Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/csky/kernel/ptrace.c
26442 views
1
// SPDX-License-Identifier: GPL-2.0
2
// Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd.
3
4
#include <linux/audit.h>
5
#include <linux/elf.h>
6
#include <linux/errno.h>
7
#include <linux/kernel.h>
8
#include <linux/mm.h>
9
#include <linux/ptrace.h>
10
#include <linux/regset.h>
11
#include <linux/sched.h>
12
#include <linux/sched/task_stack.h>
13
#include <linux/signal.h>
14
#include <linux/smp.h>
15
#include <linux/uaccess.h>
16
#include <linux/user.h>
17
18
#include <asm/thread_info.h>
19
#include <asm/page.h>
20
#include <asm/processor.h>
21
#include <asm/asm-offsets.h>
22
23
#include <abi/regdef.h>
24
#include <abi/ckmmu.h>
25
26
#define CREATE_TRACE_POINTS
27
#include <trace/events/syscalls.h>
28
29
/* sets the trace bits. */
30
#define TRACE_MODE_SI (1 << 14)
31
#define TRACE_MODE_RUN 0
32
#define TRACE_MODE_MASK ~(0x3 << 14)
33
34
/*
35
* Make sure the single step bit is not set.
36
*/
37
static void singlestep_disable(struct task_struct *tsk)
38
{
39
struct pt_regs *regs;
40
41
regs = task_pt_regs(tsk);
42
regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
43
44
/* Enable irq */
45
regs->sr |= BIT(6);
46
}
47
48
static void singlestep_enable(struct task_struct *tsk)
49
{
50
struct pt_regs *regs;
51
52
regs = task_pt_regs(tsk);
53
regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
54
55
/* Disable irq */
56
regs->sr &= ~BIT(6);
57
}
58
59
/*
60
* Make sure the single step bit is set.
61
*/
62
void user_enable_single_step(struct task_struct *child)
63
{
64
singlestep_enable(child);
65
}
66
67
void user_disable_single_step(struct task_struct *child)
68
{
69
singlestep_disable(child);
70
}
71
72
enum csky_regset {
73
REGSET_GPR,
74
REGSET_FPR,
75
};
76
77
static int gpr_get(struct task_struct *target,
78
const struct user_regset *regset,
79
struct membuf to)
80
{
81
struct pt_regs *regs = task_pt_regs(target);
82
83
/* Abiv1 regs->tls is fake and we need sync here. */
84
regs->tls = task_thread_info(target)->tp_value;
85
86
return membuf_write(&to, regs, sizeof(*regs));
87
}
88
89
static int gpr_set(struct task_struct *target,
90
const struct user_regset *regset,
91
unsigned int pos, unsigned int count,
92
const void *kbuf, const void __user *ubuf)
93
{
94
int ret;
95
struct pt_regs regs;
96
97
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &regs, 0, -1);
98
if (ret)
99
return ret;
100
101
/* BIT(0) of regs.sr is Condition Code/Carry bit */
102
regs.sr = (regs.sr & BIT(0)) | (task_pt_regs(target)->sr & ~BIT(0));
103
#ifdef CONFIG_CPU_HAS_HILO
104
regs.dcsr = task_pt_regs(target)->dcsr;
105
#endif
106
task_thread_info(target)->tp_value = regs.tls;
107
108
*task_pt_regs(target) = regs;
109
110
return 0;
111
}
112
113
static int fpr_get(struct task_struct *target,
114
const struct user_regset *regset,
115
struct membuf to)
116
{
117
struct user_fp *regs = (struct user_fp *)&target->thread.user_fp;
118
119
#if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP)
120
int i;
121
struct user_fp tmp = *regs;
122
123
for (i = 0; i < 16; i++) {
124
tmp.vr[i*4] = regs->vr[i*2];
125
tmp.vr[i*4 + 1] = regs->vr[i*2 + 1];
126
}
127
128
for (i = 0; i < 32; i++)
129
tmp.vr[64 + i] = regs->vr[32 + i];
130
131
return membuf_write(&to, &tmp, sizeof(tmp));
132
#else
133
return membuf_write(&to, regs, sizeof(*regs));
134
#endif
135
}
136
137
static int fpr_set(struct task_struct *target,
138
const struct user_regset *regset,
139
unsigned int pos, unsigned int count,
140
