idx + 1] = PRIV_STACK_GUARD_VAL;
1926
}
1927
}
1928
1929
static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
1930
struct bpf_prog *prog)
1931
{
1932
int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
1933
u64 *stack_ptr;
1934
1935
for_each_possible_cpu(cpu) {
1936
stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
1937
if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
1938
stack_ptr[1] != PRIV_STACK_GUARD_VAL ||
1939
stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL ||
1940
stack_ptr[underflow_idx + 1] != PRIV_STACK_GUARD_VAL) {
1941
pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
1942
bpf_jit_get_prog_name(prog));
1943
break;
1944
}
1945
}
1946
}
1947
1948
struct arm64_jit_data {
1949
struct bpf_binary_header *header;
1950
u8 *ro_image;
1951
struct bpf_binary_header *ro_header;
1952
struct jit_ctx ctx;
1953
};
1954
1955
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1956
{
1957
int image_size, prog_size, extable_size, extable_align, extable_offset;
1958
struct bpf_prog *tmp, *orig_prog = prog;
1959
struct bpf_binary_header *header;
1960
struct bpf_binary_header *ro_header = NULL;
1961
struct arm64_jit_data *jit_data;
1962
void __percpu *priv_stack_ptr = NULL;
1963
bool was_classic = bpf_prog_was_classic(prog);
1964
int priv_stack_alloc_sz;
1965
bool tmp_blinded = false;
1966
bool extra_pass = false;
1967
struct jit_ctx ctx;
1968
u8 *image_ptr;
1969
u8 *ro_image_ptr;
1970
int body_idx;
1971
int exentry_idx;
1972
1973
if (!prog->jit_requested)
1974
return orig_prog;
1975
1976
tmp = bpf_jit_blind_constants(prog);
1977
/* If blinding was requested and we failed during blinding,
1978
* we must fall back to the interpreter.
1979
*/
1980
if (IS_ERR(tmp))
1981
return orig_prog;
1982
if (tmp != prog) {
1983
tmp_blinded = true;
1984
prog = tmp;
1985
}
1986
1987
jit_data = prog->aux->jit_data;
1988
if (!jit_data) {
1989
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1990
if (!jit_data) {
1991
prog = orig_prog;
1992
goto out;
1993
}
1994
prog->aux->jit_data = jit_data;
1995
}
1996
priv_stack_ptr = prog->aux->priv_stack_ptr;
1997
if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
1998
/* Allocate actual private stack size with verifier-calculated
1999
* stack size plus two memory guards to protect overflow and
2000
* underflow.
2001
*/
2002
priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 16) +
2003
2 * PRIV_STACK_GUARD_SZ;
2004
priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 16, GFP_KERNEL);
2005
if (!priv_stack_ptr) {
2006
prog = orig_prog;
2007
goto out_priv_stack;
2008
}
2009
2010
priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
2011
prog->aux->priv_stack_ptr = priv_stack_ptr;
2012
}
2013
if (jit_data->ctx.offset) {
2014
ctx = jit_data->ctx;
2015
ro_image_ptr = jit_data->ro_image;
2016
ro_header = jit_data->ro_header;
2017
header = jit_data->header;
2018
image_ptr = (void *)header + ((void *)ro_image_ptr
2019
- (void *)ro_header);
2020
extra_pass = true;
2021
prog_size = sizeof(u32) * ctx.idx;
2022
goto skip_init_ctx;
2023
}
2024
memset(&ctx, 0, sizeof(ctx));
2025
ctx.prog = prog;
2026
2027
ctx.offset = kvcalloc(prog->len + 1, sizeof(int), GFP_KERNEL);
2028
if (ctx.offset == NULL) {
2029
prog = orig_prog;
2030
goto out_off;
2031
}
2032
2033
ctx.user_vm_start = bpf_arena_get_user_vm_start(prog->aux->arena);
2034
ctx.arena_vm_start = bpf_arena_get_kern_vm_start(prog->aux->arena);
2035
2036
if (priv_stack_ptr)
2037
ctx.priv_sp_used = true;
2038
2039
/* Pass 1: Estimate the maximum image size.
2040
*
2041
* BPF line info needs ctx->offset[i] to be the offset of
2042
* instruction[i] in jited image, so build prologue first.
2043
*/
2044
if (build_prologue(&ctx, was_classic)) {
2045
prog = orig_prog;
2046
goto out_off;
2047
}
2048
2049
if (build_body(&ctx, extra_pass)) {
2050
prog = orig_prog;
2051
goto out_off;
2052
}
2053
2054
ctx.epilogue_offset = ctx.idx;
2055
build_epilogue(&ctx, was_classic);
2056
build_plt(&ctx);
2057
2058
extable_align = __alignof__(struct exception_table_entry);
2059
extable_size = prog->aux->num_exentries *
2060
sizeof(struct exception_table_entry);
2061
2062
/* Now we know the maximum image size. */
2063
prog_size = sizeof(u32) * ctx.idx;
2064
/* also allocate space for plt target */
2065
extable_offset = round_up(prog_size + PLT_TARGET_SIZE, extable_align);
2066
image_size = extable_offset + extable_size;
2067
ro_header = bpf_jit_binary_pack_alloc(image_size, &ro_image_ptr,
2068
sizeof(u32), &header, &image_ptr,
2069
jit_fill_hole);
2070
if (!ro_header) {
2071
prog = orig_prog;
2072
goto out_off;
2073
}
2074
2075
/* Pass 2: Determine jited position and result for each instruction */
2076
2077
/*
2078
* Use the image(RW) for writing the JITed instructions. But also save
2079
* the ro_image(RX) for calculating the offsets in the image. The RW
2080
* image will be later copied to the RX image from where the program
2081
* will run. The bpf_jit_binary_pack_finalize() will do this copy in the
2082
* final step.
