Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/m68k/kernel/head.S
26442 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later
2
** -*- mode: asm -*-
3
**
4
** head.S -- This file contains the initial boot code for the
5
** Linux/68k kernel.
6
**
7
** Copyright 1993 by Hamish Macdonald
8
**
9
** 68040 fixes by Michael Rausch
10
** 68060 fixes by Roman Hodek
11
** MMU cleanup by Randy Thelen
12
** Final MMU cleanup by Roman Zippel
13
**
14
** Atari support by Andreas Schwab, using ideas of Robert de Vries
15
** and Bjoern Brauel
16
** VME Support by Richard Hirst
17
**
18
** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
19
** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
20
** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
21
** 95/11/18 Richard Hirst: Added MVME166 support
22
** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
23
** Magnum- and FX-alternate ram
24
** 98/04/25 Phil Blundell: added HP300 support
25
** 1998/08/30 David Kilzer: Added support for font_desc structures
26
** for linux-2.1.115
27
** 1999/02/11 Richard Zidlicky: added Q40 support (initial version 99/01/01)
28
** 2004/05/13 Kars de Jong: Finalised HP300 support
29
*/
30
31
/*
32
* Linux startup code.
33
*
34
* At this point, the boot loader has:
35
* Disabled interrupts
36
* Disabled caches
37
* Put us in supervisor state.
38
*
39
* The kernel setup code takes the following steps:
40
* . Raise interrupt level
41
* . Set up initial kernel memory mapping.
42
* . This sets up a mapping of the 4M of memory the kernel is located in.
43
* . It also does a mapping of any initial machine specific areas.
44
* . Enable the MMU
45
* . Enable cache memories
46
* . Jump to kernel startup
47
*
48
* Much of the file restructuring was to accomplish:
49
* 1) Remove register dependency through-out the file.
50
* 2) Increase use of subroutines to perform functions
51
* 3) Increase readability of the code
52
*
53
* Of course, readability is a subjective issue, so it will never be
54
* argued that that goal was accomplished. It was merely a goal.
55
* A key way to help make code more readable is to give good
56
* documentation. So, the first thing you will find is exhaustive
57
* write-ups on the structure of the file, and the features of the
58
* functional subroutines.
59
*
60
* General Structure:
61
* ------------------
62
* Without a doubt the single largest chunk of head.S is spent
63
* mapping the kernel and I/O physical space into the logical range
64
* for the kernel.
65
* There are new subroutines and data structures to make MMU
66
* support cleaner and easier to understand.
67
* First, you will find a routine call "mmu_map" which maps
68
* a logical to a physical region for some length given a cache
69
* type on behalf of the caller. This routine makes writing the
70
* actual per-machine specific code very simple.
71
* A central part of the code, but not a subroutine in itself,
72
* is the mmu_init code which is broken down into mapping the kernel
73
* (the same for all machines) and mapping machine-specific I/O
74
* regions.
75
* Also, there will be a description of engaging the MMU and
76
* caches.
77
* You will notice that there is a chunk of code which
78
* can emit the entire MMU mapping of the machine. This is present
79
* only in debug modes and can be very helpful.
80
* Further, there is a new console driver in head.S that is
81
* also only engaged in debug mode. Currently, it's only supported
82
* on the Macintosh class of machines. However, it is hoped that
83
* others will plug-in support for specific machines.
84
*
85
* ######################################################################
86
*
87
* mmu_map
88
* -------
89
* mmu_map was written for two key reasons. First, it was clear
90
* that it was very difficult to read the previous code for mapping
91
* regions of memory. Second, the Macintosh required such extensive
92
* memory allocations that it didn't make sense to propagate the
93
* existing code any further.
94
* mmu_map requires some parameters:
95
*
96
* mmu_map (logical, physical, length, cache_type)
97
*
98
* While this essentially describes the function in the abstract, you'll
99
* find more indepth description of other parameters at the implementation site.
100
*
101
* mmu_get_root_table_entry
102
* ------------------------
103
* mmu_get_ptr_table_entry
104
* -----------------------
105
* mmu_get_page_table_entry
106
* ------------------------
107
*
108
* These routines are used by other mmu routines to get a pointer into
109
* a table, if necessary a new table is allocated. These routines are working
110
* basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
111
* table needs of course only to be allocated once in mmu_get_root_table_entry,
112
* so that here also some mmu specific initialization is done. The second page
113
* at the start of the kernel (the first page is unmapped later) is used for
114
* the kernel_pg_dir. It must be at a position known at link time (as it's used
115
* to initialize the init task struct) and since it needs special cache
116
* settings, it's the easiest to use this page, the rest of the page is used
117
* for further pointer tables.
118
* mmu_get_page_table_entry allocates always a whole page for page tables, this
119
* means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
120
* to manage page tables in smaller pieces as nearly all mappings have that
121
* size.
122
*
123
* ######################################################################
124
*
125
*
126
* ######################################################################
127
*
128
* mmu_engage
129
* ----------
130
* Thanks to a small helping routine enabling the mmu got quite simple
131
* and there is only one way left. mmu_engage makes a complete a new mapping
132
* that only includes the absolute necessary to be able to jump to the final
133
* position and to restore the original mapping.
134
* As this code doesn't need a transparent translation register anymore this
135
* means all registers are free to be used by machines that needs them for
136
* other purposes.
137
*
138
* ######################################################################
139
*
140
* mmu_print
141
* ---------
142
* This algorithm will print out the page tables of the system as
143
* appropriate for an 030 or an 040. This is useful for debugging purposes
144
* and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
145
*
146
* ######################################################################
147
*
148
* console_init
149
* ------------
150
* The console is also able to be turned off. The console in head.S
151
* is specifically for debugging and can be very useful. It is surrounded by
152
* #ifdef / #endif clauses so it doesn't have to ship in known-good
153
* kernels. It's basic algorithm is to determine the size of the screen
154
* (in height/width and bit depth) and then use that information for
155
* displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
156
* debugging so I can see more good data. But it was trivial to add support
157
* for both fonts, so I included it.
158
* Also, the algorithm for plotting pixels is abstracted so that in
159
* theory other platforms could add support for different kinds of frame
160
* buffers. This could be very useful.
161
*
162
* console_put_penguin
163
* -------------------
164
* An important part of any Linux bring up is the penguin and there's
165
* nothing like getting the Penguin on the screen! This algorithm will work
166
* on any machine for which there is a console_plot_pixel.
167
*
168
* console_scroll
169
* --------------
170
* My hope is that the scroll algorithm does the right thing on the
171
* various platforms, but it wouldn't be hard to add the test conditions
172
* and new code if it doesn't.
173
*
174
* console_putc
175
* -------------
176
*
177
* ######################################################################
178
*
179
* Register usage has greatly simplified within head.S. Every subroutine
180
* saves and restores all registers that it modifies (except it returns a
181
* value in there of course). So the only register that needs to be initialized
182
* is the stack pointer.
183
* All other init code and data is now placed in the init section, so it will
184
* be automatically freed at the end of the kernel initialization.
185
*
186
* ######################################################################
187
*
188
* options
189
* -------
190
* There are many options available in a build of this file. I've
191
* taken the time to describe them here to save you the time of searching
192
* for them and trying to understand what they mean.
193
*
194
* CONFIG_xxx: These are the obvious machine configuration defines created
195
* during configuration. These are defined in autoconf.h.
196
*
197
* CONSOLE_DEBUG: Only supports a Mac frame buffer but could easily be
198
* extended to support other platforms.
199
*
200
* TEST_MMU: This is a test harness for running on any given machine but
201
* getting an MMU dump for another class of machine. The classes of machines
202
* that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
203
* and any of the models (030, 040, 060, etc.).
204
*
205
* NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
206
* When head.S boots on Atari, Amiga, Macintosh, and VME
207
* machines. At that point the underlying logic will be
208
* believed to be solid enough to be trusted, and TEST_MMU
209
* can be dropped. Do note that that will clean up the
210
* head.S code significantly as large blocks of #if/#else
211
* clauses can be removed.
212
*
213
* MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
214
* determing why devices don't appear to work. A test case was to remove
215
* the cacheability of the kernel bits.
216
*
217
* MMU_PRINT: There is a routine built into head.S that can display the
218
* MMU data structures. It outputs its result through the serial_putc
219
* interface. So where ever that winds up driving data, that's where the
220
* mmu struct will appear.
221
*
222
* SERIAL_DEBUG: There are a series of putc() macro statements
223
* scattered through out the code to give progress of status to the
224
* person sitting at the console. This constant determines whether those
225
* are used.
226
*
227
* DEBUG: This is the standard DEBUG flag that can be set for building
228
* the kernel. It has the effect adding additional tests into
229
* the code.
230
*
231
* FONT_6x11:
232
* FONT_8x8:
233
* FONT_8x16:
234
* In theory these could be determined at run time or handed
235
* over by the booter. But, let's be real, it's a fine hard
236
* coded value. (But, you will notice the code is run-time
237
* flexible!) A pointer to the font's struct font_desc
238
* is kept locally in Lconsole_font. It is used to determine
239
* font size information dynamically.
240
*
241
* Atari constants:
242
* USE_PRINTER: Use the printer port for serial debug.
243
* USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
244
* USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
245
* USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
246
*
247
* Macintosh constants:
248
* MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
249
* MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
250
*/
251
252
#include <linux/linkage.h>
253
#include <linux/init.h>
254
#include <linux/pgtable.h>
255
#include <asm/bootinfo.h>
256
#include <asm/bootinfo-amiga.h>
257
#include <asm/bootinfo-atari.h>
258
#include <asm/bootinfo-hp300.h>
259
#include <asm/bootinfo-mac.h>
260
#include <asm/bootinfo-q40.h>
261
#include <asm/bootinfo-virt.h>
262
#include <asm/bootinfo-vme.h>
263
#include <asm/setup.h>
264
#include <asm/entry.h>
265
#include <asm/page.h>
266
#include <asm/asm-offsets.h>
267
#ifdef CONFIG_MAC
268
# include <asm/machw.h>
269
#endif
270
271
#ifdef CONFIG_EARLY_PRINTK
272
# define SERIAL_DEBUG
273
# if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
274
# define CONSOLE_DEBUG
275
# endif
276
#endif
277
278
#undef MMU_PRINT
279
#undef MMU_NOCACHE_KERNEL
280
#undef DEBUG
281
282
/*
283
* For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
284
* The 8x8 font is harder to read but fits more on the screen.
285
*/
286
#define FONT_8x8 /* default */
287
/* #define FONT_8x16 */ /* 2nd choice */
288
/* #define FONT_6x11 */ /* 3rd choice */
289
290
.globl kernel_pg_dir
291
.globl availmem
292
.globl m68k_init_mapped_size
293
.globl m68k_pgtable_cachemode
294
.globl m68k_supervisor_cachemode
295
#ifdef CONFIG_MVME16x
296
.globl mvme_bdid
297
#endif
298
#ifdef CONFIG_Q40
299
.globl q40_mem_cptr
300
#endif
301
302
CPUTYPE_040 = 1 /* indicates an 040 */
303
CPUTYPE_060 = 2 /* indicates an 060 */
304
CPUTYPE_0460 = 3 /* if either above are set, this is set */
305
CPUTYPE_020 = 4 /* indicates an 020 */
306
307
/* Translation control register */
308
TC_ENABLE = 0x8000
309
TC_PAGE8K = 0x4000
310
TC_PAGE4K = 0x0000
311
312
/* Transparent translation registers */
313
TTR_ENABLE = 0x8000 /* enable transparent translation */
314
TTR_ANYMODE = 0x4000 /* user and kernel mode access */
315
TTR_KERNELMODE = 0x2000 /* only kernel mode access */
316
TTR_USERMODE = 0x0000 /* only user mode access */
317
TTR_CI = 0x0400 /* inhibit cache */
318
TTR_RW = 0x0200 /* read/write mode */
319
TTR_RWM = 0x0100 /* read/write mask */
320
TTR_FCB2 = 0x0040 /* function code base bit 2 */
321
TTR_FCB1 = 0x0020 /* function code base bit 1 */
322
TTR_FCB0 = 0x0010 /* function code base bit 0 */
323
TTR_FCM2 = 0x0004 /* function code mask bit 2 */
324
TTR_FCM1 = 0x0002 /* function code mask bit 1 */
325
TTR_FCM0 = 0x0001 /* function code mask bit 0 */
326
327
/* Cache Control registers */
328
CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
329
CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
330
CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
331
CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
332
CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
333
CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
334
CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
335
CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
336
CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
337
CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
338
CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
339
CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
340
CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
341
CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
342
CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
343
CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
344
CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
345
CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
346
CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
347
CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
348
CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
349
CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
350
351
/* Miscellaneous definitions */
352
PAGESIZE = 4096
353
PAGESHIFT = 12
354
355
ROOT_TABLE_SIZE = 128
356
PTR_TABLE_SIZE = 128
357
PAGE_TABLE_SIZE = 64
358
ROOT_INDEX_SHIFT = 25
359
PTR_INDEX_SHIFT = 18
360
PAGE_INDEX_SHIFT = 12
361
362
#ifdef DEBUG
363
/* When debugging use readable names for labels */
364
#ifdef __STDC__
365
#define L(name) .head.S.##name
366
#else
367
#define L(name) .head.S./**/name
368
#endif
369
#else
370
#ifdef __STDC__
371
#define L(name) .L##name
372
#else
373
#define L(name) .L/**/name
374
#endif
375
#endif
376
377
/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
378
#ifndef __INITDATA
379
#define __INITDATA .data
380
#define __FINIT .previous
381
#endif
382
383
/* Several macros to make the writing of subroutines easier:
384
* - func_start marks the beginning of the routine which setups the frame
385
* register and saves the registers, it also defines another macro
386
* to automatically restore the registers again.