const void *kbuf, const void __user *ubuf)
141
{
142
int ret;
143
struct user_fp *regs = (struct user_fp *)&target->thread.user_fp;
144
145
#if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP)
146
int i;
147
struct user_fp tmp;
148
149
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tmp, 0, -1);
150
151
*regs = tmp;
152
153
for (i = 0; i < 16; i++) {
154
regs->vr[i*2] = tmp.vr[i*4];
155
regs->vr[i*2 + 1] = tmp.vr[i*4 + 1];
156
}
157
158
for (i = 0; i < 32; i++)
159
regs->vr[32 + i] = tmp.vr[64 + i];
160
#else
161
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, regs, 0, -1);
162
#endif
163
164
return ret;
165
}
166
167
static const struct user_regset csky_regsets[] = {
168
[REGSET_GPR] = {
169
USER_REGSET_NOTE_TYPE(PRSTATUS),
170
.n = sizeof(struct pt_regs) / sizeof(u32),
171
.size = sizeof(u32),
172
.align = sizeof(u32),
173
.regset_get = gpr_get,
174
.set = gpr_set,
175
},
176
[REGSET_FPR] = {
177
USER_REGSET_NOTE_TYPE(PRFPREG),
178
.n = sizeof(struct user_fp) / sizeof(u32),
179
.size = sizeof(u32),
180
.align = sizeof(u32),
181
.regset_get = fpr_get,
182
.set = fpr_set,
183
},
184
};
185
186
static const struct user_regset_view user_csky_view = {
187
.name = "csky",
188
.e_machine = ELF_ARCH,
189
.regsets = csky_regsets,
190
.n = ARRAY_SIZE(csky_regsets),
191
};
192
193
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
194
{
195
return &user_csky_view;
196
}
197
198
struct pt_regs_offset {
199
const char *name;
200
int offset;
201
};
202
203
#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
204
#define REG_OFFSET_END {.name = NULL, .offset = 0}
205
206
static const struct pt_regs_offset regoffset_table[] = {
207
REG_OFFSET_NAME(tls),
208
REG_OFFSET_NAME(lr),
209
REG_OFFSET_NAME(pc),
210
REG_OFFSET_NAME(sr),
211
REG_OFFSET_NAME(usp),
212
REG_OFFSET_NAME(orig_a0),
213
REG_OFFSET_NAME(a0),
214
REG_OFFSET_NAME(a1),
215
REG_OFFSET_NAME(a2),
216
REG_OFFSET_NAME(a3),
217
REG_OFFSET_NAME(regs[0]),
218
REG_OFFSET_NAME(regs[1]),
219
REG_OFFSET_NAME(regs[2]),
220
REG_OFFSET_NAME(regs[3]),
221
REG_OFFSET_NAME(regs[4]),
222
REG_OFFSET_NAME(regs[5]),
223
REG_OFFSET_NAME(regs[6]),
224
REG_OFFSET_NAME(regs[7]),
225
REG_OFFSET_NAME(regs[8]),
226
REG_OFFSET_NAME(regs[9]),
227
#if defined(__CSKYABIV2__)
228
REG_OFFSET_NAME(exregs[0]),
229
REG_OFFSET_NAME(exregs[1]),
230
REG_OFFSET_NAME(exregs[2]),
231
REG_OFFSET_NAME(exregs[3]),
232
REG_OFFSET_NAME(exregs[4]),
233
REG_OFFSET_NAME(exregs[5]),
234
REG_OFFSET_NAME(exregs[6]),
235
REG_OFFSET_NAME(exregs[7]),
236
REG_OFFSET_NAME(exregs[8]),
237
REG_OFFSET_NAME(exregs[9]),
238
REG_OFFSET_NAME(exregs[10]),
239
REG_OFFSET_NAME(exregs[11]),
240
REG_OFFSET_NAME(exregs[12]),
241
REG_OFFSET_NAME(exregs[13]),
242
REG_OFFSET_NAME(exregs[14]),
243
REG_OFFSET_NAME(rhi),
244
REG_OFFSET_NAME(rlo),
245
REG_OFFSET_NAME(dcsr),
246
#endif
247
REG_OFFSET_END,
248
};
249
250
/**
251
* regs_query_register_offset() - query register offset from its name
252
* @name: the name of a register
253
*
254
* regs_query_register_offset() returns the offset of a register in struct
255
* pt_regs from its name. If the name is invalid, this returns -EINVAL;
256
*/
257
int regs_query_register_offset(const char *name)
258
{
259
const struct pt_regs_offset *roff;
260
261
for (roff = regoffset_table; roff->name != NULL; roff++)
262
if (!strcmp(roff->name, name))
263
return roff->offset;
264
return -EINVAL;
265
}
266
267
/**
268
* regs_within_kernel_stack() - check the address in the stack
269
* @regs: pt_regs which contains kernel stack pointer.
270
* @addr: address which is checked.