2083
*/
2084
ctx.image = (__le32 *)image_ptr;
2085
ctx.ro_image = (__le32 *)ro_image_ptr;
2086
if (extable_size)
2087
prog->aux->extable = (void *)ro_image_ptr + extable_offset;
2088
skip_init_ctx:
2089
ctx.idx = 0;
2090
ctx.exentry_idx = 0;
2091
ctx.write = true;
2092
2093
build_prologue(&ctx, was_classic);
2094
2095
/* Record exentry_idx and body_idx before first build_body */
2096
exentry_idx = ctx.exentry_idx;
2097
body_idx = ctx.idx;
2098
/* Dont write body instructions to memory for now */
2099
ctx.write = false;
2100
2101
if (build_body(&ctx, extra_pass)) {
2102
prog = orig_prog;
2103
goto out_free_hdr;
2104
}
2105
2106
ctx.epilogue_offset = ctx.idx;
2107
ctx.exentry_idx = exentry_idx;
2108
ctx.idx = body_idx;
2109
ctx.write = true;
2110
2111
/* Pass 3: Adjust jump offset and write final image */
2112
if (build_body(&ctx, extra_pass) ||
2113
WARN_ON_ONCE(ctx.idx != ctx.epilogue_offset)) {
2114
prog = orig_prog;
2115
goto out_free_hdr;
2116
}
2117
2118
build_epilogue(&ctx, was_classic);
2119
build_plt(&ctx);
2120
2121
/* Extra pass to validate JITed code. */
2122
if (validate_ctx(&ctx)) {
2123
prog = orig_prog;
2124
goto out_free_hdr;
2125
}
2126
2127
/* update the real prog size */
2128
prog_size = sizeof(u32) * ctx.idx;
2129
2130
/* And we're done. */
2131
if (bpf_jit_enable > 1)
2132
bpf_jit_dump(prog->len, prog_size, 2, ctx.image);
2133
2134
if (!prog->is_func || extra_pass) {
2135
/* The jited image may shrink since the jited result for
2136
* BPF_CALL to subprog may be changed from indirect call
2137
* to direct call.
2138
*/
2139
if (extra_pass && ctx.idx > jit_data->ctx.idx) {
2140
pr_err_once("multi-func JIT bug %d > %d\n",
2141
ctx.idx, jit_data->ctx.idx);
2142
prog->bpf_func = NULL;
2143
prog->jited = 0;
2144
prog->jited_len = 0;
2145
goto out_free_hdr;
2146
}
2147
if (WARN_ON(bpf_jit_binary_pack_finalize(ro_header, header))) {
2148
/* ro_header has been freed */
2149
ro_header = NULL;
2150
prog = orig_prog;
2151
goto out_off;
2152
}
2153
/*
2154
* The instructions have now been copied to the ROX region from
2155
* where they will execute. Now the data cache has to be cleaned to
2156
* the PoU and the I-cache has to be invalidated for the VAs.
2157
*/
2158
bpf_flush_icache(ro_header, ctx.ro_image + ctx.idx);
2159
} else {
2160
jit_data->ctx = ctx;
2161
jit_data->ro_image = ro_image_ptr;
2162
jit_data->header = header;
2163
jit_data->ro_header = ro_header;
2164
}
2165
2166
prog->bpf_func = (void *)ctx.ro_image + cfi_get_offset();
2167
prog->jited = 1;
2168
prog->jited_len = prog_size - cfi_get_offset();
2169
2170
if (!prog->is_func || extra_pass) {
2171
int i;
2172
2173
/* offset[prog->len] is the size of program */
2174
for (i = 0; i <= prog->len; i++)
2175
ctx.offset[i] *= AARCH64_INSN_SIZE;
2176
bpf_prog_fill_jited_linfo(prog, ctx.offset + 1);
2177
out_off:
2178
if (!ro_header && priv_stack_ptr) {
2179
free_percpu(priv_stack_ptr);
2180
prog->aux->priv_stack_ptr = NULL;
2181
}
2182
kvfree(ctx.offset);
2183
out_priv_stack:
2184
kfree(jit_data);
2185
prog->aux->jit_data = NULL;
2186
}
2187
out:
2188
if (tmp_blinded)
2189
bpf_jit_prog_release_other(prog, prog == orig_prog ?