387
* - func_return marks the end of the routine and simply calls the prepared
388
* macro to restore registers and jump back to the caller.
389
* - func_define generates another macro to automatically put arguments
390
* onto the stack call the subroutine and cleanup the stack again.
391
*/
392
393
/* Within subroutines these macros can be used to access the arguments
394
* on the stack. With STACK some allocated memory on the stack can be
395
* accessed and ARG0 points to the return address (used by mmu_engage).
396
*/
397
#define STACK %a6@(stackstart)
398
#define ARG0 %a6@(4)
399
#define ARG1 %a6@(8)
400
#define ARG2 %a6@(12)
401
#define ARG3 %a6@(16)
402
#define ARG4 %a6@(20)
403
404
.macro func_start name,saveregs,stack=0
405
L(\name):
406
linkw %a6,#-\stack
407
moveml \saveregs,%sp@-
408
.set stackstart,-\stack
409
410
.macro func_return_\name
411
moveml %sp@+,\saveregs
412
unlk %a6
413
rts
414
.endm
415
.endm
416
417
.macro func_return name
418
func_return_\name
419
.endm
420
421
.macro func_call name
422
jbsr L(\name)
423
.endm
424
425
.macro move_stack nr,arg1,arg2,arg3,arg4
426
.if \nr
427
move_stack "(\nr-1)",\arg2,\arg3,\arg4
428
movel \arg1,%sp@-
429
.endif
430
.endm
431
432
.macro func_define name,nr=0
433
.macro \name arg1,arg2,arg3,arg4
434
move_stack \nr,\arg1,\arg2,\arg3,\arg4
435
func_call \name
436
.if \nr
437
lea %sp@(\nr*4),%sp
438
.endif
439
.endm
440
.endm
441
442
func_define mmu_map,4
443
func_define mmu_map_tt,4
444
func_define mmu_fixup_page_mmu_cache,1
445
func_define mmu_temp_map,2
446
func_define mmu_engage
447
func_define mmu_get_root_table_entry,1
448
func_define mmu_get_ptr_table_entry,2
449
func_define mmu_get_page_table_entry,2
450
func_define mmu_print
451
func_define get_new_page
452
#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
453
func_define set_leds
454
#endif
455
456
.macro mmu_map_eq arg1,arg2,arg3
457
mmu_map \arg1,\arg1,\arg2,\arg3
458
.endm
459
460
.macro get_bi_record record
461
pea \record
462
func_call get_bi_record
463
addql #4,%sp
464
.endm
465
466
func_define serial_putc,1
467
func_define console_putc,1
468
469
func_define console_init
470
func_define console_put_penguin
471
func_define console_plot_pixel,3
472
func_define console_scroll
473
474
.macro putc ch
475
#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
476
pea \ch
477
#endif
478
#ifdef CONSOLE_DEBUG
479
func_call console_putc
480
#endif
481
#ifdef SERIAL_DEBUG
482
func_call serial_putc
483
#endif
484
#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
485
addql #4,%sp
486
#endif
487
.endm
488
489
.macro dputc ch
490
#ifdef DEBUG
491
putc \ch
492
#endif
493
.endm
494
495
func_define putn,1
496
497
.macro dputn nr
498
#ifdef DEBUG
499
putn \nr
500
#endif
501
.endm
502
503
.macro puts string
504
#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
505
__INITDATA
506
.Lstr\@:
507
.string "\string"
508
__FINIT
509
pea %pc@(.Lstr\@)
510
func_call puts
511
addql #4,%sp
512
#endif
513
.endm
514
515
.macro dputs string
516
#ifdef DEBUG
517
puts "\string"
518
#endif
519
.endm
520
521
#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
522
#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
523
#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
524
#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
525
#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
526
#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
527
#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
528
#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
529
#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
530
#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
531
#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
532
#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
533
#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
534
#define is_not_virt(lab) cmpl &MACH_VIRT,%pc@(m68k_machtype); jne lab
535
536
#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
537
jeq 42f; \
538
cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
539
jne lab ;\
540
42:\
541
542
#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
543
#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
544
#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
545
#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
546
#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
547
#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
548
#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
549
550
/* On the HP300 we use the on-board LEDs for debug output before
551
the console is running. Writing a 1 bit turns the corresponding LED
552
_off_ - on the 340 bit 7 is towards the back panel of the machine. */
553
.macro leds mask
554
#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
555
hasnt_leds(.Lled\@)
556
pea \mask
557
func_call set_leds
558
addql #4,%sp
559
.Lled\@:
560
#endif
561
.endm
562
563
__HEAD
564
ENTRY(_stext)
565
/*
566
* Version numbers of the bootinfo interface
567
* The area from _stext to _start will later be used as kernel pointer table
568
*/
569
bras 1f /* Jump over bootinfo version numbers */
570
571
.long BOOTINFOV_MAGIC
572
.long MACH_AMIGA, AMIGA_BOOTI_VERSION
573
.long MACH_ATARI, ATARI_BOOTI_VERSION
574
.long MACH_MVME147, MVME147_BOOTI_VERSION
575
.long MACH_MVME16x, MVME16x_BOOTI_VERSION
576
.long MACH_BVME6000, BVME6000_BOOTI_VERSION
577
.long MACH_MAC, MAC_BOOTI_VERSION
578
.long MACH_Q40, Q40_BOOTI_VERSION
579
.long MACH_HP300, HP300_BOOTI_VERSION
580
.long 0
581
1: jra __start
582
583
.equ kernel_pg_dir,_stext
584
585
.equ .,_stext+PAGESIZE
586
587
ENTRY(_start)
588
jra __start
589
__INIT
590
ENTRY(__start)
591
/*
592
* Setup initial stack pointer
593
*/
594
lea %pc@(_stext),%sp
595
596
/*
597
* Record the CPU and machine type.
598
*/
599
get_bi_record BI_MACHTYPE
600
lea %pc@(m68k_machtype),%a1
601
movel %a0@,%a1@
602
603
get_bi_record BI_FPUTYPE
604
lea %pc@(m68k_fputype),%a1
605
movel %a0@,%a1@
606
607
get_bi_record BI_MMUTYPE
608
lea %pc@(m68k_mmutype),%a1
609
movel %a0@,%a1@
610
611
get_bi_record BI_CPUTYPE
612
lea %pc@(m68k_cputype),%a1
613
movel %a0@,%a1@
614
615
leds 0x1
616
617
#ifdef CONFIG_MAC
618
/*
619
* For Macintosh, we need to determine the display parameters early (at least
620
* while debugging it).
621
*/
622
623
is_not_mac(L(test_notmac))
624
625
get_bi_record BI_MAC_VADDR
626
lea %pc@(L(mac_videobase)),%a1
627
movel %a0@,%a1@
628
629
get_bi_record BI_MAC_VDEPTH
630
lea %pc@(L(mac_videodepth)),%a1
631
movel %a0@,%a1@
632
633
get_bi_record BI_MAC_VDIM
634
lea %pc@(L(mac_dimensions)),%a1
635
movel %a0@,%a1@
636
637
get_bi_record BI_MAC_VROW
638
lea %pc@(L(mac_rowbytes)),%a1
639
movel %a0@,%a1@
640
641
get_bi_record BI_MAC_SCCBASE
642
lea %pc@(L(mac_sccbase)),%a1
643
movel %a0@,%a1@
644
645
L(test_notmac):
646
#endif /* CONFIG_MAC */
647
648
#ifdef CONFIG_VIRT
649
is_not_virt(L(test_notvirt))
650
651
get_bi_record BI_VIRT_GF_TTY_BASE
652
lea %pc@(L(virt_gf_tty_base)),%a1
653
movel %a0@,%a1@
654
L(test_notvirt):
655
#endif /* CONFIG_VIRT */
656
657
/*
658
* There are ultimately two pieces of information we want for all kinds of
659
* processors CpuType and CacheBits. The CPUTYPE was passed in from booter
660
* and is converted here from a booter type definition to a separate bit
661
* number which allows for the standard is_0x0 macro tests.
662
*/
663
movel %pc@(m68k_cputype),%d0
664
/*
665
* Assume it's an 030
666
*/
667
clrl %d1
668
669
/*
670
* Test the BootInfo cputype for 060
671
*/
672
btst #CPUB_68060,%d0
673
jeq 1f
674
bset #CPUTYPE_060,%d1
675
bset #CPUTYPE_0460,%d1
676
jra 3f
677
1:
678
/*
679
* Test the BootInfo cputype for 040
680
*/
681
btst #CPUB_68040,%d0
682
jeq 2f
683
bset #CPUTYPE_040,%d1
684
bset #CPUTYPE_0460,%d1
685
jra 3f
686
2:
687
/*
688
* Test the BootInfo cputype for 020
689
*/
690
btst #CPUB_68020,%d0
691
jeq 3f
692
bset #CPUTYPE_020,%d1
693
jra 3f
694
3:
695
/*
696
* Record the cpu type
697
*/
698
lea %pc@(L(cputype)),%a0
699
movel %d1,%a0@
700
701
/*
702
* NOTE:
703
*
704
* Now the macros are valid:
705
* is_040_or_060
706
* is_not_040_or_060
707
* is_040
708
* is_060
709
* is_not_060
710
*/
711
712
/*
713
* Determine the cache mode for pages holding MMU tables
714
* and for supervisor mode, unused for '020 and '030
715
*/
716
clrl %d0
717
clrl %d1
718
719
is_not_040_or_060(L(save_cachetype))
720
721
/*
722
* '040 or '060
723
* d1 := cacheable write-through
724
* NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
725
* but we have been using write-through since at least 2.0.29 so I
726
* guess it is OK.
727
*/
728
#ifdef CONFIG_060_WRITETHROUGH
729
/*
730
* If this is a 68060 board using drivers with cache coherency
731
* problems, then supervisor memory accesses need to be write-through
732
* also; otherwise, we want copyback.
733
*/
734
735
is_not_060(1f)
736
movel #_PAGE_CACHE040W,%d0
737
jra L(save_cachetype)
738
#endif /* CONFIG_060_WRITETHROUGH */
739
1:
740
movew #_PAGE_CACHE040,%d0
741
742
movel #_PAGE_CACHE040W,%d1
743
744
L(save_cachetype):
745
/* Save cache mode for supervisor mode and page tables
746
*/
747
lea %pc@(m68k_supervisor_cachemode),%a0
748
movel %d0,%a0@
749
lea %pc@(m68k_pgtable_cachemode),%a0
750
movel %d1,%a0@
751
752
/*
753
* raise interrupt level
754
*/
755
movew #0x2700,%sr
756
757
/*
758
If running on an Atari, determine the I/O base of the
759
serial port and test if we are running on a Medusa or Hades.
760
This test is necessary here, because on the Hades the serial
761
port is only accessible in the high I/O memory area.
762
763
The test whether it is a Medusa is done by writing to the byte at
764
phys. 0x0. This should result in a bus error on all other machines.
765
766
...should, but doesn't. The Afterburner040 for the Falcon has the
767
same behaviour (0x0..0x7 are no ROM shadow). So we have to do
768
another test to distinguish Medusa and AB040. This is a
769
read attempt for 0x00ff82fe phys. that should bus error on a Falcon
770
(+AB040), but is in the range where the Medusa always asserts DTACK.
771
772
The test for the Hades is done by reading address 0xb0000000. This
773
should give a bus error on the Medusa.
774
*/
775
776
#ifdef CONFIG_ATARI
777
is_not_atari(L(notypetest))
778
779
/* get special machine type (Medusa/Hades/AB40) */
780
moveq #0,%d3 /* default if tag doesn't exist */
781
get_bi_record BI_ATARI_MCH_TYPE
782
tstl %d0
783
jbmi 1f
784
movel %a0@,%d3
785
lea %pc@(atari_mch_type),%a0
786
movel %d3,%a0@
787
1:
788
/* On the Hades, the iobase must be set up before opening the
789
* serial port. There are no I/O regs at 0x00ffxxxx at all. */
790
moveq #0,%d0
791
cmpl #ATARI_MACH_HADES,%d3
792
jbne 1f
793
movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
794
1: lea %pc@(L(iobase)),%a0
795
movel %d0,%a0@
796
797
L(notypetest):
798
#endif
799
800
#ifdef CONFIG_VME
801
is_mvme147(L(getvmetype))
802
is_bvme6000(L(getvmetype))
803
is_not_mvme16x(L(gvtdone))
804
805
/* See if the loader has specified the BI_VME_TYPE tag. Recent
806
* versions of VMELILO and TFTPLILO do this. We have to do this
807
* early so we know how to handle console output. If the tag
808
* doesn't exist then we use the Bug for output on MVME16x.
809
*/
810
L(getvmetype):
811
get_bi_record BI_VME_TYPE
812
tstl %d0
813
jbmi 1f
814
movel %a0@,%d3
815
lea %pc@(vme_brdtype),%a0
816
movel %d3,%a0@
817
1:
818
#ifdef CONFIG_MVME16x
819
is_not_mvme16x(L(gvtdone))
820
821
/* Need to get the BRD_ID info to differentiate between 162, 167,
822
* etc. This is available as a BI_VME_BRDINFO tag with later
823
* versions of VMELILO and TFTPLILO, otherwise we call the Bug.