271
*
272
* regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
273
* If @addr is within the kernel stack, it returns true. If not, returns false.
274
*/
275
static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
276
{
277
return (addr & ~(THREAD_SIZE - 1)) ==
278
(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1));
279
}
280
281
/**
282
* regs_get_kernel_stack_nth() - get Nth entry of the stack
283
* @regs: pt_regs which contains kernel stack pointer.
284
* @n: stack entry number.
285
*
286
* regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
287
* is specified by @regs. If the @n th entry is NOT in the kernel stack,
288
* this returns 0.
289
*/
290
unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
291
{
292
unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
293
294
addr += n;
295
if (regs_within_kernel_stack(regs, (unsigned long)addr))
296
return *addr;
297
else
298
return 0;
299
}
300
301
void ptrace_disable(struct task_struct *child)
302
{
303
singlestep_disable(child);
304
}
305
306
long arch_ptrace(struct task_struct *child, long request,
307
unsigned long addr, unsigned long data)
308
{
309
long ret = -EIO;
310
311
switch (request) {
312
default:
313
ret = ptrace_request(child, request, addr, data);
314
break;
315
}
316
317
return ret;
318
}
319
320
asmlinkage int syscall_trace_enter(struct pt_regs *regs)
321
{
322
if (test_thread_flag(TIF_SYSCALL_TRACE))
323
if (ptrace_report_syscall_entry(regs))
324
return -1;
325
326
if (secure_computing() == -1)
327
return -1;
328
329
if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
330
trace_sys_enter(regs, syscall_get_nr(current, regs));
331
332
audit_syscall_entry(regs_syscallid(regs), regs->a0, regs->a1, regs->a2, regs->a3);
333
return 0;
334
}
335
336
asmlinkage void syscall_trace_exit(struct pt_regs *regs)
337
{
338
audit_syscall_exit(regs);
339
340
if (test_thread_flag(TIF_SYSCALL_TRACE))
341
ptrace_report_syscall_exit(regs, 0);
342
343
if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
344
trace_sys_exit(regs, syscall_get_return_value(current, regs));
345
}
346
347
#ifdef CONFIG_CPU_CK860
348
static void show_iutlb(void)
349
{
350
int entry, i;
351
unsigned long flags;
352
unsigned long oldpid;
353
unsigned long entryhi[16], entrylo0[16], entrylo1[16];
354
355
oldpid = read_mmu_entryhi();
356
357
entry = 0x8000;
358
359
local_irq_save(flags);
360
361
for (i = 0; i < 16; i++) {
362
write_mmu_index(entry);
363
tlb_read();
364
entryhi[i] = read_mmu_entryhi();
365
entrylo0[i] = read_mmu_entrylo0();
366
entrylo1[i] = read_mmu_entrylo1();
367
368
entry++;
369
}
370
371
local_irq_restore(flags);
372
373
write_mmu_entryhi(oldpid);
374
375
printk("\n\n\n");
376
for (i = 0; i < 16; i++)
377
printk("iutlb[%d]: entryhi - 0x%lx; entrylo0 - 0x%lx;"
378
" entrylo1 - 0x%lx\n",
379
i, entryhi[i], entrylo0[i], entrylo1[i]);
380
printk("\n\n\n");
381
}
382
383
static void show_dutlb(void)
384
{
385
int entry, i;
386
unsigned long flags;
387
unsigned long oldpid;
388
unsigned long entryhi[16], entrylo0[16], entrylo1[16];
389
390
oldpid = read_mmu_entryhi();
391
392
entry = 0x4000;
393
394
local_irq_save(flags);
395
396
for (i = 0; i < 16; i++) {
397
write_mmu_index(entry);
398
tlb_read();
399
entryhi[i] = read_mmu_entryhi();
400
entrylo0[i] = read_mmu_entrylo0();
401
entrylo1[i] = read_mmu_entrylo1();
402
403
entry++;
404
}
405
406
local_irq_restore(flags);
407
408
write_mmu_entryhi(oldpid);
409
410
printk("\n\n\n");
411
for (i = 0; i < 16; i++)
412