2190
tmp : orig_prog);
2191
return prog;
2192
2193
out_free_hdr:
2194
if (header) {
2195
bpf_arch_text_copy(&ro_header->size, &header->size,
2196
sizeof(header->size));
2197
bpf_jit_binary_pack_free(ro_header, header);
2198
}
2199
goto out_off;
2200
}
2201
2202
bool bpf_jit_supports_private_stack(void)
2203
{
2204
return true;
2205
}
2206
2207
bool bpf_jit_supports_kfunc_call(void)
2208
{
2209
return true;
2210
}
2211
2212
void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2213
{
2214
if (!aarch64_insn_copy(dst, src, len))
2215
return ERR_PTR(-EINVAL);
2216
return dst;
2217
}
2218
2219
u64 bpf_jit_alloc_exec_limit(void)
2220
{
2221
return VMALLOC_END - VMALLOC_START;
2222
}
2223
2224
/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2225
bool bpf_jit_supports_subprog_tailcalls(void)
2226
{
2227
return true;
2228
}
2229
2230
static void invoke_bpf_prog(struct jit_ctx *ctx, struct bpf_tramp_link *l,
2231
int bargs_off, int retval_off, int run_ctx_off,
2232
bool save_ret)
2233
{
2234
__le32 *branch;
2235
u64 enter_prog;
2236
u64 exit_prog;
2237
struct bpf_prog *p = l->link.prog;
2238
int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2239
2240
enter_prog = (u64)bpf_trampoline_enter(p);
2241
exit_prog = (u64)bpf_trampoline_exit(p);
2242
2243
if (l->cookie == 0) {
2244
/* if cookie is zero, one instruction is enough to store it */
2245
emit(A64_STR64I(A64_ZR, A64_SP, run_ctx_off + cookie_off), ctx);
2246
} else {
2247
emit_a64_mov_i64(A64_R(10), l->cookie, ctx);
2248
emit(A64_STR64I(A64_R(10), A64_SP, run_ctx_off + cookie_off),
2249
ctx);
2250
}
2251
2252
/* save p to callee saved register x19 to avoid loading p with mov_i64
2253
* each time.
2254
*/
2255
emit_addr_mov_i64(A64_R(19), (const u64)p, ctx);
2256
2257
/* arg1: prog */
2258
emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
2259
/* arg2: &run_ctx */
2260
emit(A64_ADD_I(1, A64_R(1), A64_SP, run_ctx_off), ctx);
2261
2262
emit_call(enter_prog, ctx);
2263
2264
/* save return value to callee saved register x20 */
2265
emit(A64_MOV(1, A64_R(20), A64_R(0)), ctx);
2266
2267
/* if (__bpf_prog_enter(prog) == 0)
2268
* goto skip_exec_of_prog;
2269
*/
2270
branch = ctx->image + ctx->idx;
2271
emit(A64_NOP, ctx);
2272
2273
emit(A64_ADD_I(1, A64_R(0), A64_SP, bargs_off), ctx);
2274
if (!p->jited)
2275
emit_addr_mov_i64(A64_R(1), (const u64)p->insnsi, ctx);
2276
2277
emit_call((const u64)p->bpf_func, ctx);
2278
2279
if (save_ret)
2280
emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
2281
2282
if (ctx->image) {
2283
int offset = &ctx->image[ctx->idx] - branch;
2284
*branch = cpu_to_le32(A64_CBZ(1, A64_R(0), offset));
2285
}
2286
2287
/* arg1: prog */
2288
emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
2289
/* arg2: start time */
2290
emit(A64_MOV(1, A64_R(1), A64_R(20)), ctx);
2291
/* arg3: &run_ctx */
2292
emit(A64_ADD_I(1, A64_R(2), A64_SP, run_ctx_off), ctx);
2293
2294
emit_call(exit_prog, ctx);
2295
}
2296
2297
static void invoke_bpf_mod_ret(struct jit_ctx *ctx, struct bpf_tramp_links *tl,
2298
int bargs_off, int retval_off, int run_ctx_off,
2299
__le32 **branches)
2300
{
2301
int i;
2302
2303
/* The first fmod_ret program will receive a garbage return value.
2304
* Set this to 0 to avoid confusing the program.
2305
*/
2306
emit(A64_STR64I(A64_ZR, A64_SP, retval_off), ctx);
2307
for (i = 0; i < tl->nr_links; i++) {
2308
invoke_bpf_prog(ctx, tl->links[i], bargs_off, retval_off,
2309
run_ctx_off, true);
2310
/* if (*(u64 *)(sp + retval_off) != 0)
2311
* goto do_fexit;
2312
*/
2313
emit(A64_LDR64I(A64_R(10), A64_SP, retval_off), ctx);
2314
/* Save the location of branch, and generate a nop.
2315
* This nop will be replaced with a cbnz later.