824
*/
825
get_bi_record BI_VME_BRDINFO
826
tstl %d0
827
jpl 1f
828
829
/* Get pointer to board ID data from Bug */
830
movel %d2,%sp@-
831
trap #15
832
.word 0x70 /* trap 0x70 - .BRD_ID */
833
movel %sp@+,%a0
834
1:
835
lea %pc@(mvme_bdid),%a1
836
/* Structure is 32 bytes long */
837
movel %a0@+,%a1@+
838
movel %a0@+,%a1@+
839
movel %a0@+,%a1@+
840
movel %a0@+,%a1@+
841
movel %a0@+,%a1@+
842
movel %a0@+,%a1@+
843
movel %a0@+,%a1@+
844
movel %a0@+,%a1@+
845
#endif
846
847
L(gvtdone):
848
849
#endif
850
851
#ifdef CONFIG_HP300
852
is_not_hp300(L(nothp))
853
854
/* Get the address of the UART for serial debugging */
855
get_bi_record BI_HP300_UART_ADDR
856
tstl %d0
857
jbmi 1f
858
movel %a0@,%d3
859
lea %pc@(L(uartbase)),%a0
860
movel %d3,%a0@
861
get_bi_record BI_HP300_UART_SCODE
862
tstl %d0
863
jbmi 1f
864
movel %a0@,%d3
865
lea %pc@(L(uart_scode)),%a0
866
movel %d3,%a0@
867
1:
868
L(nothp):
869
#endif
870
871
/*
872
* Initialize serial port
873
*/
874
jbsr L(serial_init)
875
876
/*
877
* Initialize console
878
*/
879
#ifdef CONFIG_MAC
880
is_not_mac(L(nocon))
881
# ifdef CONSOLE_DEBUG
882
console_init
883
# ifdef CONFIG_LOGO
884
console_put_penguin
885
# endif /* CONFIG_LOGO */
886
# endif /* CONSOLE_DEBUG */
887
L(nocon):
888
#endif /* CONFIG_MAC */
889
890
891
putc '\n'
892
putc 'A'
893
leds 0x2
894
dputn %pc@(L(cputype))
895
dputn %pc@(m68k_supervisor_cachemode)
896
dputn %pc@(m68k_pgtable_cachemode)
897
dputc '\n'
898
899
/*
900
* Save physical start address of kernel
901
*/
902
lea %pc@(L(phys_kernel_start)),%a0
903
lea %pc@(_stext),%a1
904
subl #_stext,%a1
905
addl #PAGE_OFFSET,%a1
906
movel %a1,%a0@
907
908
putc 'B'
909
910
leds 0x4
911
912
/*
913
* mmu_init
914
*
915
* This block of code does what's necessary to map in the various kinds
916
* of machines for execution of Linux.
917
* First map the first 4, 8, or 16 MB of kernel code & data
918
*/
919
920
get_bi_record BI_MEMCHUNK
921
movel %a0@(4),%d0
922
movel #16*1024*1024,%d1
923
cmpl %d0,%d1
924
jls 1f
925
lsrl #1,%d1
926
cmpl %d0,%d1
927
jls 1f
928
lsrl #1,%d1
929
1:
930
lea %pc@(m68k_init_mapped_size),%a0
931
movel %d1,%a0@
932
mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
933
%pc@(m68k_supervisor_cachemode)
934
935
putc 'C'
936
937
#ifdef CONFIG_AMIGA
938
939
L(mmu_init_amiga):
940
941
is_not_amiga(L(mmu_init_not_amiga))
942
/*
943
* mmu_init_amiga
944
*/
945
946
putc 'D'
947
948
is_not_040_or_060(1f)
949
950
/*
951
* 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
952
*/
953
mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
954
/*
955
* Map the Zorro III I/O space with transparent translation
956
* for frame buffer memory etc.
957
*/
958
mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
959
960
jbra L(mmu_init_done)
961
962
1:
963
/*
964
* 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
965
*/
966
mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
967
mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
968
969
jbra L(mmu_init_done)
970
971
L(mmu_init_not_amiga):
972
#endif
973
974
#ifdef CONFIG_ATARI
975
976
L(mmu_init_atari):
977
978
is_not_atari(L(mmu_init_not_atari))
979
980
putc 'E'
981
982
/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
983
the last 16 MB of virtual address space to the first 16 MB (i.e.
984
0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
985
needed. I/O ranges are marked non-cachable.
986
987
For the Medusa it is better to map the I/O region transparently
988
(i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
989
accessible only in the high area.
990
991
On the Hades all I/O registers are only accessible in the high
992
area.
993
*/
994
995
/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
996
moveq #0,%d0
997
movel %pc@(atari_mch_type),%d3
998
cmpl #ATARI_MACH_MEDUSA,%d3
999
jbeq 2f
1000
cmpl #ATARI_MACH_HADES,%d3
1001
jbne 1f
1002
2: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
1003
1: movel %d0,%d3
1004
1005
is_040_or_060(L(spata68040))
1006
1007
/* Map everything non-cacheable, though not all parts really
1008
* need to disable caches (crucial only for 0xff8000..0xffffff
1009
* (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1010
* isn't really used, except for sometimes peeking into the
1011
* ROMs (mirror at phys. 0x0), so caching isn't necessary for
1012
* this. */
1013
mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1014
1015
jbra L(mmu_init_done)
1016
1017
L(spata68040):
1018
1019
mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1020
1021
jbra L(mmu_init_done)
1022
1023
L(mmu_init_not_atari):
1024
#endif
1025
1026
#ifdef CONFIG_Q40
1027
is_not_q40(L(notq40))
1028
/*
1029
* add transparent mapping for 0xff00 0000 - 0xffff ffff
1030
* non-cached serialized etc..
1031
* this includes master chip, DAC, RTC and ISA ports
1032
* 0xfe000000-0xfeffffff is for screen and ROM
1033
*/
1034
1035
putc 'Q'
1036
1037
mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1038
mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1039
1040
jbra L(mmu_init_done)
1041
1042
L(notq40):
1043
#endif
1044
1045
#ifdef CONFIG_HP300
1046
is_not_hp300(L(nothp300))
1047
1048
/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1049
* by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1050
* The ROM mapping is needed because the LEDs are mapped there too.
1051
*/
1052
1053
is_040(1f)
1054
1055
/*
1056
* 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1057
*/
1058
mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1059
1060
jbra L(mmu_init_done)
1061
1062
1:
1063
/*
1064
* 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1065
*/
1066
mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1067
1068
jbra L(mmu_init_done)
1069
1070
L(nothp300):
1071
#endif /* CONFIG_HP300 */
1072
1073
#ifdef CONFIG_MVME147
1074
1075
is_not_mvme147(L(not147))
1076
1077
/*
1078
* On MVME147 we have already created kernel page tables for
1079
* 4MB of RAM at address 0, so now need to do a transparent
1080
* mapping of the top of memory space. Make it 0.5GByte for now,
1081
* so we can access on-board i/o areas.
1082
*/
1083
1084
mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1085
1086
jbra L(mmu_init_done)
1087
1088
L(not147):
1089
#endif /* CONFIG_MVME147 */
1090
1091
#ifdef CONFIG_MVME16x
1092
1093
is_not_mvme16x(L(not16x))
1094
1095
/*
1096
* On MVME16x we have already created kernel page tables for
1097
* 4MB of RAM at address 0, so now need to do a transparent
1098
* mapping of the top of memory space. Make it 0.5GByte for now.
1099
* Supervisor only access, so transparent mapping doesn't
1100
* clash with User code virtual address space.
1101
* this covers IO devices, PROM and SRAM. The PROM and SRAM
1102
* mapping is needed to allow 167Bug to run.
1103
* IO is in the range 0xfff00000 to 0xfffeffff.
1104
* PROM is 0xff800000->0xffbfffff and SRAM is
1105
* 0xffe00000->0xffe1ffff.
1106
*/
1107
1108
mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1109
1110
jbra L(mmu_init_done)
1111
1112
L(not16x):
1113
#endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1114
1115
#ifdef CONFIG_BVME6000
1116
1117
is_not_bvme6000(L(not6000))
1118
1119
/*
1120
* On BVME6000 we have already created kernel page tables for
1121
* 4MB of RAM at address 0, so now need to do a transparent
1122
* mapping of the top of memory space. Make it 0.5GByte for now,
1123
* so we can access on-board i/o areas.
1124
* Supervisor only access, so transparent mapping doesn't
1125
* clash with User code virtual address space.
1126
*/
1127
1128
mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1129
1130
jbra L(mmu_init_done)
1131
1132
L(not6000):
1133
#endif /* CONFIG_BVME6000 */
1134
1135
/*
1136
* mmu_init_mac
1137
*
1138
* The Macintosh mappings are less clear.
1139
*
1140
* Even as of this writing, it is unclear how the
1141
* Macintosh mappings will be done. However, as
1142
* the first author of this code I'm proposing the
1143
* following model:
1144
*
1145
* Map the kernel (that's already done),
1146
* Map the I/O (on most machines that's the
1147
* 0x5000.0000 ... 0x5300.0000 range,
1148
* Map the video frame buffer using as few pages
1149
* as absolutely (this requirement mostly stems from
1150
* the fact that when the frame buffer is at
1151
* 0x0000.0000 then we know there is valid RAM just
1152
* above the screen that we don't want to waste!).
1153
*
1154
* By the way, if the frame buffer is at 0x0000.0000
1155
* then the Macintosh is known as an RBV based Mac.
1156
*
1157
* By the way 2, the code currently maps in a bunch of
1158
* regions. But I'd like to cut that out. (And move most
1159
* of the mappings up into the kernel proper ... or only
1160
* map what's necessary.)
1161
*/
1162
1163
#ifdef CONFIG_MAC
1164
1165
L(mmu_init_mac):
1166
1167
is_not_mac(L(mmu_init_not_mac))
1168
1169
putc 'F'
1170
1171
is_not_040_or_060(1f)
1172
1173
moveq #_PAGE_NOCACHE_S,%d3
1174
jbra 2f
1175
1:
1176
moveq #_PAGE_NOCACHE030,%d3
1177
2:
1178
/*
1179
* Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1180
* we simply map the 4MB that contains the videomem
1181
*/
1182
1183
movel #VIDEOMEMMASK,%d0
1184
andl %pc@(L(mac_videobase)),%d0
1185
1186
mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1187
/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1188
mmu_map_eq #0x40000000,#0x02000000,%d3
1189
/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1190
mmu_map_eq #0x50000000,#0x03000000,%d3
1191
/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1192
mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1193
1194
jbra L(mmu_init_done)
1195
1196
L(mmu_init_not_mac):
1197
#endif
1198
1199
#ifdef CONFIG_SUN3X
1200
is_not_sun3x(L(notsun3x))
1201
1202
/* oh, the pain.. We're gonna want the prom code after
1203
* starting the MMU, so we copy the mappings, translating
1204
* from 8k -> 4k pages as we go.
1205
*/
1206
1207
/* copy maps from 0xfee00000 to 0xff000000 */
1208
movel #0xfee00000, %d0
1209
moveq #ROOT_INDEX_SHIFT, %d1
1210
lsrl %d1,%d0
1211
mmu_get_root_table_entry %d0
1212
1213
movel #0xfee00000, %d0
1214
moveq #PTR_INDEX_SHIFT, %d1
1215
lsrl %d1,%d0
1216
andl #PTR_TABLE_SIZE-1, %d0
1217
mmu_get_ptr_table_entry %a0,%d0
1218
1219
movel #0xfee00000, %d0
1220
moveq #PAGE_INDEX_SHIFT, %d1
1221
lsrl %d1,%d0
1222
andl #PAGE_TABLE_SIZE-1, %d0
1223
mmu_get_page_table_entry %a0,%d0
1224
1225
/* this is where the prom page table lives */
1226
movel 0xfefe00d4, %a1
1227
movel %a1@, %a1
1228
1229
movel #((0x200000 >> 13)-1), %d1
1230
1231
1:
1232
movel %a1@+, %d3
1233
movel %d3,%a0@+
1234
addl #0x1000,%d3
1235
movel %d3,%a0@+
1236
1237
dbra %d1,1b
1238
1239
/* setup tt1 for I/O */
1240
mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1241
jbra L(mmu_init_done)
1242
1243
L(notsun3x):
1244
#endif
1245
1246
#ifdef CONFIG_VIRT
1247
is_not_virt(L(novirt))
1248
mmu_map_tt #1,#0xFF000000,#0x01000000,#_PAGE_NOCACHE_S
1249
jbra L(mmu_init_done)
1250
L(novirt):
1251
#endif
1252
1253
#ifdef CONFIG_APOLLO
1254
is_not_apollo(L(notapollo))
1255
1256
putc 'P'
1257
mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1258
1259
L(notapollo):
1260
jbra L(mmu_init_done)
1261
#endif
1262
1263
L(mmu_init_done):
1264
1265
putc 'G'
1266
leds 0x8
1267
1268
/*
1269
* mmu_fixup
1270
*
1271
* On the 040 class machines, all pages that are used for the
1272
* mmu have to be fixed up. According to Motorola, pages holding mmu
1273
* tables should be non-cacheable on a '040 and write-through on a
1274
* '060. But analysis of the reasons for this, and practical
1275
* experience, showed that write-through also works on a '040.
1276
*
1277
* Allocated memory so far goes from kernel_end to memory_start that
1278
* is used for all kind of tables, for that the cache attributes
1279
* are now fixed.
1280
*/
1281
L(mmu_fixup):
1282
1283
is_not_040_or_060(L(mmu_fixup_done))
1284
1285
#ifdef MMU_NOCACHE_KERNEL
1286
jbra L(mmu_fixup_done)
1287
#endif
1288
1289
/* first fix the page at the start of the kernel, that
1290
* contains also kernel_pg_dir.
