Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/m68k/include/asm/delay.h
26481 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef _M68K_DELAY_H
3
#define _M68K_DELAY_H
4
5
#include <asm/param.h>
6
7
/*
8
* Copyright (C) 1994 Hamish Macdonald
9
* Copyright (C) 2004 Greg Ungerer <[email protected]>
10
*
11
* Delay routines, using a pre-computed "loops_per_jiffy" value.
12
*/
13
14
#if defined(CONFIG_COLDFIRE)
15
/*
16
* The ColdFire runs the delay loop at significantly different speeds
17
* depending upon long word alignment or not. We'll pad it to
18
* long word alignment which is the faster version.
19
* The 0x4a8e is of course a 'tstl %fp' instruction. This is better
20
* than using a NOP (0x4e71) instruction because it executes in one
21
* cycle not three and doesn't allow for an arbitrary delay waiting
22
* for bus cycles to finish. Also fp/a6 isn't likely to cause a
23
* stall waiting for the register to become valid if such is added
24
* to the coldfire at some stage.
25
*/
26
#define DELAY_ALIGN ".balignw 4, 0x4a8e\n\t"
27
#else
28
/*
29
* No instruction alignment required for other m68k types.
30
*/
31
#define DELAY_ALIGN
32
#endif
33
34
static inline void __delay(unsigned long loops)
35
{
36
__asm__ __volatile__ (
37
DELAY_ALIGN
38
"1: subql #1,%0\n\t"
39
"jcc 1b"
40
: "=d" (loops)
41
: "0" (loops));
42
}
43
44
extern void __bad_udelay(void);
45
46
47
#ifdef CONFIG_CPU_HAS_NO_MULDIV64
48
/*
49
* The simpler m68k and ColdFire processors do not have a 32*32->64
50
* multiply instruction. So we need to handle them a little differently.
51
* We use a bit of shifting and a single 32*32->32 multiply to get close.
52
*/
53
#define HZSCALE (268435456 / (1000000 / HZ))
54
55
#define __const_udelay(u) \
56
__delay(((((u) * HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6)
57
58
#else
59
60
static inline void __xdelay(unsigned long xloops)
61
{
62
unsigned long tmp;
63
64
__asm__ ("mulul %2,%0:%1"
65
: "=d" (xloops), "=d" (tmp)
66
: "d" (xloops), "1" (loops_per_jiffy));
67
__delay(xloops * HZ);
68
}
69
70
/*
71
* The definition of __const_udelay is specifically made a macro so that
72
* the const factor (4295 = 2**32 / 1000000) can be optimized out when
73
* the delay is a const.
74
*/
75
#define __const_udelay(n) (__xdelay((n) * 4295))
76
77
#endif
78
79
static inline void __udelay(unsigned long usecs)
80
{
81
__const_udelay(usecs);
82
}
83
84
/*
85
* Use only for very small delays ( < 1 msec). Should probably use a
86
* lookup table, really, as the multiplications take much too long with
87
* short delays. This is a "reasonable" implementation, though (and the
88
* first constant multiplications gets optimized away if the delay is
89
* a constant)
90
*/
91
#define udelay(n) (__builtin_constant_p(n) ? \
92
((n) > 20000 ? __bad_udelay() : __const_udelay(n)) : __udelay(n))
93
94
/*
95
* nanosecond delay:
96
*
97
* ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6) is the number of loops
98
* per microsecond
99
*
100
* 1000 / ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6) is the number of
101
* nanoseconds per loop
102
*
103
* So n / ( 1000 / ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6) ) would
104
* be the number of loops for n nanoseconds
105
*/
106
107
/*
108
* The simpler m68k and ColdFire processors do not have a 32*32->64
109
* multiply instruction. So we need to handle them a little differently.
110
* We use a bit of shifting and a single 32*32->32 multiply to get close.
111
* This is a macro so that the const version can factor out the first
112
* multiply and shift.
113
*/
114
#define HZSCALE (268435456 / (1000000 / HZ))
115
116
static inline void ndelay(unsigned long nsec)
117
{
118
__delay(DIV_ROUND_UP(nsec *
119
((((HZSCALE) >> 11) *
120
(loops_per_jiffy >> 11)) >> 6),
121
1000));
122
}
123
#define ndelay(n) ndelay(n)
124
125
#endif /* defined(_M68K_DELAY_H) */
126
127