2316
*/
2317
branches[i] = ctx->image + ctx->idx;
2318
emit(A64_NOP, ctx);
2319
}
2320
}
2321
2322
struct arg_aux {
2323
/* how many args are passed through registers, the rest of the args are
2324
* passed through stack
2325
*/
2326
int args_in_regs;
2327
/* how many registers are used to pass arguments */
2328
int regs_for_args;
2329
/* how much stack is used for additional args passed to bpf program
2330
* that did not fit in original function registers
2331
*/
2332
int bstack_for_args;
2333
/* home much stack is used for additional args passed to the
2334
* original function when called from trampoline (this one needs
2335
* arguments to be properly aligned)
2336
*/
2337
int ostack_for_args;
2338
};
2339
2340
static int calc_arg_aux(const struct btf_func_model *m,
2341
struct arg_aux *a)
2342
{
2343
int stack_slots, nregs, slots, i;
2344
2345
/* verifier ensures m->nr_args <= MAX_BPF_FUNC_ARGS */
2346
for (i = 0, nregs = 0; i < m->nr_args; i++) {
2347
slots = (m->arg_size[i] + 7) / 8;
2348
if (nregs + slots <= 8) /* passed through register ? */
2349
nregs += slots;
2350
else
2351
break;
2352
}
2353
2354
a->args_in_regs = i;
2355
a->regs_for_args = nregs;
2356
a->ostack_for_args = 0;
2357
a->bstack_for_args = 0;
2358
2359
/* the rest arguments are passed through stack */
2360
for (; i < m->nr_args; i++) {
2361
stack_slots = (m->arg_size[i] + 7) / 8;
2362
a->bstack_for_args += stack_slots * 8;
2363
a->ostack_for_args = a->ostack_for_args + stack_slots * 8;
2364
}
2365
2366
return 0;
2367
}
2368
2369
static void clear_garbage(struct jit_ctx *ctx, int reg, int effective_bytes)
2370
{
2371
if (effective_bytes) {
2372
int garbage_bits = 64 - 8 * effective_bytes;
2373
#ifdef CONFIG_CPU_BIG_ENDIAN
2374
/* garbage bits are at the right end */
2375
emit(A64_LSR(1, reg, reg, garbage_bits), ctx);
2376
emit(A64_LSL(1, reg, reg, garbage_bits), ctx);
2377
#else
2378
/* garbage bits are at the left end */
2379
emit(A64_LSL(1, reg, reg, garbage_bits), ctx);
2380
emit(A64_LSR(1, reg, reg, garbage_bits), ctx);
2381
#endif
2382
}
2383
}
2384
2385
static void save_args(struct jit_ctx *ctx, int bargs_off, int oargs_off,
2386
const struct btf_func_model *m,
2387
const struct arg_aux *a,
2388
bool for_call_origin)
2389
{
2390
int i;
2391
int reg;
2392
int doff;
2393
int soff;
2394
int slots;
2395
u8 tmp = bpf2a64[TMP_REG_1];
2396
2397
/* store arguments to the stack for the bpf program, or restore
2398
* arguments from stack for the original function
2399
*/
2400
for (reg = 0; reg < a->regs_for_args; reg++) {
2401
emit(for_call_origin ?
2402
A64_LDR64I(reg, A64_SP, bargs_off) :
2403
A64_STR64I(reg, A64_SP, bargs_off),
2404
ctx);
2405
bargs_off += 8;
2406
}
2407
2408
soff = 32; /* on stack arguments start from FP + 32 */
2409
doff = (for_call_origin ? oargs_off : bargs_off);
2410
2411
/* save on stack arguments */
2412
for (i = a->args_in_regs; i < m->nr_args; i++) {
2413
slots = (m->arg_size[i] + 7) / 8;
2414
/* verifier ensures arg_size <= 16, so slots equals 1 or 2 */
2415
while (slots-- > 0) {
2416
emit(A64_LDR64I(tmp, A64_FP, soff), ctx);
2417
/* if there is unused space in the last slot, clear
2418
* the garbage contained in the space.
2419
*/
2420
if (slots == 0 && !for_call_origin)
2421
clear_garbage(ctx, tmp, m->arg_size[i] % 8);
2422
emit(A64_STR64I(tmp, A64_SP, doff), ctx);
2423
soff += 8;
2424
doff += 8;
2425
}
2426
}
2427
}
2428
2429
static void restore_args(struct jit_ctx *ctx, int bargs_off, int nregs)
2430
{
2431
int reg;
2432
2433
for (reg = 0; reg < nregs; reg++) {
2434
emit(A64_LDR64I(reg, A64_SP, bargs_off), ctx);
2435
bargs_off += 8;
2436
}
2437
}
2438
2439
static bool is_struct_ops_tramp(const struct bpf_tramp_links *fentry_links)
2440
{
2441
return fentry_links->nr_links == 1 &&
2442
fentry_links->links[0]->link.type == BPF_LINK_TYPE_STRUCT_OPS;
2443
}
2444
2445
/* Based on the x86's implementation of arch_prepare_bpf_trampoline().
2446
*
2447
* bpf prog and function entry before bpf trampoline hooked:
2448
* mov x9, lr
2449
* nop
2450
*
2451
* bpf prog and function entry after bpf trampoline hooked:
2452
* mov x9, lr
2453
* bl <bpf_trampoline or plt>
2454
*
2455
*/
2456
static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im,
2457
struct bpf_tramp_links *tlinks, void *func_addr,
2458
const struct btf_func_model *m,
2459
const struct arg_aux *a,
2460
u32 flags)
2461
{
2462
int i;
2463
int stack_size;
2464
int retaddr_off;
2465
int regs_off;
2466
int retval_off;
2467
int bargs_off;
2468
int nfuncargs_off;
2469
int ip_off;
2470
int run_ctx_off;
2471
int oargs_off;
2472
int nfuncargs;
2473
struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2474
struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2475
struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2476
bool save_ret;
2477
__le32 **branches = NULL;
2478
bool is_struct_ops = is_struct_ops_tramp(fentry);
2479
2480
/* trampoline stack layout:
2481