1291
*/
1292
movel %pc@(L(phys_kernel_start)),%d0
1293
subl #PAGE_OFFSET,%d0
1294
lea %pc@(_stext),%a0
1295
subl %d0,%a0
1296
mmu_fixup_page_mmu_cache %a0
1297
1298
movel %pc@(L(kernel_end)),%a0
1299
subl %d0,%a0
1300
movel %pc@(L(memory_start)),%a1
1301
subl %d0,%a1
1302
bra 2f
1303
1:
1304
mmu_fixup_page_mmu_cache %a0
1305
addw #PAGESIZE,%a0
1306
2:
1307
cmpl %a0,%a1
1308
jgt 1b
1309
1310
L(mmu_fixup_done):
1311
1312
#ifdef MMU_PRINT
1313
mmu_print
1314
#endif
1315
1316
/*
1317
* mmu_engage
1318
*
1319
* This chunk of code performs the gruesome task of engaging the MMU.
1320
* The reason it's gruesome is because when the MMU becomes engaged it
1321
* maps logical addresses to physical addresses. The Program Counter
1322
* register is then passed through the MMU before the next instruction
1323
* is fetched (the instruction following the engage MMU instruction).
1324
* This may mean one of two things:
1325
* 1. The Program Counter falls within the logical address space of
1326
* the kernel of which there are two sub-possibilities:
1327
* A. The PC maps to the correct instruction (logical PC == physical
1328
* code location), or
1329
* B. The PC does not map through and the processor will read some
1330
* data (or instruction) which is not the logically next instr.
1331
* As you can imagine, A is good and B is bad.
1332
* Alternatively,
1333
* 2. The Program Counter does not map through the MMU. The processor
1334
* will take a Bus Error.
1335
* Clearly, 2 is bad.
1336
* It doesn't take a wiz kid to figure you want 1.A.
1337
* This code creates that possibility.
1338
* There are two possible 1.A. states (we now ignore the other above states):
1339
* A. The kernel is located at physical memory addressed the same as
1340
* the logical memory for the kernel, i.e., 0x01000.
1341
* B. The kernel is located some where else. e.g., 0x0400.0000
1342
*
1343
* Under some conditions the Macintosh can look like A or B.
1344
* [A friend and I once noted that Apple hardware engineers should be
1345
* wacked twice each day: once when they show up at work (as in, Whack!,
1346
* "This is for the screwy hardware we know you're going to design today."),
1347
* and also at the end of the day (as in, Whack! "I don't know what
1348
* you designed today, but I'm sure it wasn't good."). -- rst]
1349
*
1350
* This code works on the following premise:
1351
* If the kernel start (%d5) is within the first 16 Meg of RAM,
1352
* then create a mapping for the kernel at logical 0x8000.0000 to
1353
* the physical location of the pc. And, create a transparent
1354
* translation register for the first 16 Meg. Then, after the MMU
1355
* is engaged, the PC can be moved up into the 0x8000.0000 range
1356
* and then the transparent translation can be turned off and then
1357
* the PC can jump to the correct logical location and it will be
1358
* home (finally). This is essentially the code that the Amiga used
1359
* to use. Now, it's generalized for all processors. Which means
1360
* that a fresh (but temporary) mapping has to be created. The mapping
1361
* is made in page 0 (an as of yet unused location -- except for the
1362
* stack!). This temporary mapping will only require 1 pointer table
1363
* and a single page table (it can map 256K).
1364
*
1365
* OK, alternatively, imagine that the Program Counter is not within
1366
* the first 16 Meg. Then, just use Transparent Translation registers
1367
* to do the right thing.
1368
*
1369
* Last, if _start is already at 0x01000, then there's nothing special
1370
* to do (in other words, in a degenerate case of the first case above,
1371
* do nothing).
1372
*
1373
* Let's do it.
1374
*
1375
*
1376
*/
1377
1378
putc 'H'
1379
1380
mmu_engage
1381
1382
/*
1383
* After this point no new memory is allocated and
1384
* the start of available memory is stored in availmem.
1385
* (The bootmem allocator requires now the physical address.)
1386
*/
1387
1388
movel L(memory_start),availmem
1389
1390
#ifdef CONFIG_AMIGA
1391
is_not_amiga(1f)
1392
/* fixup the Amiga custom register location before printing */
1393
clrl L(custom)
1394
1:
1395
#endif
1396
1397
#ifdef CONFIG_ATARI
1398
is_not_atari(1f)
1399
/* fixup the Atari iobase register location before printing */
1400
movel #0xff000000,L(iobase)
1401
1:
1402
#endif
1403
1404
#ifdef CONFIG_MAC
1405
is_not_mac(1f)
1406
movel #~VIDEOMEMMASK,%d0
1407
andl L(mac_videobase),%d0
1408
addl #VIDEOMEMBASE,%d0
1409
movel %d0,L(mac_videobase)
1410
#ifdef CONSOLE_DEBUG
1411
movel %pc@(L(phys_kernel_start)),%d0
1412
subl #PAGE_OFFSET,%d0
1413
subl %d0,L(console_font)
1414
subl %d0,L(console_font_data)
1415
#endif
1416
orl #0x50000000,L(mac_sccbase)
1417
1:
1418
#endif
1419
1420
#ifdef CONFIG_HP300
1421
is_not_hp300(2f)
1422
/*
1423
* Fix up the iobase register to point to the new location of the LEDs.
1424
*/
1425
movel #0xf0000000,L(iobase)
1426
1427
/*
1428
* Energise the FPU and caches.
1429
*/
1430
is_040(1f)
1431
movel #0x60,0xf05f400c
1432
jbra 2f
1433
1434
/*
1435
* 040: slightly different, apparently.
1436
*/
1437
1: movew #0,0xf05f400e
1438
movew #0x64,0xf05f400e
1439
2:
1440
#endif
1441
1442
#ifdef CONFIG_SUN3X
1443
is_not_sun3x(1f)
1444
1445
/* enable copro */
1446
oriw #0x4000,0x61000000
1447
1:
1448
#endif
1449
1450
#ifdef CONFIG_APOLLO
1451
is_not_apollo(1f)
1452
1453
/*
1454
* Fix up the iobase before printing
1455
*/
1456
movel #0x80000000,L(iobase)
1457
1:
1458
#endif
1459
1460
putc 'I'
1461
leds 0x10
1462
1463
/*
1464
* Enable caches
1465
*/
1466
1467
is_not_040_or_060(L(cache_not_680460))
1468
1469
L(cache680460):
1470
.chip 68040
1471
nop
1472
cpusha %bc
1473
nop
1474
1475
is_060(L(cache68060))
1476
1477
movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1478
/* MMU stuff works in copyback mode now, so enable the cache */
1479
movec %d0,%cacr
1480
jra L(cache_done)
1481
1482
L(cache68060):
1483
movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1484
/* MMU stuff works in copyback mode now, so enable the cache */
1485
movec %d0,%cacr
1486
/* enable superscalar dispatch in PCR */
1487
moveq #1,%d0
1488
.chip 68060
1489
movec %d0,%pcr
1490
1491
jbra L(cache_done)
1492
L(cache_not_680460):
1493
L(cache68030):
1494
.chip 68030
1495
movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1496
movec %d0,%cacr
1497
1498
jra L(cache_done)
1499
.chip 68k
1500
L(cache_done):
1501
1502
putc 'J'
1503
1504
/*
1505
* Setup initial stack pointer
1506
*/
1507
lea init_task,%curptr
1508
lea init_thread_union+THREAD_SIZE,%sp
1509
1510
putc 'K'
1511
1512
subl %a6,%a6 /* clear a6 for gdb */
1513
1514
/*
1515
* The new 64bit printf support requires an early exception initialization.
1516
*/
1517
jbsr base_trap_init
1518
1519
/* jump to the kernel start */
1520
1521
putc '\n'
1522
leds 0x55
1523
1524
jbsr start_kernel
1525
1526
/*
1527
* Find a tag record in the bootinfo structure
1528
* The bootinfo structure is located right after the kernel
1529
* Returns: d0: size (-1 if not found)
1530
* a0: data pointer (end-of-records if not found)
1531
*/
1532
func_start get_bi_record,%d1
1533
1534
movel ARG1,%d0
1535
lea %pc@(_end),%a0
1536
1: tstw %a0@(BIR_TAG)
1537
jeq 3f
1538
cmpw %a0@(BIR_TAG),%d0
1539
jeq 2f
1540
addw %a0@(BIR_SIZE),%a0
1541
jra 1b
1542
2: moveq #0,%d0
1543
movew %a0@(BIR_SIZE),%d0
1544
lea %a0@(BIR_DATA),%a0
1545
jra 4f
1546
3: moveq #-1,%d0
1547
lea %a0@(BIR_SIZE),%a0
1548
4:
1549
func_return get_bi_record
1550
1551
1552
/*
1553
* MMU Initialization Begins Here
1554
*
1555
* The structure of the MMU tables on the 68k machines
1556
* is thus:
1557
* Root Table
1558
* Logical addresses are translated through
1559
* a hierarchical translation mechanism where the high-order
1560
* seven bits of the logical address (LA) are used as an
1561
* index into the "root table." Each entry in the root
1562
* table has a bit which specifies if it's a valid pointer to a
1563
* pointer table. Each entry defines a 32Meg range of memory.
1564
* If an entry is invalid then that logical range of 32M is
1565
* invalid and references to that range of memory (when the MMU
1566
* is enabled) will fault. If the entry is valid, then it does
1567
* one of two things. On 040/060 class machines, it points to
1568
* a pointer table which then describes more finely the memory
1569
* within that 32M range. On 020/030 class machines, a technique
1570
* called "early terminating descriptors" are used. This technique
1571
* allows an entire 32Meg to be described by a single entry in the
1572
* root table. Thus, this entry in the root table, contains the
1573
* physical address of the memory or I/O at the logical address
1574
* which the entry represents and it also contains the necessary
1575
* cache bits for this region.
1576
*
1577
* Pointer Tables
1578
* Per the Root Table, there will be one or more
1579
* pointer tables. Each pointer table defines a 32M range.
1580
* Not all of the 32M range need be defined. Again, the next
1581
* seven bits of the logical address are used an index into
1582
* the pointer table to point to page tables (if the pointer
1583
* is valid). There will undoubtedly be more than one
1584
* pointer table for the kernel because each pointer table
1585
* defines a range of only 32M. Valid pointer table entries
1586
* point to page tables, or are early terminating entries
1587
* themselves.
1588
*
1589
* Page Tables
1590
* Per the Pointer Tables, each page table entry points
1591
* to the physical page in memory that supports the logical
1592
* address that translates to the particular index.
1593
*
1594
* In short, the Logical Address gets translated as follows:
1595
* bits 31..26 - index into the Root Table
1596
* bits 25..18 - index into the Pointer Table
1597
* bits 17..12 - index into the Page Table
1598
* bits 11..0 - offset into a particular 4K page
1599
*
1600
* The algorithms which follow do one thing: they abstract
1601
* the MMU hardware. For example, there are three kinds of
1602
* cache settings that are relevant. Either, memory is
1603
* being mapped in which case it is either Kernel Code (or
1604
* the RamDisk) or it is MMU data. On the 030, the MMU data
1605
* option also describes the kernel. Or, I/O is being mapped
1606
* in which case it has its own kind of cache bits. There
1607
* are constants which abstract these notions from the code that
1608
* actually makes the call to map some range of memory.
1609
*
1610
*
1611
*
1612
*/
1613
1614
#ifdef MMU_PRINT
1615
/*
1616
* mmu_print
1617
*
1618
* This algorithm will print out the current MMU mappings.
1619
*
1620
* Input:
1621
* %a5 points to the root table. Everything else is calculated
1622
* from this.
1623
*/
1624
1625
#define mmu_next_valid 0
1626
#define mmu_start_logical 4
1627
#define mmu_next_logical 8
1628
#define mmu_start_physical 12
1629
#define mmu_next_physical 16
1630
1631
#define MMU_PRINT_INVALID -1
1632
#define MMU_PRINT_VALID 1
1633
#define MMU_PRINT_UNINITED 0
1634
1635
#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1636
1637
func_start mmu_print,%a0-%a6/%d0-%d7
1638
1639
movel %pc@(L(kernel_pgdir_ptr)),%a5
1640
lea %pc@(L(mmu_print_data)),%a0
1641
movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1642
1643
is_not_040_or_060(mmu_030_print)
1644
1645
mmu_040_print:
1646
puts "\nMMU040\n"
1647
puts "rp:"
1648
putn %a5
1649
putc '\n'
1650
#if 0
1651
/*
1652
* The following #if/#endif block is a tight algorithm for dumping the 040
1653
* MMU Map in gory detail. It really isn't that practical unless the
1654
* MMU Map algorithm appears to go awry and you need to debug it at the
1655
* entry per entry level.