printk("dutlb[%d]: entryhi - 0x%lx; entrylo0 - 0x%lx;"
413
" entrylo1 - 0x%lx\n",
414
i, entryhi[i], entrylo0[i], entrylo1[i]);
415
printk("\n\n\n");
416
}
417
418
static unsigned long entryhi[1024], entrylo0[1024], entrylo1[1024];
419
static void show_jtlb(void)
420
{
421
int entry;
422
unsigned long flags;
423
unsigned long oldpid;
424
425
oldpid = read_mmu_entryhi();
426
427
entry = 0;
428
429
local_irq_save(flags);
430
while (entry < 1024) {
431
write_mmu_index(entry);
432
tlb_read();
433
entryhi[entry] = read_mmu_entryhi();
434
entrylo0[entry] = read_mmu_entrylo0();
435
entrylo1[entry] = read_mmu_entrylo1();
436
437
entry++;
438
}
439
local_irq_restore(flags);
440
441
write_mmu_entryhi(oldpid);
442
443
printk("\n\n\n");
444
445
for (entry = 0; entry < 1024; entry++)
446
printk("jtlb[%x]: entryhi - 0x%lx; entrylo0 - 0x%lx;"
447
" entrylo1 - 0x%lx\n",
448
entry, entryhi[entry], entrylo0[entry], entrylo1[entry]);
449
printk("\n\n\n");
450
}
451
452
static void show_tlb(void)
453
{
454
show_iutlb();
455
show_dutlb();
456
show_jtlb();
457
}
458
#else
459
static void show_tlb(void)
460
{
461
return;
462
}
463
#endif
464
465
void show_regs(struct pt_regs *fp)
466
{
467
pr_info("\nCURRENT PROCESS:\n\n");
468
pr_info("COMM=%s PID=%d\n", current->comm, current->pid);
469
470
if (current->mm) {
471
pr_info("TEXT=%08x-%08x DATA=%08x-%08x BSS=%08x-%08x\n",
472
(int) current->mm->start_code,
473
(int) current->mm->end_code,
474
(int) current->mm->start_data,
475
(int) current->mm->end_data,
476
(int) current->mm->end_data,
477
(int) current->mm->brk);
478
pr_info("USER-STACK=%08x KERNEL-STACK=%08x\n\n",
479
(int) current->mm->start_stack,
480
(int) (((unsigned long) current) + 2 * PAGE_SIZE));
481
}
482
483
pr_info("PC: 0x%08lx (%pS)\n", (long)fp->pc, (void *)fp->pc);
484
pr_info("LR: 0x%08lx (%pS)\n", (long)fp->lr, (void *)fp->lr);
485
pr_info("SP: 0x%08lx\n", (long)fp->usp);
486
pr_info("PSR: 0x%08lx\n", (long)fp->sr);
487
pr_info("orig_a0: 0x%08lx\n", fp->orig_a0);
488
pr_info("PT_REGS: 0x%08lx\n", (long)fp);
489
490
pr_info(" a0: 0x%08lx a1: 0x%08lx a2: 0x%08lx a3: 0x%08lx\n",
491
fp->a0, fp->a1, fp->a2, fp->a3);
492
#if defined(__CSKYABIV2__)
493
pr_info(" r4: 0x%08lx r5: 0x%08lx r6: 0x%08lx r7: 0x%08lx\n",
494
fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]);
495
pr_info(" r8: 0x%08lx r9: 0x%08lx r10: 0x%08lx r11: 0x%08lx\n",
496
fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]);
497
pr_info("r12: 0x%08lx r13: 0x%08lx r15: 0x%08lx\n",
498
fp->regs[8], fp->regs[9], fp->lr);
499
pr_info("r16: 0x%08lx r17: 0x%08lx r18: 0x%08lx r19: 0x%08lx\n",
500
fp->exregs[0], fp->exregs[1], fp->exregs[2], fp->exregs[3]);
501
pr_info("r20: 0x%08lx r21: 0x%08lx r22: 0x%08lx r23: 0x%08lx\n",
502
fp->exregs[4], fp->exregs[5], fp->exregs[6], fp->exregs[7]);
503
pr_info("r24: 0x%08lx r25: 0x%08lx r26: 0x%08lx r27: 0x%08lx\n",
504
fp->exregs[8], fp->exregs[9], fp->exregs[10], fp->exregs[11]);
505
pr_info("r28: 0x%08lx r29: 0x%08lx r30: 0x%08lx tls: 0x%08lx\n",
506
fp->exregs[12], fp->exregs[13], fp->exregs[14], fp->tls);
507
pr_info(" hi: 0x%08lx lo: 0x%08lx\n",
508
fp->rhi, fp->rlo);
509
#else
510
pr_info(" r6: 0x%08lx r7: 0x%08lx r8: 0x%08lx r9: 0x%08lx\n",
511
fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]);
512
pr_info("r10: 0x%08lx r11: 0x%08lx r12: 0x%08lx r13: 0x%08lx\n",
513
fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]);
514
pr_info("r14: 0x%08lx r1: 0x%08lx\n",
515
fp->regs[8], fp->regs[9]);
516
#endif
517
518
show_tlb();
519
520
return;
521
}
522
523