* [ parent ip ]
2482
* [ FP ]
2483
* SP + retaddr_off [ self ip ]
2484
* [ FP ]
2485
*
2486
* [ padding ] align SP to multiples of 16
2487
*
2488
* [ x20 ] callee saved reg x20
2489
* SP + regs_off [ x19 ] callee saved reg x19
2490
*
2491
* SP + retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or
2492
* BPF_TRAMP_F_RET_FENTRY_RET
2493
* [ arg reg N ]
2494
* [ ... ]
2495
* SP + bargs_off [ arg reg 1 ] for bpf
2496
*
2497
* SP + nfuncargs_off [ arg regs count ]
2498
*
2499
* SP + ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2500
*
2501
* SP + run_ctx_off [ bpf_tramp_run_ctx ]
2502
*
2503
* [ stack arg N ]
2504
* [ ... ]
2505
* SP + oargs_off [ stack arg 1 ] for original func
2506
*/
2507
2508
stack_size = 0;
2509
oargs_off = stack_size;
2510
if (flags & BPF_TRAMP_F_CALL_ORIG)
2511
stack_size += a->ostack_for_args;
2512
2513
run_ctx_off = stack_size;
2514
/* room for bpf_tramp_run_ctx */
2515
stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
2516
2517
ip_off = stack_size;
2518
/* room for IP address argument */
2519
if (flags & BPF_TRAMP_F_IP_ARG)
2520
stack_size += 8;
2521
2522
nfuncargs_off = stack_size;
2523
/* room for args count */
2524
stack_size += 8;
2525
2526
bargs_off = stack_size;
2527
/* room for args */
2528
nfuncargs = a->regs_for_args + a->bstack_for_args / 8;
2529
stack_size += 8 * nfuncargs;
2530
2531
/* room for return value */
2532
retval_off = stack_size;
2533
save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2534
if (save_ret)
2535
stack_size += 8;
2536
2537
/* room for callee saved registers, currently x19 and x20 are used */
2538
regs_off = stack_size;
2539
stack_size += 16;
2540
2541
/* round up to multiples of 16 to avoid SPAlignmentFault */
2542
stack_size = round_up(stack_size, 16);
2543
2544
/* return address locates above FP */
2545
retaddr_off = stack_size + 8;
2546
2547
if (flags & BPF_TRAMP_F_INDIRECT) {
2548
/*
2549
* Indirect call for bpf_struct_ops
2550
*/
2551
emit_kcfi(cfi_get_func_hash(func_addr), ctx);
2552
}
2553
/* bpf trampoline may be invoked by 3 instruction types:
2554
* 1. bl, attached to bpf prog or kernel function via short jump
2555
* 2. br, attached to bpf prog or kernel function via long jump
2556
* 3. blr, working as a function pointer, used by struct_ops.
2557
* So BTI_JC should used here to support both br and blr.
2558
*/
2559
emit_bti(A64_BTI_JC, ctx);
2560
2561
/* x9 is not set for struct_ops */
2562
if (!is_struct_ops) {
2563
/* frame for parent function */
2564
emit(A64_PUSH(A64_FP, A64_R(9), A64_SP), ctx);
2565
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
2566
}
2567
2568
/* frame for patched function for tracing, or caller for struct_ops */
2569
emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
2570
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
2571
2572
/* allocate stack space */
2573
emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx);
2574
2575
if (flags & BPF_TRAMP_F_IP_ARG) {
2576
/* save ip address of the traced function */
2577
emit_addr_mov_i64(A64_R(10), (const u64)func_addr, ctx);
2578
emit(A64_STR64I(A64_R(10), A64_SP, ip_off), ctx);
2579
}
2580
2581
/* save arg regs count*/
2582
emit(A64_MOVZ(1, A64_R(10), nfuncargs, 0), ctx);
2583
emit(A64_STR64I(A64_R(10), A64_SP, nfuncargs_off), ctx);
2584
2585
/* save args for bpf */
2586
save_args(ctx, bargs_off, oargs_off, m, a, false);
2587
2588
/* save callee saved registers */
2589
emit(A64_STR64I(A64_R(19), A64_SP, regs_off), ctx);
2590
emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
2591
2592
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2593
/* for the first pass, assume the worst case */
2594
if (!ctx->image)
2595
ctx->idx += 4;
2596
else
2597
emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
2598
emit_call((const u64)__bpf_tramp_enter, ctx);
2599
}
2600
2601
for (i = 0; i < fentry->nr_links; i++)
2602
invoke_bpf_prog(ctx, fentry->links[i], bargs_off,
2603
retval_off, run_ctx_off,
2604
flags & BPF_TRAMP_F_RET_FENTRY_RET);
2605
2606
if (fmod_ret->nr_links) {
2607
branches = kcalloc(fmod_ret->nr_links, sizeof(__le32 *),
2608
GFP_KERNEL);
2609
if (!branches)
2610
return -ENOMEM;
2611
2612
invoke_bpf_mod_ret(ctx, fmod_ret, bargs_off, retval_off,
2613
run_ctx_off, branches);
2614
}
2615
2616
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2617
/* save args for original func */
2618
save_args(ctx, bargs_off, oargs_off, m, a, true);
2619
/* call original func */
2620
emit(A64_LDR64I(A64_R(10), A64_SP, retaddr_off), ctx);
2621
emit(A64_ADR(A64_LR, AARCH64_INSN_SIZE * 2), ctx);
2622
emit(A64_RET(A64_R(10)), ctx);
2623
/* store return value */
2624
emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
2625
/* reserve a nop for bpf_tramp_image_put */
2626
im->ip_after_call = ctx->ro_image + ctx->idx;
2627
emit(A64_NOP, ctx);
2628
}
2629
2630
/* update the branches saved in invoke_bpf_mod_ret with cbnz */
2631
for (i = 0; i < fmod_ret->nr_links && ctx->image != NULL; i++) {