1656
*/
1657
movel #ROOT_TABLE_SIZE,%d5
1658
#if 0
1659
movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1660
subql #1,%d5 | they (might) work
1661
#endif
1662
1: tstl %d5
1663
jbeq mmu_print_done
1664
subq #1,%d5
1665
movel %a5@+,%d7
1666
btst #1,%d7
1667
jbeq 1b
1668
1669
2: putn %d7
1670
andil #0xFFFFFE00,%d7
1671
movel %d7,%a4
1672
movel #PTR_TABLE_SIZE,%d4
1673
putc ' '
1674
3: tstl %d4
1675
jbeq 11f
1676
subq #1,%d4
1677
movel %a4@+,%d7
1678
btst #1,%d7
1679
jbeq 3b
1680
1681
4: putn %d7
1682
andil #0xFFFFFF00,%d7
1683
movel %d7,%a3
1684
movel #PAGE_TABLE_SIZE,%d3
1685
5: movel #8,%d2
1686
6: tstl %d3
1687
jbeq 31f
1688
subq #1,%d3
1689
movel %a3@+,%d6
1690
btst #0,%d6
1691
jbeq 6b
1692
7: tstl %d2
1693
jbeq 8f
1694
subq #1,%d2
1695
putc ' '
1696
jbra 91f
1697
8: putc '\n'
1698
movel #8+1+8+1+1,%d2
1699
9: putc ' '
1700
dbra %d2,9b
1701
movel #7,%d2
1702
91: putn %d6
1703
jbra 6b
1704
1705
31: putc '\n'
1706
movel #8+1,%d2
1707
32: putc ' '
1708
dbra %d2,32b
1709
jbra 3b
1710
1711
11: putc '\n'
1712
jbra 1b
1713
#endif /* MMU 040 Dumping code that's gory and detailed */
1714
1715
lea %pc@(kernel_pg_dir),%a5
1716
movel %a5,%a0 /* a0 has the address of the root table ptr */
1717
movel #0x00000000,%a4 /* logical address */
1718
moveql #0,%d0
1719
40:
1720
/* Increment the logical address and preserve in d5 */
1721
movel %a4,%d5
1722
addil #PAGESIZE<<13,%d5
1723
movel %a0@+,%d6
1724
btst #1,%d6
1725
jbne 41f
1726
jbsr mmu_print_tuple_invalidate
1727
jbra 48f
1728
41:
1729
movel #0,%d1
1730
andil #0xfffffe00,%d6
1731
movel %d6,%a1
1732
42:
1733
movel %a4,%d5
1734
addil #PAGESIZE<<6,%d5
1735
movel %a1@+,%d6
1736
btst #1,%d6
1737
jbne 43f
1738
jbsr mmu_print_tuple_invalidate
1739
jbra 47f
1740
43:
1741
movel #0,%d2
1742
andil #0xffffff00,%d6
1743
movel %d6,%a2
1744
44:
1745
movel %a4,%d5
1746
addil #PAGESIZE,%d5
1747
movel %a2@+,%d6
1748
btst #0,%d6
1749
jbne 45f
1750
jbsr mmu_print_tuple_invalidate
1751
jbra 46f
1752
45:
1753
moveml %d0-%d1,%sp@-
1754
movel %a4,%d0
1755
movel %d6,%d1
1756
andil #0xfffff4e0,%d1
1757
lea %pc@(mmu_040_print_flags),%a6
1758
jbsr mmu_print_tuple
1759
moveml %sp@+,%d0-%d1
1760
46:
1761
movel %d5,%a4
1762
addq #1,%d2
1763
cmpib #64,%d2
1764
jbne 44b
1765
47:
1766
movel %d5,%a4
1767
addq #1,%d1
1768
cmpib #128,%d1
1769
jbne 42b
1770
48:
1771
movel %d5,%a4 /* move to the next logical address */
1772
addq #1,%d0
1773
cmpib #128,%d0
1774
jbne 40b
1775
1776
.chip 68040
1777
movec %dtt1,%d0
1778
movel %d0,%d1
1779
andiw #0x8000,%d1 /* is it valid ? */
1780
jbeq 1f /* No, bail out */
1781
1782
movel %d0,%d1
1783
andil #0xff000000,%d1 /* Get the address */
1784
putn %d1
1785
puts "=="
1786
putn %d1
1787
1788
movel %d0,%d6
1789
jbsr mmu_040_print_flags_tt
1790
1:
1791
movec %dtt0,%d0
1792
movel %d0,%d1
1793
andiw #0x8000,%d1 /* is it valid ? */
1794
jbeq 1f /* No, bail out */
1795
1796
movel %d0,%d1
1797
andil #0xff000000,%d1 /* Get the address */
1798
putn %d1
1799
puts "=="
1800
putn %d1
1801
1802
movel %d0,%d6
1803
jbsr mmu_040_print_flags_tt
1804
1:
1805
.chip 68k
1806
1807
jbra mmu_print_done
1808
1809
mmu_040_print_flags:
1810
btstl #10,%d6
1811
putZc(' ','G') /* global bit */
1812
btstl #7,%d6
1813
putZc(' ','S') /* supervisor bit */
1814
mmu_040_print_flags_tt:
1815
btstl #6,%d6
1816
jbne 3f
1817
putc 'C'
1818
btstl #5,%d6
1819
putZc('w','c') /* write through or copy-back */
1820
jbra 4f
1821
3:
1822
putc 'N'
1823
btstl #5,%d6
1824
putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
1825
4:
1826
rts
1827
1828
mmu_030_print_flags:
1829
btstl #6,%d6
1830
putZc('C','I') /* write through or copy-back */
1831
rts
1832
1833
mmu_030_print:
1834
puts "\nMMU030\n"
1835
puts "\nrp:"
1836
putn %a5
1837
putc '\n'
1838
movel %a5,%d0
1839
andil #0xfffffff0,%d0
1840
movel %d0,%a0
1841
movel #0x00000000,%a4 /* logical address */
1842
movel #0,%d0
1843
30:
1844
movel %a4,%d5
1845
addil #PAGESIZE<<13,%d5
1846
movel %a0@+,%d6
1847
btst #1,%d6 /* is it a table ptr? */
1848
jbne 31f /* yes */
1849
btst #0,%d6 /* is it early terminating? */
1850
jbeq 1f /* no */
1851
jbsr mmu_030_print_helper
1852
jbra 38f
1853
1:
1854
jbsr mmu_print_tuple_invalidate
1855
jbra 38f
1856
31:
1857
movel #0,%d1
1858
andil #0xfffffff0,%d6
1859
movel %d6,%a1
1860
32:
1861
movel %a4,%d5
1862
addil #PAGESIZE<<6,%d5
1863
movel %a1@+,%d6
1864
btst #1,%d6 /* is it a table ptr? */
1865
jbne 33f /* yes */
1866
btst #0,%d6 /* is it a page descriptor? */
1867
jbeq 1f /* no */
1868
jbsr mmu_030_print_helper
1869
jbra 37f
1870
1:
1871
jbsr mmu_print_tuple_invalidate
1872
jbra 37f
1873
33:
1874
movel #0,%d2
1875
andil #0xfffffff0,%d6
1876
movel %d6,%a2
1877
34:
1878
movel %a4,%d5
1879
addil #PAGESIZE,%d5
1880
movel %a2@+,%d6
1881
btst #0,%d6
1882
jbne 35f
1883
jbsr mmu_print_tuple_invalidate
1884
jbra 36f
1885
35:
1886
jbsr mmu_030_print_helper
1887
36:
1888
movel %d5,%a4
1889
addq #1,%d2
1890
cmpib #64,%d2
1891
jbne 34b
1892
37:
1893
movel %d5,%a4
1894
addq #1,%d1
1895
cmpib #128,%d1
1896
jbne 32b
1897
38:
1898
movel %d5,%a4 /* move to the next logical address */
1899
addq #1,%d0
1900
cmpib #128,%d0
1901
jbne 30b
1902
1903
mmu_print_done:
1904
puts "\n"
1905
1906
func_return mmu_print
1907
1908
1909
mmu_030_print_helper:
1910
moveml %d0-%d1,%sp@-
1911
movel %a4,%d0
1912
movel %d6,%d1
1913
lea %pc@(mmu_030_print_flags),%a6
1914
jbsr mmu_print_tuple
1915
moveml %sp@+,%d0-%d1
1916
rts
1917
1918
mmu_print_tuple_invalidate:
1919
moveml %a0/%d7,%sp@-
1920
1921
lea %pc@(L(mmu_print_data)),%a0
1922
tstl %a0@(mmu_next_valid)
1923
jbmi mmu_print_tuple_invalidate_exit
1924
1925
movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1926
1927
putn %a4
1928
1929
puts "##\n"
1930
1931
mmu_print_tuple_invalidate_exit:
1932
moveml %sp@+,%a0/%d7
1933
rts
1934
1935
1936
mmu_print_tuple:
1937
moveml %d0-%d7/%a0,%sp@-
1938
1939
lea %pc@(L(mmu_print_data)),%a0
1940
1941
tstl %a0@(mmu_next_valid)
1942
jble mmu_print_tuple_print
1943
1944
cmpl %a0@(mmu_next_physical),%d1
1945
jbeq mmu_print_tuple_increment
1946
1947
mmu_print_tuple_print:
1948
putn %d0
1949
puts "->"
1950
putn %d1
1951
1952
movel %d1,%d6
1953
jbsr %a6@
1954
1955
mmu_print_tuple_record:
1956
movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1957
1958
movel %d1,%a0@(mmu_next_physical)
1959
1960
mmu_print_tuple_increment:
1961
movel %d5,%d7
1962
subl %a4,%d7
1963
addl %d7,%a0@(mmu_next_physical)
1964
1965
mmu_print_tuple_exit:
1966
moveml %sp@+,%d0-%d7/%a0
1967
rts
1968
1969
mmu_print_machine_cpu_types:
1970
puts "machine: "
1971
1972
is_not_amiga(1f)
1973
puts "amiga"
1974
jbra 9f
1975
1:
1976
is_not_atari(2f)
1977
puts "atari"
1978
jbra 9f
1979
2:
1980
is_not_mac(3f)
1981
puts "macintosh"
1982
jbra 9f
1983
3: puts "unknown"
1984
9: putc '\n'
1985
1986
puts "cputype: 0"
1987
is_not_060(1f)
1988
putc '6'
1989
jbra 9f
1990
1:
1991
is_not_040_or_060(2f)
1992
putc '4'
1993
jbra 9f
1994
2: putc '3'
1995
9: putc '0'
1996
putc '\n'
1997
1998
rts
1999
#endif /* MMU_PRINT */
2000
2001
/*
2002
* mmu_map_tt
2003
*
2004
* This is a specific function which works on all 680x0 machines.
2005
* On 030, 040 & 060 it will attempt to use Transparent Translation
2006
* registers (tt1).
2007
* On 020 it will call the standard mmu_map which will use early
2008
* terminating descriptors.
2009
*/
2010
func_start mmu_map_tt,%d0/%d1/%a0,4
2011
2012
dputs "mmu_map_tt:"
2013
dputn ARG1
2014
dputn ARG2
2015
dputn ARG3
2016
dputn ARG4
2017
dputc '\n'
2018
2019
is_020(L(do_map))
2020
2021
/* Extract the highest bit set
2022
*/
2023
bfffo ARG3{#0,#32},%d1
2024
cmpw #8,%d1
2025
jcc L(do_map)
2026
2027
/* And get the mask
2028
*/
2029
moveq #-1,%d0
2030
lsrl %d1,%d0
2031
lsrl #1,%d0
2032
2033
/* Mask the address
2034
*/
2035
movel %d0,%d1
2036
notl %d1
2037
andl ARG2,%d1
2038
2039
/* Generate the upper 16bit of the tt register
2040
*/
2041
lsrl #8,%d0
2042
orl %d0,%d1
2043
clrw %d1
2044
2045
is_040_or_060(L(mmu_map_tt_040))
2046
2047
/* set 030 specific bits (read/write access for supervisor mode
2048
* (highest function code set, lower two bits masked))
2049
*/
2050
orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2051
movel ARG4,%d0
2052
btst #6,%d0
2053
jeq 1f
2054
orw #TTR_CI,%d1
2055
2056
1: lea STACK,%a0
2057
dputn %d1
2058
movel %d1,%a0@
2059
.chip 68030
2060
tstl ARG1
2061
jne 1f
2062
pmove %a0@,%tt0
2063
jra 2f
2064
1: pmove %a0@,%tt1
2065
2: .chip 68k
2066
jra L(mmu_map_tt_done)
2067
2068
/* set 040 specific bits
2069
*/
2070
L(mmu_map_tt_040):
2071
orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2072
orl ARG4,%d1
2073
dputn %d1
2074
2075
.chip 68040
2076
tstl ARG1
2077
jne 1f
2078
movec %d1,%itt0
2079
movec %d1,%dtt0
2080
jra 2f
2081
1: movec %d1,%itt1
2082
movec %d1,%dtt1
2083
2: .chip 68k
2084
2085
jra L(mmu_map_tt_done)
2086
2087
L(do_map):
2088
mmu_map_eq ARG2,ARG3,ARG4
2089
2090
L(mmu_map_tt_done):
2091
2092
func_return mmu_map_tt
2093
2094
/*
2095
* mmu_map
2096
*
2097
* This routine will map a range of memory using a pointer
2098
* table and allocate the pages on the fly from the kernel.
2099
* The pointer table does not have to be already linked into
2100
* the root table, this routine will do that if necessary.
2101
*
2102
* NOTE
2103
* This routine will assert failure and use the serial_putc
2104
* routines in the case of a run-time error. For example,
2105
* if the address is already mapped.
2106
*
2107
* NOTE-2
2108
* This routine will use early terminating descriptors
2109
* where possible for the 68020+68851 and 68030 type
2110
* processors.
2111
*/
2112
func_start mmu_map,%d0-%d4/%a0-%a4
2113
2114
dputs "\nmmu_map:"
2115
dputn ARG1
2116
dputn ARG2
2117
dputn ARG3
2118
dputn ARG4
2119
dputc '\n'
2120
2121
/* Get logical address and round it down to 256KB
2122
*/
2123
movel ARG1,%d0
2124
andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2125
movel %d0,%a3
2126
2127
/* Get the end address
2128
*/
2129
movel ARG1,%a4
2130
addl ARG3,%a4
2131
subql #1,%a4
2132
2133
/* Get physical address and round it down to 256KB
2134
*/
2135
movel ARG2,%d0
2136
andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2137
movel %d0,%a2
2138
2139
/* Add page attributes to the physical address
2140
*/
2141
movel ARG4,%d0
2142
orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2143
addw %d0,%a2
2144
2145
dputn %a2
2146
dputn %a3
2147
dputn %a4
2148
2149
is_not_040_or_060(L(mmu_map_030))
2150
2151
addw #_PAGE_GLOBAL040,%a2
2152
/*
2153
* MMU 040 & 060 Support
2154
*
2155
* The MMU usage for the 040 and 060 is different enough from
2156
* the 030 and 68851 that there is separate code. This comment
2157
* block describes the data structures and algorithms built by
2158
* this code.
