Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/hexagon/kernel/time.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Time related functions for Hexagon architecture
4
*
5
* Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6
*/
7
8
#include <linux/init.h>
9
#include <linux/clockchips.h>
10
#include <linux/clocksource.h>
11
#include <linux/interrupt.h>
12
#include <linux/err.h>
13
#include <linux/platform_device.h>
14
#include <linux/ioport.h>
15
#include <linux/of.h>
16
#include <linux/of_address.h>
17
#include <linux/of_irq.h>
18
#include <linux/module.h>
19
20
#include <asm/delay.h>
21
#include <asm/hexagon_vm.h>
22
#include <asm/time.h>
23
24
#define TIMER_ENABLE BIT(0)
25
26
/*
27
* For the clocksource we need:
28
* pcycle frequency (600MHz)
29
* For the loops_per_jiffy we need:
30
* thread/cpu frequency (100MHz)
31
* And for the timer, we need:
32
* sleep clock rate
33
*/
34
35
cycles_t pcycle_freq_mhz;
36
cycles_t thread_freq_mhz;
37
cycles_t sleep_clk_freq;
38
39
/*
40
* 8x50 HDD Specs 5-8. Simulator co-sim not fixed until
41
* release 1.1, and then it's "adjustable" and probably not defaulted.
42
*/
43
#define RTOS_TIMER_INT 3
44
#define RTOS_TIMER_REGS_ADDR 0xAB000000UL
45
46
static struct resource rtos_timer_resources[] = {
47
{
48
.start = RTOS_TIMER_REGS_ADDR,
49
.end = RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1,
50
.flags = IORESOURCE_MEM,
51
},
52
};
53
54
static struct platform_device rtos_timer_device = {
55
.name = "rtos_timer",
56
.id = -1,
57
.num_resources = ARRAY_SIZE(rtos_timer_resources),
58
.resource = rtos_timer_resources,
59
};
60
61
/* A lot of this stuff should move into a platform specific section. */
62
struct adsp_hw_timer_struct {
63
u32 match; /* Match value */
64
u32 count;
65
u32 enable; /* [1] - CLR_ON_MATCH_EN, [0] - EN */
66
u32 clear; /* one-shot register that clears the count */
67
};
68
69
/* Look for "TCX0" for related constants. */
70
static __iomem struct adsp_hw_timer_struct *rtos_timer;
71
72
static u64 timer_get_cycles(struct clocksource *cs)
73
{
74
return (u64) __vmgettime();
75
}
76
77
static struct clocksource hexagon_clocksource = {
78
.name = "pcycles",
79
.rating = 250,
80
.read = timer_get_cycles,
81
.mask = CLOCKSOURCE_MASK(64),
82
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
83
};
84
85
static int set_next_event(unsigned long delta, struct clock_event_device *evt)
86
{
87
/* Assuming the timer will be disabled when we enter here. */
88
89
iowrite32(1, &rtos_timer->clear);
90
iowrite32(0, &rtos_timer->clear);
91
92
iowrite32(delta, &rtos_timer->match);
93
iowrite32(TIMER_ENABLE, &rtos_timer->enable);
94
return 0;
95
}
96
97
#ifdef CONFIG_SMP
98
/* Broadcast mechanism */
99
static void broadcast(const struct cpumask *mask)
100
{
101
send_ipi(mask, IPI_TIMER);
102
}
103
#endif
104
105
/* XXX Implement set_state_shutdown() */
106
static struct clock_event_device hexagon_clockevent_dev = {
107
.name = "clockevent",
108
.features = CLOCK_EVT_FEAT_ONESHOT,
109
.rating = 400,
110
.irq = RTOS_TIMER_INT,
111
.set_next_event = set_next_event,
112
#ifdef CONFIG_SMP
113
.broadcast = broadcast,
114
#endif
115
};
116
117
#ifdef CONFIG_SMP
118
static DEFINE_PER_CPU(struct clock_event_device, clock_events);
119
120
void setup_percpu_clockdev(void)
121
{
122
int cpu = smp_processor_id();
123
struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
124
struct clock_event_device *dummy_clock_dev =
125
&per_cpu(clock_events, cpu);
126
127
memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev));
128
INIT_LIST_HEAD(&dummy_clock_dev->list);
129
130
dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY;
131
dummy_clock_dev->cpumask = cpumask_of(cpu);
132
133
clockevents_register_device(dummy_clock_dev);
134
}
135
136
/* Called from smp.c for each CPU's timer ipi call */
137
void ipi_timer(void)
138
{
139
int cpu = smp_processor_id();
140
struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu);
141
142
ce_dev->event_handler(ce_dev);
143
}
144
#endif /* CONFIG_SMP */
145
146
static irqreturn_t timer_interrupt(int irq, void *devid)
147
{
148
struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
149
150
iowrite32(0, &rtos_timer->enable);
151
ce_dev->event_handler(ce_dev);
152
153
return IRQ_HANDLED;
154
}
155
156
/*
157
* time_init_deferred - called by start_kernel to set up timer/clock source
158
*
159
* Install the IRQ handler for the clock, setup timers.
160
* This is done late, as that way, we can use ioremap().
161
*
162
* This runs just before the delay loop is calibrated, and
163
* is used for delay calibration.
164
*/
165
static void __init time_init_deferred(void)
166
{
167
struct resource *resource = NULL;
168
struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
169
unsigned long flag = IRQF_TIMER | IRQF_TRIGGER_RISING;
170
171
ce_dev->cpumask = cpu_all_mask;
172
173
resource = rtos_timer_device.resource;
174
175
/* ioremap here means this has to run later, after paging init */
176
rtos_timer = ioremap(resource->start, resource_size(resource));
177
178
if (!rtos_timer) {
179
release_mem_region(resource->start, resource_size(resource));
180
}
181
clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000);
182
183
/* Note: the sim generic RTOS clock is apparently really 18750Hz */
184
185
/*
186
* Last arg is some guaranteed seconds for which the conversion will
187
* work without overflow.
188
*/
189
clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4);
190
191
ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev);
192
ce_dev->max_delta_ticks = 0x7fffffff;
193
ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev);
194
ce_dev->min_delta_ticks = 0xf;
195
196
#ifdef CONFIG_SMP
197
setup_percpu_clockdev();
198
#endif
199
200
clockevents_register_device(ce_dev);
201
if (request_irq(ce_dev->irq, timer_interrupt, flag, "rtos_timer", NULL))
202
pr_err("Failed to register rtos_timer interrupt\n");
203
}
204
205
void __init time_init(void)
206
{
207
late_time_init = time_init_deferred;
208
}
209
210
void __delay(unsigned long cycles)
211
{
212
unsigned long long start = __vmgettime();
213
214
while ((__vmgettime() - start) < cycles)
215
cpu_relax();
216
}
217
EXPORT_SYMBOL(__delay);
218
219
/*
220
* This could become parametric or perhaps even computed at run-time,
221
* but for now we take the observed simulator jitter.
222
*/
223
static long long fudgefactor = 350; /* Maybe lower if kernel optimized. */
224
225
void __udelay(unsigned long usecs)
226
{
227
unsigned long long start = __vmgettime();
228
unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor;
229
230
while ((__vmgettime() - start) < finish)
231
cpu_relax(); /* not sure how this improves readability */
232
}
233
EXPORT_SYMBOL(__udelay);
234
235