2632
int offset = &ctx->image[ctx->idx] - branches[i];
2633
*branches[i] = cpu_to_le32(A64_CBNZ(1, A64_R(10), offset));
2634
}
2635
2636
for (i = 0; i < fexit->nr_links; i++)
2637
invoke_bpf_prog(ctx, fexit->links[i], bargs_off, retval_off,
2638
run_ctx_off, false);
2639
2640
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2641
im->ip_epilogue = ctx->ro_image + ctx->idx;
2642
/* for the first pass, assume the worst case */
2643
if (!ctx->image)
2644
ctx->idx += 4;
2645
else
2646
emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
2647
emit_call((const u64)__bpf_tramp_exit, ctx);
2648
}
2649
2650
if (flags & BPF_TRAMP_F_RESTORE_REGS)
2651
restore_args(ctx, bargs_off, a->regs_for_args);
2652
2653
/* restore callee saved register x19 and x20 */
2654
emit(A64_LDR64I(A64_R(19), A64_SP, regs_off), ctx);
2655
emit(A64_LDR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
2656
2657
if (save_ret)
2658
emit(A64_LDR64I(A64_R(0), A64_SP, retval_off), ctx);
2659
2660
/* reset SP */
2661
emit(A64_MOV(1, A64_SP, A64_FP), ctx);
2662
2663
if (is_struct_ops) {
2664
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
2665
emit(A64_RET(A64_LR), ctx);
2666
} else {
2667
/* pop frames */
2668
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
2669
emit(A64_POP(A64_FP, A64_R(9), A64_SP), ctx);
2670
2671
if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2672
/* skip patched function, return to parent */
2673
emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
2674
emit(A64_RET(A64_R(9)), ctx);
2675
} else {
2676
/* return to patched function */
2677
emit(A64_MOV(1, A64_R(10), A64_LR), ctx);
2678
emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
2679
emit(A64_RET(A64_R(10)), ctx);
2680
}
2681
}
2682
2683
kfree(branches);
2684
2685
return ctx->idx;
2686
}
2687
2688
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2689
struct bpf_tramp_links *tlinks, void *func_addr)
2690
{
2691
struct jit_ctx ctx = {
2692
.image = NULL,
2693
.idx = 0,
2694
};
2695
struct bpf_tramp_image im;
2696
struct arg_aux aaux;
2697
int ret;
2698
2699
ret = calc_arg_aux(m, &aaux);
2700
if (ret < 0)
2701
return ret;
2702
2703
ret = prepare_trampoline(&ctx, &im, tlinks, func_addr, m, &aaux, flags);
2704
if (ret < 0)
2705
return ret;
2706
2707
return ret < 0 ? ret : ret * AARCH64_INSN_SIZE;
2708
}
2709
2710
void *arch_alloc_bpf_trampoline(unsigned int size)
2711
{
2712
return bpf_prog_pack_alloc(size, jit_fill_hole);
2713
}
2714
2715
void arch_free_bpf_trampoline(void *image, unsigned int size)
2716
{
2717
bpf_prog_pack_free(image, size);
2718
}
2719
2720
int arch_protect_bpf_trampoline(void *image, unsigned int size)
2721
{
2722
return 0;
2723
}
2724
2725
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image,
2726
void *ro_image_end, const struct btf_func_model *m,
2727
u32 flags, struct bpf_tramp_links *tlinks,
2728
void *func_addr)
2729
{
2730
u32 size = ro_image_end - ro_image;
2731
struct arg_aux aaux;
2732
void *image, *tmp;
2733
int ret;
2734
2735
/* image doesn't need to be in module memory range, so we can
2736
* use kvmalloc.
2737
*/
2738
image = kvmalloc(size, GFP_KERNEL);
2739
if (!image)
2740
return -ENOMEM;
2741
2742
struct jit_ctx ctx = {
2743
.image = image,
2744
.ro_image = ro_image,
2745
.idx = 0,
2746
.write = true,
2747
};
2748
2749
2750
jit_fill_hole(image, (unsigned int)(ro_image_end - ro_image));
2751
ret = calc_arg_aux(m, &aaux);
2752
if (ret)
2753
goto out;
2754
ret = prepare_trampoline(&ctx, im, tlinks, func_addr, m, &aaux, flags);
2755
2756
if (ret > 0 && validate_code(&ctx) < 0) {
2757
ret = -EINVAL;
2758
goto out;
2759
}
2760
2761
if (ret > 0)
2762
ret *= AARCH64_INSN_SIZE;
2763
2764
tmp = bpf_arch_text_copy(ro_image, image, size);
2765
if (IS_ERR(tmp)) {
2766
ret = PTR_ERR(tmp);
2767
goto out;
2768
}
2769
2770
bpf_flush_icache(ro_image, ro_image + size);
2771
out:
2772
kvfree(image);
2773
return ret;
2774
}
2775
2776
static bool is_long_jump(void *ip, void *target)
2777
{
2778
long offset;
2779
2780
/* NULL target means this is a NOP */
2781
if (!target)
2782
return false;
2783
2784
offset = (long)target - (long)ip;
2785
return offset < -SZ_128M || offset >= SZ_128M;
2786
}
2787
2788
static int gen_branch_or_nop(enum aarch64_insn_branch_type type, void *ip,
2789
void *addr, void *plt, u32 *insn)
2790
{
2791
void *target;
2792
2793
if (!addr) {
2794
*insn = aarch64_insn_gen_nop();
2795
return 0;
2796
}
2797
2798
if (is_long_jump(ip, addr))
2799
target = plt;
2800
else
2801
target = addr;
2802
2803
*insn = aarch64_insn_gen_branch_imm((unsigned long)ip,
2804
(unsigned long)target,
2805
type);
2806
2807
return *insn != AARCH64_BREAK_FAULT ? 0 : -EFAULT;
2808
}
2809
2810
/* Replace the branch instruction from @ip to @old_addr in a bpf prog or a bpf
2811
* trampoline with the branch instruction from @ip to @new_addr. If @old_addr
2812
* or @new_addr is NULL, the old or new instruction is NOP.