2159
*
2160
* The 040 does not support early terminating descriptors, as
2161
* the 030 does. Therefore, a third level of table is needed
2162
* for the 040, and that would be the page table. In Linux,
2163
* page tables are allocated directly from the memory above the
2164
* kernel.
2165
*
2166
*/
2167
2168
L(mmu_map_040):
2169
/* Calculate the offset into the root table
2170
*/
2171
movel %a3,%d0
2172
moveq #ROOT_INDEX_SHIFT,%d1
2173
lsrl %d1,%d0
2174
mmu_get_root_table_entry %d0
2175
2176
/* Calculate the offset into the pointer table
2177
*/
2178
movel %a3,%d0
2179
moveq #PTR_INDEX_SHIFT,%d1
2180
lsrl %d1,%d0
2181
andl #PTR_TABLE_SIZE-1,%d0
2182
mmu_get_ptr_table_entry %a0,%d0
2183
2184
/* Calculate the offset into the page table
2185
*/
2186
movel %a3,%d0
2187
moveq #PAGE_INDEX_SHIFT,%d1
2188
lsrl %d1,%d0
2189
andl #PAGE_TABLE_SIZE-1,%d0
2190
mmu_get_page_table_entry %a0,%d0
2191
2192
/* The page table entry must not no be busy
2193
*/
2194
tstl %a0@
2195
jne L(mmu_map_error)
2196
2197
/* Do the mapping and advance the pointers
2198
*/
2199
movel %a2,%a0@
2200
2:
2201
addw #PAGESIZE,%a2
2202
addw #PAGESIZE,%a3
2203
2204
/* Ready with mapping?
2205
*/
2206
lea %a3@(-1),%a0
2207
cmpl %a0,%a4
2208
jhi L(mmu_map_040)
2209
jra L(mmu_map_done)
2210
2211
L(mmu_map_030):
2212
/* Calculate the offset into the root table
2213
*/
2214
movel %a3,%d0
2215
moveq #ROOT_INDEX_SHIFT,%d1
2216
lsrl %d1,%d0
2217
mmu_get_root_table_entry %d0
2218
2219
/* Check if logical address 32MB aligned,
2220
* so we can try to map it once
2221
*/
2222
movel %a3,%d0
2223
andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2224
jne 1f
2225
2226
/* Is there enough to map for 32MB at once
2227
*/
2228
lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2229
cmpl %a1,%a4
2230
jcs 1f
2231
2232
addql #1,%a1
2233
2234
/* The root table entry must not no be busy
2235
*/
2236
tstl %a0@
2237
jne L(mmu_map_error)
2238
2239
/* Do the mapping and advance the pointers
2240
*/
2241
dputs "early term1"
2242
dputn %a2
2243
dputn %a3
2244
dputn %a1
2245
dputc '\n'
2246
movel %a2,%a0@
2247
2248
movel %a1,%a3
2249
lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2250
jra L(mmu_mapnext_030)
2251
1:
2252
/* Calculate the offset into the pointer table
2253
*/
2254
movel %a3,%d0
2255
moveq #PTR_INDEX_SHIFT,%d1
2256
lsrl %d1,%d0
2257
andl #PTR_TABLE_SIZE-1,%d0
2258
mmu_get_ptr_table_entry %a0,%d0
2259
2260
/* The pointer table entry must not no be busy
2261
*/
2262
tstl %a0@
2263
jne L(mmu_map_error)
2264
2265
/* Do the mapping and advance the pointers
2266
*/
2267
dputs "early term2"
2268
dputn %a2
2269
dputn %a3
2270
dputc '\n'
2271
movel %a2,%a0@
2272
2273
addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2274
addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2275
2276
L(mmu_mapnext_030):
2277
/* Ready with mapping?
2278
*/
2279
lea %a3@(-1),%a0
2280
cmpl %a0,%a4
2281
jhi L(mmu_map_030)
2282
jra L(mmu_map_done)
2283
2284
L(mmu_map_error):
2285
2286
dputs "mmu_map error:"
2287
dputn %a2
2288
dputn %a3
2289
dputc '\n'
2290
2291
L(mmu_map_done):
2292
2293
func_return mmu_map
2294
2295
/*
2296
* mmu_fixup
2297
*
2298
* On the 040 class machines, all pages that are used for the
2299
* mmu have to be fixed up.
2300
*/
2301
2302
func_start mmu_fixup_page_mmu_cache,%d0/%a0
2303
2304
dputs "mmu_fixup_page_mmu_cache"
2305
dputn ARG1
2306
2307
/* Calculate the offset into the root table
2308
*/
2309
movel ARG1,%d0
2310
moveq #ROOT_INDEX_SHIFT,%d1
2311
lsrl %d1,%d0
2312
mmu_get_root_table_entry %d0
2313
2314
/* Calculate the offset into the pointer table
2315
*/
2316
movel ARG1,%d0
2317
moveq #PTR_INDEX_SHIFT,%d1
2318
lsrl %d1,%d0
2319
andl #PTR_TABLE_SIZE-1,%d0
2320
mmu_get_ptr_table_entry %a0,%d0
2321
2322
/* Calculate the offset into the page table
2323
*/
2324
movel ARG1,%d0
2325
moveq #PAGE_INDEX_SHIFT,%d1
2326
lsrl %d1,%d0
2327
andl #PAGE_TABLE_SIZE-1,%d0
2328
mmu_get_page_table_entry %a0,%d0
2329
2330
movel %a0@,%d0
2331
andil #_CACHEMASK040,%d0
2332
orl %pc@(m68k_pgtable_cachemode),%d0
2333
movel %d0,%a0@
2334
2335
dputc '\n'
2336
2337
func_return mmu_fixup_page_mmu_cache
2338
2339
/*
2340
* mmu_temp_map
2341
*
2342
* create a temporary mapping to enable the mmu,
2343
* this we don't need any transparation translation tricks.
2344
*/
2345
2346
func_start mmu_temp_map,%d0/%d1/%a0/%a1
2347
2348
dputs "mmu_temp_map"
2349
dputn ARG1
2350
dputn ARG2
2351
dputc '\n'
2352
2353
lea %pc@(L(temp_mmap_mem)),%a1
2354
2355
/* Calculate the offset in the root table
2356
*/
2357
movel ARG2,%d0
2358
moveq #ROOT_INDEX_SHIFT,%d1
2359
lsrl %d1,%d0
2360
mmu_get_root_table_entry %d0
2361
2362
/* Check if the table is temporary allocated, so we have to reuse it
2363
*/
2364
movel %a0@,%d0
2365
cmpl %pc@(L(memory_start)),%d0
2366
jcc 1f
2367
2368
/* Temporary allocate a ptr table and insert it into the root table
2369
*/
2370
movel %a1@,%d0
2371
addl #PTR_TABLE_SIZE*4,%a1@
2372
orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2373
movel %d0,%a0@
2374
dputs " (new)"
2375
1:
2376
dputn %d0
2377
/* Mask the root table entry for the ptr table
2378
*/
2379
andw #-ROOT_TABLE_SIZE,%d0
2380
movel %d0,%a0
2381
2382
/* Calculate the offset into the pointer table
2383
*/
2384
movel ARG2,%d0
2385
moveq #PTR_INDEX_SHIFT,%d1
2386
lsrl %d1,%d0
2387
andl #PTR_TABLE_SIZE-1,%d0
2388
lea %a0@(%d0*4),%a0
2389
dputn %a0
2390
2391
/* Check if a temporary page table is already allocated
2392
*/
2393
movel %a0@,%d0
2394
jne 1f
2395
2396
/* Temporary allocate a page table and insert it into the ptr table
2397
*/
2398
movel %a1@,%d0
2399
/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2400
alignment restriction for pointer tables on the '0[46]0. */
2401
addl #512,%a1@
2402
orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2403
movel %d0,%a0@
2404
dputs " (new)"
2405
1:
2406
dputn %d0
2407
/* Mask the ptr table entry for the page table
2408
*/
2409
andw #-PTR_TABLE_SIZE,%d0
2410
movel %d0,%a0
2411
2412
/* Calculate the offset into the page table
2413
*/
2414
movel ARG2,%d0
2415
moveq #PAGE_INDEX_SHIFT,%d1
2416
lsrl %d1,%d0
2417
andl #PAGE_TABLE_SIZE-1,%d0
2418
lea %a0@(%d0*4),%a0
2419
dputn %a0
2420
2421
/* Insert the address into the page table
2422
*/
2423
movel ARG1,%d0
2424
andw #-PAGESIZE,%d0
2425
orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2426
movel %d0,%a0@
2427
dputn %d0
2428
2429
dputc '\n'
2430
2431
func_return mmu_temp_map
2432
2433
func_start mmu_engage,%d0-%d2/%a0-%a3
2434
2435
moveq #ROOT_TABLE_SIZE-1,%d0
2436
/* Temporarily use a different root table. */
2437
lea %pc@(L(kernel_pgdir_ptr)),%a0
2438
movel %a0@,%a2
2439
movel %pc@(L(memory_start)),%a1
2440
movel %a1,%a0@
2441
movel %a2,%a0
2442
1:
2443
movel %a0@+,%a1@+
2444
dbra %d0,1b
2445
2446
lea %pc@(L(temp_mmap_mem)),%a0
2447
movel %a1,%a0@
2448
2449
movew #PAGESIZE-1,%d0
2450
1:
2451
clrl %a1@+
2452
dbra %d0,1b
2453
2454
lea %pc@(1b),%a0
2455
movel #1b,%a1
2456
/* Skip temp mappings if phys == virt */
2457
cmpl %a0,%a1
2458
jeq 1f
2459
2460
mmu_temp_map %a0,%a0
2461
mmu_temp_map %a0,%a1
2462
2463
addw #PAGESIZE,%a0
2464
addw #PAGESIZE,%a1
2465
mmu_temp_map %a0,%a0
2466
mmu_temp_map %a0,%a1
2467
1:
2468
movel %pc@(L(memory_start)),%a3
2469
movel %pc@(L(phys_kernel_start)),%d2
2470
2471
is_not_040_or_060(L(mmu_engage_030))
2472
2473
L(mmu_engage_040):
2474
.chip 68040
2475
nop
2476
cinva %bc
2477
nop
2478
pflusha
2479
nop
2480
movec %a3,%srp
2481
movel #TC_ENABLE+TC_PAGE4K,%d0
2482
movec %d0,%tc /* enable the MMU */
2483
jmp 1f:l
2484
1: nop
2485
movec %a2,%srp
2486
nop
2487
cinva %bc
2488
nop
2489
pflusha
2490
.chip 68k
2491
jra L(mmu_engage_cleanup)
2492
2493
L(mmu_engage_030_temp):
2494
.space 12
2495
L(mmu_engage_030):
2496
.chip 68030
2497
lea %pc@(L(mmu_engage_030_temp)),%a0
2498
movel #0x80000002,%a0@
2499
movel %a3,%a0@(4)
2500
movel #0x0808,%d0
2501
movec %d0,%cacr
2502
pmove %a0@,%srp
2503
pflusha
2504
/*
2505
* enable,super root enable,4096 byte pages,7 bit root index,
2506
* 7 bit pointer index, 6 bit page table index.
2507
*/
2508
movel #0x82c07760,%a0@(8)
2509
pmove %a0@(8),%tc /* enable the MMU */
2510
jmp 1f:l
2511
1: movel %a2,%a0@(4)
2512
movel #0x0808,%d0
2513
movec %d0,%cacr
2514
pmove %a0@,%srp
2515
pflusha
2516
.chip 68k
2517
2518
L(mmu_engage_cleanup):
2519
subl #PAGE_OFFSET,%d2
2520
subl %d2,%a2
2521
movel %a2,L(kernel_pgdir_ptr)
2522
subl %d2,%fp
2523
subl %d2,%sp
2524
subl %d2,ARG0
2525
2526
func_return mmu_engage
2527
2528
func_start mmu_get_root_table_entry,%d0/%a1
2529
2530
#if 0
2531
dputs "mmu_get_root_table_entry:"
2532
dputn ARG1
2533
dputs " ="
2534
#endif
2535
2536
movel %pc@(L(kernel_pgdir_ptr)),%a0
2537
tstl %a0
2538
jne 2f
2539
2540
dputs "\nmmu_init:"
2541
2542
/* Find the start of free memory, get_bi_record does this for us,
2543
* as the bootinfo structure is located directly behind the kernel
2544
* we simply search for the last entry.
2545
*/
2546
get_bi_record BI_LAST
2547
addw #PAGESIZE-1,%a0
2548
movel %a0,%d0
2549
andw #-PAGESIZE,%d0
2550
2551
dputn %d0
2552
2553
lea %pc@(L(memory_start)),%a0
2554
movel %d0,%a0@
2555
lea %pc@(L(kernel_end)),%a0
2556
movel %d0,%a0@
2557
2558
/* we have to return the first page at _stext since the init code
2559
* in mm/init.c simply expects kernel_pg_dir there, the rest of
2560
* page is used for further ptr tables in get_ptr_table.
2561
*/
2562
lea %pc@(_stext),%a0
2563
lea %pc@(L(mmu_cached_pointer_tables)),%a1
2564
movel %a0,%a1@
2565
addl #ROOT_TABLE_SIZE*4,%a1@
2566
2567
lea %pc@(L(mmu_num_pointer_tables)),%a1
2568
addql #1,%a1@
2569
2570
/* clear the page
2571
*/
2572
movel %a0,%a1
2573
movew #PAGESIZE/4-1,%d0
2574
1:
2575
clrl %a1@+
2576
dbra %d0,1b
2577
2578
lea %pc@(L(kernel_pgdir_ptr)),%a1
2579
movel %a0,%a1@
2580
2581
dputn %a0
2582
dputc '\n'
2583
2:
2584
movel ARG1,%d0
2585
lea %a0@(%d0*4),%a0
2586
2587
#if 0
2588
dputn %a0
2589
dputc '\n'
2590
#endif
2591
2592
func_return mmu_get_root_table_entry
2593
2594
2595
2596
func_start mmu_get_ptr_table_entry,%d0/%a1
2597
2598
#if 0
2599
dputs "mmu_get_ptr_table_entry:"
2600
dputn ARG1
2601
dputn ARG2
2602
dputs " ="
2603
#endif
2604
2605
movel ARG1,%a0
2606
movel %a0@,%d0
2607
jne 2f
2608
2609
/* Keep track of the number of pointer tables we use
2610
*/
2611
dputs "\nmmu_get_new_ptr_table:"
2612
lea %pc@(L(mmu_num_pointer_tables)),%a0
2613
movel %a0@,%d0
2614
addql #1,%a0@
2615
2616
/* See if there is a free pointer table in our cache of pointer tables
2617
*/
2618
lea %pc@(L(mmu_cached_pointer_tables)),%a1
2619
andw #7,%d0
2620
jne 1f
2621
2622
/* Get a new pointer table page from above the kernel memory
2623
*/
2624
get_new_page
2625
movel %a0,%a1@
2626
1:
2627
/* There is an unused pointer table in our cache... use it
2628
*/
2629
movel %a1@,%d0
2630
addl #PTR_TABLE_SIZE*4,%a1@
2631
2632
dputn %d0
2633
dputc '\n'
2634
2635
/* Insert the new pointer table into the root table
2636
*/
2637
movel ARG1,%a0
2638
orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2639
movel %d0,%a0@
2640
2:
2641
/* Extract the pointer table entry
2642
*/
2643
andw #-PTR_TABLE_SIZE,%d0
2644
movel %d0,%a0
2645
movel ARG2,%d0
2646
lea %a0@(%d0*4),%a0
2647
2648
#if 0
2649
dputn %a0
2650
dputc '\n'
2651
#endif
2652
2653
func_return mmu_get_ptr_table_entry
2654
2655
2656
func_start mmu_get_page_table_entry,%d0/%a1
2657
2658
#if 0
2659
dputs "mmu_get_page_table_entry:"
2660
dputn ARG1
2661
dputn ARG2
2662
dputs " ="
2663
#endif
2664
2665
movel ARG1,%a0
2666
movel %a0@,%d0
2667
jne 2f
2668
2669
/* If the page table entry doesn't exist, we allocate a complete new
2670
* page and use it as one continuous big page table which can cover
2671
* 4MB of memory, nearly almost all mappings have that alignment.
2672
*/
2673
get_new_page
2674
addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2675
2676
/* align pointer table entry for a page of page tables
2677
*/
2678
movel ARG1,%d0
2679
andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2680
movel %d0,%a1
2681
2682
/* Insert the page tables into the pointer entries
2683
*/
2684
moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
2685
1:
2686
movel %a0,%a1@+
2687
lea %a0@(PAGE_TABLE_SIZE*4),%a0
2688
dbra %d0,1b
2689
2690
/* Now we can get the initialized pointer table entry
2691
*/
2692
movel ARG1,%a0
2693
movel %a0@,%d0
2694
2:
2695
/* Extract the page table entry
2696
*/
2697
andw #-PAGE_TABLE_SIZE,%d0
2698
movel %d0,%a0
2699
movel ARG2,%d0
2700
lea %a0@(%d0*4),%a0
2701
2702
#if 0
2703
dputn %a0
2704
dputc '\n'
2705
#endif
2706
2707
func_return mmu_get_page_table_entry
2708
2709
/*
2710
* get_new_page
2711
*
2712
* Return a new page from the memory start and clear it.
2713
*/
2714
func_start get_new_page,%d0/%a1
2715
2716
dputs "\nget_new_page:"
2717
2718
/* allocate the page and adjust memory_start
2719
*/
2720
lea %pc@(L(memory_start)),%a0
2721
movel %a0@,%a1
2722
addl #PAGESIZE,%a0@
2723
2724
/* clear the new page
2725
*/
2726
movel %a1,%a0
2727
movew #PAGESIZE/4-1,%d0
2728
1:
2729
clrl %a1@+
2730
dbra %d0,1b
2731
2732
dputn %a0
2733
dputc '\n'
2734
2735
func_return get_new_page
2736
2737
2738
2739
/*
2740
* Debug output support
2741
* Atarians have a choice between the parallel port, the serial port
2742
* from the MFP or a serial port of the SCC
2743
*/
2744
2745
#ifdef CONFIG_MAC
2746
/* You may define either or both of these. */
2747
#define MAC_USE_SCC_A /* Modem port */
2748
#define MAC_USE_SCC_B /* Printer port */
2749
2750
#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2751
/* Initialisation table for SCC with 3.6864 MHz PCLK */
2752
L(scc_initable_mac):
2753
.byte 4,0x44 /* x16, 1 stopbit, no parity */
2754
.byte 3,0xc0 /* receiver: 8 bpc */
2755
.byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2756
.byte 10,0 /* NRZ */
2757
.byte 11,0x50 /* use baud rate generator */
2758
.byte 12,1,13,0 /* 38400 baud */
2759
.byte 14,1 /* Baud rate generator enable */
2760
.byte 3,0xc1 /* enable receiver */
2761
.byte 5,0xea /* enable transmitter */
2762
.byte -1
2763
.even
2764
#endif
2765
#endif /* CONFIG_MAC */
2766
2767
#ifdef CONFIG_ATARI
2768
/* #define USE_PRINTER */
2769
/* #define USE_SCC_B */
2770
/* #define USE_SCC_A */
2771
#define USE_MFP
2772
2773
#if defined(USE_SCC_A) || defined(USE_SCC_B)
2774
/* Initialisation table for SCC with 7.9872 MHz PCLK */
2775
/* PCLK == 8.0539 gives baud == 9680.1 */
2776
L(scc_initable_atari):
2777
.byte 4,0x44 /* x16, 1 stopbit, no parity */
2778
.byte 3,0xc0 /* receiver: 8 bpc */
2779
.byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2780
.byte 10,0 /* NRZ */
2781
.byte 11,0x50 /* use baud rate generator */
2782
.byte 12,24,13,0 /* 9600 baud */
2783
.byte 14,2,14,3 /* use master clock for BRG, enable */
2784
.byte 3,0xc1 /* enable receiver */
2785
.byte 5,0xea /* enable transmitter */
2786
.byte -1
2787
.even
2788
#endif
2789
2790
#ifdef USE_PRINTER
2791
2792
LPSG_SELECT = 0xff8800
2793
LPSG_READ = 0xff8800
2794
LPSG_WRITE = 0xff8802
2795
LPSG_IO_A = 14
2796
LPSG_IO_B = 15
2797
LPSG_CONTROL = 7
2798
LSTMFP_GPIP = 0xfffa01
2799
LSTMFP_DDR = 0xfffa05
2800
LSTMFP_IERB = 0xfffa09
2801
2802
#elif defined(USE_SCC_B)
2803
2804
LSCC_CTRL = 0xff8c85
2805
LSCC_DATA = 0xff8c87
2806
2807
#elif defined(USE_SCC_A)
2808
2809
LSCC_CTRL = 0xff8c81
2810
LSCC_DATA = 0xff8c83
2811
2812
#elif defined(USE_MFP)
2813
2814
LMFP_UCR = 0xfffa29
2815
LMFP_TDCDR = 0xfffa1d
2816
LMFP_TDDR = 0xfffa25
2817
LMFP_TSR = 0xfffa2d
2818
LMFP_UDR = 0xfffa2f
2819
2820
#endif
2821
#endif /* CONFIG_ATARI */
2822
2823
/*
2824
* Serial port output support.
2825
*/
2826
2827
/*
2828
* Initialize serial port hardware
2829
*/
2830
func_start serial_init,%d0/%d1/%a0/%a1
2831
/*
2832
* Some of the register usage that follows
2833
* CONFIG_AMIGA
2834
* a0 = pointer to boot info record
2835
* d0 = boot info offset
2836
* CONFIG_ATARI
2837
* a0 = address of SCC
2838
* a1 = Liobase address/address of scc_initable_atari
2839
* d0 = init data for serial port
2840
* CONFIG_MAC
2841
* a0 = address of SCC
2842
* a1 = address of scc_initable_mac
2843
* d0 = init data for serial port
2844
*/
2845
2846
#ifdef CONFIG_AMIGA
2847
#define SERIAL_DTR 7
2848
#define SERIAL_CNTRL CIABBASE+C_PRA
2849
2850
is_not_amiga(1f)
2851
lea %pc@(L(custom)),%a0
2852
movel #-ZTWOBASE,%a0@
2853
bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2854
get_bi_record BI_AMIGA_SERPER
2855
movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2856
| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
2857
1:
2858
#endif
2859
2860
#ifdef CONFIG_ATARI
2861
is_not_atari(4f)
2862
movel %pc@(L(iobase)),%a1
2863
#if defined(USE_PRINTER)
2864
bclr #0,%a1@(LSTMFP_IERB)
2865
bclr #0,%a1@(LSTMFP_DDR)
2866
moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2867
moveb #0xff,%a1@(LPSG_WRITE)
2868
moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2869
clrb %a1@(LPSG_WRITE)
2870
moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2871
moveb %a1@(LPSG_READ),%d0
2872
bset #5,%d0
2873
moveb %d0,%a1@(LPSG_WRITE)
2874
#elif defined(USE_SCC_A) || defined(USE_SCC_B)
2875
lea %a1@(LSCC_CTRL),%a0
2876
/* Reset SCC register pointer */
2877
moveb %a0@,%d0
2878
/* Reset SCC device: write register pointer then register value */
2879
moveb #9,%a0@
2880
moveb #0xc0,%a0@
2881
/* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2882
/* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2883
movel #32,%d0
2884
2:
2885
subq #1,%d0
2886
jne 2b
2887
/* Initialize channel */
2888
lea %pc@(L(scc_initable_atari)),%a1
2889
2: moveb %a1@+,%d0
2890
jmi 3f
2891
moveb %d0,%a0@
2892
moveb %a1@+,%a0@
2893
jra 2b
2894
3: clrb %a0@
2895
#elif defined(USE_MFP)
2896
bclr #1,%a1@(LMFP_TSR)
2897
moveb #0x88,%a1@(LMFP_UCR)
2898
andb #0x70,%a1@(LMFP_TDCDR)
2899
moveb #2,%a1@(LMFP_TDDR)
2900
orb #1,%a1@(LMFP_TDCDR)
2901
bset #1,%a1@(LMFP_TSR)
2902
#endif
2903
jra L(serial_init_done)
2904
4:
2905
#endif
2906
2907
#ifdef CONFIG_MAC
2908
is_not_mac(L(serial_init_not_mac))
2909
#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2910
#define mac_scc_cha_b_ctrl_offset 0x0
2911
#define mac_scc_cha_a_ctrl_offset 0x2
2912
#define mac_scc_cha_b_data_offset 0x4
2913
#define mac_scc_cha_a_data_offset 0x6
2914
movel %pc@(L(mac_sccbase)),%a0
2915
/* Reset SCC register pointer */
2916
moveb %a0@(mac_scc_cha_a_ctrl_offset),%d0
2917
/* Reset SCC device: write register pointer then register value */
2918
moveb #9,%a0@(mac_scc_cha_a_ctrl_offset)
2919
moveb #0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2920
/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2921
/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2922
movel #35,%d0
2923
5:
2924
subq #1,%d0
2925
jne 5b
2926
#endif
2927
#ifdef MAC_USE_SCC_A
2928
/* Initialize channel A */
2929
lea %pc@(L(scc_initable_mac)),%a1
2930
5: moveb %a1@+,%d0
2931
jmi 6f
2932
moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2933
moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2934
jra 5b
2935
6:
2936
#endif /* MAC_USE_SCC_A */
2937
#ifdef MAC_USE_SCC_B
2938
/* Initialize channel B */
2939
lea %pc@(L(scc_initable_mac)),%a1
2940
7: moveb %a1@+,%d0
2941
jmi 8f
2942
moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2943
moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2944
jra 7b
2945
8:
2946
#endif /* MAC_USE_SCC_B */
2947
jra L(serial_init_done)
2948
L(serial_init_not_mac):
2949
#endif /* CONFIG_MAC */
2950
2951
#ifdef CONFIG_Q40
2952
is_not_q40(2f)
2953
/* debug output goes into SRAM, so we don't do it unless requested
2954
- check for '%LX$' signature in SRAM */
2955
lea %pc@(q40_mem_cptr),%a1
2956
move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2957
move.l #0xff020000,%a1
2958
cmp.b #'%',%a1@
2959
bne 2f /*nodbg*/
2960
addq.w #4,%a1
2961
cmp.b #'L',%a1@
2962
bne 2f /*nodbg*/
2963
addq.w #4,%a1
2964
cmp.b #'X',%a1@
2965
bne 2f /*nodbg*/
2966
addq.w #4,%a1
2967
cmp.b #'$',%a1@
2968
bne 2f /*nodbg*/
2969
/* signature OK */
2970
lea %pc@(L(q40_do_debug)),%a1
2971
tas %a1@
2972
/*nodbg: q40_do_debug is 0 by default*/
2973
2:
2974
#endif
2975
2976
#ifdef CONFIG_MVME16x
2977
is_not_mvme16x(L(serial_init_not_mvme16x))
2978
moveb #0x10,M167_PCSCCMICR
2979
moveb #0x10,M167_PCSCCTICR
2980
moveb #0x10,M167_PCSCCRICR
2981
jra L(serial_init_done)
2982
L(serial_init_not_mvme16x):
2983
#endif
2984
2985
#ifdef CONFIG_APOLLO
2986
/* We count on the PROM initializing SIO1 */
2987
#endif
2988
2989
#ifdef CONFIG_HP300
2990
/* We count on the boot loader initialising the UART */
2991
#endif
2992
2993
L(serial_init_done):
2994
func_return serial_init
2995
2996
/*
2997
* Output character on serial port.