2813
*
2814
* When @ip is the bpf prog entry, a bpf trampoline is being attached or
2815
* detached. Since bpf trampoline and bpf prog are allocated separately with
2816
* vmalloc, the address distance may exceed 128MB, the maximum branch range.
2817
* So long jump should be handled.
2818
*
2819
* When a bpf prog is constructed, a plt pointing to empty trampoline
2820
* dummy_tramp is placed at the end:
2821
*
2822
* bpf_prog:
2823
* mov x9, lr
2824
* nop // patchsite
2825
* ...
2826
* ret
2827
*
2828
* plt:
2829
* ldr x10, target
2830
* br x10
2831
* target:
2832
* .quad dummy_tramp // plt target
2833
*
2834
* This is also the state when no trampoline is attached.
2835
*
2836
* When a short-jump bpf trampoline is attached, the patchsite is patched
2837
* to a bl instruction to the trampoline directly:
2838
*
2839
* bpf_prog:
2840
* mov x9, lr
2841
* bl <short-jump bpf trampoline address> // patchsite
2842
* ...
2843
* ret
2844
*
2845
* plt:
2846
* ldr x10, target
2847
* br x10
2848
* target:
2849
* .quad dummy_tramp // plt target
2850
*
2851
* When a long-jump bpf trampoline is attached, the plt target is filled with
2852
* the trampoline address and the patchsite is patched to a bl instruction to
2853
* the plt:
2854
*
2855
* bpf_prog:
2856
* mov x9, lr
2857
* bl plt // patchsite
2858
* ...
2859
* ret
2860
*
2861
* plt:
2862
* ldr x10, target
2863
* br x10
2864
* target:
2865
* .quad <long-jump bpf trampoline address> // plt target
2866
*
2867
* The dummy_tramp is used to prevent another CPU from jumping to unknown
2868
* locations during the patching process, making the patching process easier.
2869
*/
2870
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
2871
void *old_addr, void *new_addr)
2872
{
2873
int ret;
2874
u32 old_insn;
2875
u32 new_insn;
2876
u32 replaced;
2877
struct bpf_plt *plt = NULL;
2878
unsigned long size = 0UL;
2879
unsigned long offset = ~0UL;
2880
enum aarch64_insn_branch_type branch_type;
2881
char namebuf[KSYM_NAME_LEN];
2882
void *image = NULL;
2883
u64 plt_target = 0ULL;
2884
bool poking_bpf_entry;
2885
2886
if (!__bpf_address_lookup((unsigned long)ip, &size, &offset, namebuf))
2887
/* Only poking bpf text is supported. Since kernel function
2888
* entry is set up by ftrace, we reply on ftrace to poke kernel
2889
* functions.
2890
*/
2891
return -ENOTSUPP;
2892
2893
image = ip - offset;
2894
/* zero offset means we're poking bpf prog entry */
2895
poking_bpf_entry = (offset == 0UL);
2896
2897
/* bpf prog entry, find plt and the real patchsite */
2898
if (poking_bpf_entry) {
2899
/* plt locates at the end of bpf prog */
2900
plt = image + size - PLT_TARGET_OFFSET;
2901
2902
/* skip to the nop instruction in bpf prog entry:
2903
* bti c // if BTI enabled
2904
* mov x9, x30
2905
* nop
2906
*/
2907
ip = image + POKE_OFFSET * AARCH64_INSN_SIZE;
2908
}
2909
2910
/* long jump is only possible at bpf prog entry */
2911
if (WARN_ON((is_long_jump(ip, new_addr) || is_long_jump(ip, old_addr)) &&
2912
!poking_bpf_entry))
2913
return -EINVAL;
2914
2915
if (poke_type == BPF_MOD_CALL)
2916
branch_type = AARCH64_INSN_BRANCH_LINK;
2917
else
2918
branch_type = AARCH64_INSN_BRANCH_NOLINK;
2919
2920
if (gen_branch_or_nop(branch_type, ip, old_addr, plt, &old_insn) < 0)
2921
return -EFAULT;
2922
2923
if (gen_branch_or_nop(branch_type, ip, new_addr, plt, &new_insn) < 0)
2924
return -EFAULT;
2925
2926
if (is_long_jump(ip, new_addr))
2927
plt_target = (u64)new_addr;
2928
else if (is_long_jump(ip, old_addr))
2929
/* if the old target is a long jump and the new target is not,
2930
* restore the plt target to dummy_tramp, so there is always a
2931
* legal and harmless address stored in plt target, and we'll
2932
* never jump from plt to an unknown place.
2933
*/
2934
plt_target = (u64)&dummy_tramp;
2935
2936
if (plt_target) {
2937
/* non-zero plt_target indicates we're patching a bpf prog,
2938
* which is read only.
2939
*/
2940
if (set_memory_rw(PAGE_MASK & ((uintptr_t)&plt->target), 1))
2941
return -EFAULT;
2942
WRITE_ONCE(plt->target, plt_target);
2943
set_memory_ro(PAGE_MASK & ((uintptr_t)&plt->target), 1);
2944
/* since plt target points to either the new trampoline
2945
* or dummy_tramp, even if another CPU reads the old plt
2946
* target value before fetching the bl instruction to plt,
2947
* it will be brought back by dummy_tramp, so no barrier is
2948
* required here.
2949
*/
2950
}
2951
2952
/* if the old target and the new target are both long jumps, no
2953
* patching is required
2954
*/
2955
if (old_insn == new_insn)
2956
return 0;
2957
2958
mutex_lock(&text_mutex);
2959
if (aarch64_insn_read(ip, &replaced)) {
2960
ret = -EFAULT;
2961
goto out;
2962
}
2963
2964
if (replaced != old_insn) {
2965
ret = -EFAULT;
2966
goto out;
2967
}
2968
2969
/* We call aarch64_insn_patch_text_nosync() to replace instruction
2970
* atomically, so no other CPUs will fetch a half-new and half-old
2971
* instruction. But there is chance that another CPU executes the
2972
* old instruction after the patching operation finishes (e.g.,
2973
* pipeline not flushed, or icache not synchronized yet).
2974
*
2975
* 1. when a new trampoline is attached, it is not a problem for
2976
* different CPUs to jump to different trampolines temporarily.
2977
*
2978
* 2. when an old trampoline is freed, we should wait for all other
2979
* CPUs to exit the trampoline and make sure the trampoline is no
2980
* longer reachable, since bpf_tramp_image_put() function already
2981
* uses percpu_ref and task-based rcu to do the sync, no need to call
2982
* the sync version here, see bpf_tramp_image_put() for details.
2983
*/
2984
ret = aarch64_insn_patch_text_nosync(ip, new_insn);
2985
out:
2986
mutex_unlock(&text_mutex);
2987
2988
return ret;
2989
}
2990
2991
bool bpf_jit_supports_ptr_xchg(void)
2992
{
2993
return true;
2994
}
2995
2996
bool bpf_jit_supports_exceptions(void)
2997
{
2998
/* We unwind through both kernel frames starting from within bpf_throw
2999
* call and BPF frames. Therefore we require FP unwinder to be enabled
3000
* to walk kernel frames and reach BPF frames in the stack trace.
3001
* ARM64 kernel is aways compiled with CONFIG_FRAME_POINTER=y
3002
*/
3003
return true;
3004
}
3005
3006
bool bpf_jit_supports_arena(void)
3007
{
3008
return true;
3009
}
3010
3011
bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3012
{
3013
if (!in_arena)
3014
return true;
3015
switch (insn->code) {
3016
case BPF_STX | BPF_ATOMIC | BPF_W:
3017
case BPF_STX | BPF_ATOMIC | BPF_DW:
3018
if (!bpf_atomic_is_load_store(insn) &&
3019
!cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
3020
return false;
3021
}
3022
return true;
3023
}
3024
3025
bool bpf_jit_supports_percpu_insn(void)
3026
{
3027
return true;
3028
}
3029
3030
bool bpf_jit_bypass_spec_v4(void)
3031
{
3032
/* In case of arm64, we rely on the firmware mitigation of Speculative
3033
* Store Bypass as controlled via the ssbd kernel parameter. Whenever
3034
* the mitigation is enabled, it works for all of the kernel code with
3035
* no need to provide any additional instructions. Therefore, skip
3036
* inserting nospec insns against Spectre v4.
3037
*/
3038
return true;
3039
}
3040
3041
bool bpf_jit_inlines_helper_call(s32 imm)
3042
{
3043
switch (imm) {
3044
case BPF_FUNC_get_smp_processor_id:
3045
case BPF_FUNC_get_current_task:
3046
case BPF_FUNC_get_current_task_btf:
3047
return true;
3048
default:
3049
return false;
3050
}
3051
}
3052
3053
void bpf_jit_free(struct bpf_prog *prog)
3054
{
3055
if (prog->jited) {
3056
struct arm64_jit_data *jit_data = prog->aux->jit_data;
3057
struct bpf_binary_header *hdr;
3058
void __percpu *priv_stack_ptr;
3059
int priv_stack_alloc_sz;
3060
3061
/*
3062
* If we fail the final pass of JIT (from jit_subprogs),
3063
* the program may not be finalized yet. Call finalize here
3064
* before freeing it.
3065
*/
3066
if (jit_data) {
3067
bpf_arch_text_copy(&jit_data->ro_header->size, &jit_data->header->size,
3068
sizeof(jit_data->header->size));
3069
kfree(jit_data);
3070
}
3071
prog->bpf_func -= cfi_get_offset();
3072
hdr = bpf_jit_binary_pack_hdr(prog);
3073
bpf_jit_binary_pack_free(hdr, NULL);
3074
priv_stack_ptr = prog->aux->priv_stack_ptr;
3075
if (priv_stack_ptr) {
3076
priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 16) +
3077
2 * PRIV_STACK_GUARD_SZ;
3078
priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3079
free_percpu(prog->aux->priv_stack_ptr);
3080
}
3081
WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3082
}
3083
3084
bpf_prog_unlock_free(prog);
3085
}
3086
3087