2998
*/
2999
func_start serial_putc,%d0/%d1/%a0/%a1
3000
3001
movel ARG1,%d0
3002
cmpib #'\n',%d0
3003
jbne 1f
3004
3005
/* A little safe recursion is good for the soul */
3006
serial_putc #'\r'
3007
1:
3008
3009
#ifdef CONFIG_AMIGA
3010
is_not_amiga(2f)
3011
andw #0x00ff,%d0
3012
oriw #0x0100,%d0
3013
movel %pc@(L(custom)),%a0
3014
movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
3015
1: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3016
andw #0x2000,%d0
3017
jeq 1b
3018
jra L(serial_putc_done)
3019
2:
3020
#endif
3021
3022
#ifdef CONFIG_MAC
3023
is_not_mac(5f)
3024
#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3025
movel %pc@(L(mac_sccbase)),%a1
3026
#endif
3027
#ifdef MAC_USE_SCC_A
3028
3: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3029
jeq 3b
3030
moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3031
#endif /* MAC_USE_SCC_A */
3032
#ifdef MAC_USE_SCC_B
3033
4: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3034
jeq 4b
3035
moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3036
#endif /* MAC_USE_SCC_B */
3037
jra L(serial_putc_done)
3038
5:
3039
#endif /* CONFIG_MAC */
3040
3041
#ifdef CONFIG_ATARI
3042
is_not_atari(4f)
3043
movel %pc@(L(iobase)),%a1
3044
#if defined(USE_PRINTER)
3045
3: btst #0,%a1@(LSTMFP_GPIP)
3046
jne 3b
3047
moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3048
moveb %d0,%a1@(LPSG_WRITE)
3049
moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3050
moveb %a1@(LPSG_READ),%d0
3051
bclr #5,%d0
3052
moveb %d0,%a1@(LPSG_WRITE)
3053
nop
3054
nop
3055
bset #5,%d0
3056
moveb %d0,%a1@(LPSG_WRITE)
3057
#elif defined(USE_SCC_A) || defined(USE_SCC_B)
3058
3: btst #2,%a1@(LSCC_CTRL)
3059
jeq 3b
3060
moveb %d0,%a1@(LSCC_DATA)
3061
#elif defined(USE_MFP)
3062
3: btst #7,%a1@(LMFP_TSR)
3063
jeq 3b
3064
moveb %d0,%a1@(LMFP_UDR)
3065
#endif
3066
jra L(serial_putc_done)
3067
4:
3068
#endif /* CONFIG_ATARI */
3069
3070
#ifdef CONFIG_MVME147
3071
is_not_mvme147(2f)
3072
1: btst #2,M147_SCC_CTRL_A
3073
jeq 1b
3074
moveb %d0,M147_SCC_DATA_A
3075
jbra L(serial_putc_done)
3076
2:
3077
#endif
3078
3079
#ifdef CONFIG_MVME16x
3080
is_not_mvme16x(2f)
3081
/*
3082
* If the loader gave us a board type then we can use that to
3083
* select an appropriate output routine; otherwise we just use
3084
* the Bug code. If we have to use the Bug that means the Bug
3085
* workspace has to be valid, which means the Bug has to use
3086
* the SRAM, which is non-standard.
3087
*/
3088
moveml %d0-%d7/%a2-%a6,%sp@-
3089
movel vme_brdtype,%d1
3090
jeq 1f | No tag - use the Bug
3091
cmpi #VME_TYPE_MVME162,%d1
3092
jeq 6f
3093
cmpi #VME_TYPE_MVME172,%d1
3094
jne 5f
3095
/* 162/172; it's an SCC */
3096
6: btst #2,M162_SCC_CTRL_A
3097
nop
3098
nop
3099
nop
3100
jeq 6b
3101
moveb #8,M162_SCC_CTRL_A
3102
nop
3103
nop
3104
nop
3105
moveb %d0,M162_SCC_CTRL_A
3106
jra 3f
3107
5:
3108
/* 166/167/177; it's a CD2401 */
3109
moveb #0,M167_CYCAR
3110
moveb M167_CYIER,%d2
3111
moveb #0x02,M167_CYIER
3112
7:
3113
btst #5,M167_PCSCCTICR
3114
jeq 7b
3115
moveb M167_PCTPIACKR,%d1
3116
moveb M167_CYLICR,%d1
3117
jeq 8f
3118
moveb #0x08,M167_CYTEOIR
3119
jra 7b
3120
8:
3121
moveb %d0,M167_CYTDR
3122
moveb #0,M167_CYTEOIR
3123
moveb %d2,M167_CYIER
3124
jra 3f
3125
1:
3126
moveb %d0,%sp@-
3127
trap #15
3128
.word 0x0020 /* TRAP 0x020 */
3129
3:
3130
moveml %sp@+,%d0-%d7/%a2-%a6
3131
jbra L(serial_putc_done)
3132
2:
3133
#endif /* CONFIG_MVME16x */
3134
3135
#ifdef CONFIG_BVME6000
3136
is_not_bvme6000(2f)
3137
/*
3138
* The BVME6000 machine has a serial port ...
3139
*/
3140
1: btst #2,BVME_SCC_CTRL_A
3141
jeq 1b
3142
moveb %d0,BVME_SCC_DATA_A
3143
jbra L(serial_putc_done)
3144
2:
3145
#endif
3146
3147
#ifdef CONFIG_SUN3X
3148
is_not_sun3x(2f)
3149
movel %d0,-(%sp)
3150
movel 0xFEFE0018,%a1
3151
jbsr (%a1)
3152
addq #4,%sp
3153
jbra L(serial_putc_done)
3154
2:
3155
#endif
3156
3157
#ifdef CONFIG_Q40
3158
is_not_q40(2f)
3159
tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3160
beq 2f
3161
lea %pc@(q40_mem_cptr),%a1
3162
move.l %a1@,%a0
3163
move.b %d0,%a0@
3164
addq.l #4,%a0
3165
move.l %a0,%a1@
3166
jbra L(serial_putc_done)
3167
2:
3168
#endif
3169
3170
#ifdef CONFIG_APOLLO
3171
is_not_apollo(2f)
3172
movl %pc@(L(iobase)),%a1
3173
moveb %d0,%a1@(LTHRB0)
3174
1: moveb %a1@(LSRB0),%d0
3175
andb #0x4,%d0
3176
beq 1b
3177
jbra L(serial_putc_done)
3178
2:
3179
#endif
3180
3181
#ifdef CONFIG_HP300
3182
is_not_hp300(3f)
3183
movl %pc@(L(iobase)),%a1
3184
addl %pc@(L(uartbase)),%a1
3185
movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3186
jmi 3f /* Unset? Exit */
3187
cmpi #256,%d1 /* APCI scode? */
3188
jeq 2f
3189
1: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3190
andb #0x20,%d1
3191
beq 1b
3192
moveb %d0,%a1@(DCADATA)
3193
jbra L(serial_putc_done)
3194
2: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3195
andb #0x20,%d1
3196
beq 2b
3197
moveb %d0,%a1@(APCIDATA)
3198
jbra L(serial_putc_done)
3199
3:
3200
#endif
3201
3202
#ifdef CONFIG_VIRT
3203
is_not_virt(1f)
3204
3205
movel L(virt_gf_tty_base),%a1
3206
movel %d0,%a1@(GF_PUT_CHAR)
3207
1:
3208
#endif
3209
3210
L(serial_putc_done):
3211
func_return serial_putc
3212
3213
/*
3214
* Output a string.
3215
*/
3216
func_start puts,%d0/%a0
3217
3218
movel ARG1,%a0
3219
jra 2f
3220
1:
3221
#ifdef CONSOLE_DEBUG
3222
console_putc %d0
3223
#endif
3224
#ifdef SERIAL_DEBUG
3225
serial_putc %d0
3226
#endif
3227
2: moveb %a0@+,%d0
3228
jne 1b
3229
3230
func_return puts
3231
3232
/*
3233
* Output number in hex notation.
3234
*/
3235
3236
func_start putn,%d0-%d2
3237
3238
putc ' '
3239
3240
movel ARG1,%d0
3241
moveq #7,%d1
3242
1: roll #4,%d0
3243
move %d0,%d2
3244
andb #0x0f,%d2
3245
addb #'0',%d2
3246
cmpb #'9',%d2
3247
jls 2f
3248
addb #'A'-('9'+1),%d2
3249
2:
3250
#ifdef CONSOLE_DEBUG
3251
console_putc %d2
3252
#endif
3253
#ifdef SERIAL_DEBUG
3254
serial_putc %d2
3255
#endif
3256
dbra %d1,1b
3257
3258
func_return putn
3259
3260
#ifdef CONFIG_EARLY_PRINTK
3261
/*
3262
* This routine takes its parameters on the stack. It then
3263
* turns around and calls the internal routines. This routine
3264
* is used by the boot console.
3265
*
3266
* The function signature is -
3267
* void debug_cons_nputs(struct console *c, const char *s, unsigned int n)
3268
*
3269
* This routine does NOT understand variable arguments only
3270
* simple strings!
3271
*/
3272
ENTRY(debug_cons_nputs)
3273
moveml %d0/%d1/%a0,%sp@-
3274
movew %sr,%sp@-
3275
ori #0x0700,%sr
3276
movel %sp@(22),%a0 /* char *s */
3277
movel %sp@(26),%d1 /* unsigned int n */
3278
jra 2f
3279
1:
3280
#ifdef CONSOLE_DEBUG
3281
console_putc %d0
3282
#endif
3283
#ifdef SERIAL_DEBUG
3284
serial_putc %d0
3285
#endif
3286
subq #1,%d1
3287
2: jeq 3f
3288
moveb %a0@+,%d0
3289
jne 1b
3290
3:
3291
movew %sp@+,%sr
3292
moveml %sp@+,%d0/%d1/%a0
3293
rts
3294
#endif /* CONFIG_EARLY_PRINTK */
3295
3296
#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3297
func_start set_leds,%d0/%a0
3298
movel ARG1,%d0
3299
#ifdef CONFIG_HP300
3300
is_not_hp300(1f)
3301
movel %pc@(L(iobase)),%a0
3302
moveb %d0,%a0@(0x1ffff)
3303
jra 2f
3304
#endif
3305
1:
3306
#ifdef CONFIG_APOLLO
3307
movel %pc@(L(iobase)),%a0
3308
lsll #8,%d0
3309
eorw #0xff00,%d0
3310
moveb %d0,%a0@(LCPUCTRL)
3311
#endif
3312
2:
3313
func_return set_leds
3314
#endif
3315
3316
#ifdef CONSOLE_DEBUG
3317
/*
3318
* For continuity, see the data alignment
3319
* to which this structure is tied.
3320
*/
3321
#define Lconsole_struct_cur_column 0
3322
#define Lconsole_struct_cur_row 4
3323
#define Lconsole_struct_num_columns 8
3324
#define Lconsole_struct_num_rows 12
3325
#define Lconsole_struct_left_edge 16
3326
3327
func_start console_init,%a0-%a4/%d0-%d7
3328
/*
3329
* Some of the register usage that follows
3330
* a0 = pointer to boot_info
3331
* a1 = pointer to screen
3332
* a2 = pointer to console_globals
3333
* d3 = pixel width of screen
3334
* d4 = pixel height of screen
3335
* (d3,d4) ~= (x,y) of a point just below
3336
* and to the right of the screen
3337
* NOT on the screen!
3338
* d5 = number of bytes per scan line
3339
* d6 = number of bytes on the entire screen
3340
*/
3341
3342
lea %pc@(L(console_globals)),%a2
3343
movel %pc@(L(mac_videobase)),%a1
3344
movel %pc@(L(mac_rowbytes)),%d5
3345
movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3346
movel %d3,%d4
3347
swap %d4 /* -> high byte */
3348
andl #0xffff,%d3 /* d3 = screen width in pixels */
3349
andl #0xffff,%d4 /* d4 = screen height in pixels */
3350
3351
movel %d5,%d6
3352
| subl #20,%d6
3353
mulul %d4,%d6 /* scan line bytes x num scan lines */
3354
divul #8,%d6 /* we'll clear 8 bytes at a time */
3355
moveq #-1,%d0 /* Mac_black */
3356
subq #1,%d6
3357
3358
L(console_clear_loop):
3359
movel %d0,%a1@+
3360
movel %d0,%a1@+
3361
dbra %d6,L(console_clear_loop)
3362
3363
/* Calculate font size */
3364
3365
#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3366
lea %pc@(font_vga_8x8),%a0
3367
#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3368
lea %pc@(font_vga_8x16),%a0
3369
#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3370
lea %pc@(font_vga_6x11),%a0
3371
#elif defined(CONFIG_FONT_8x8) /* default */
3372
lea %pc@(font_vga_8x8),%a0
3373
#else /* no compiled-in font */
3374
lea 0,%a0
3375
#endif
3376
3377
/*
3378
* At this point we make a shift in register usage
3379
* a1 = address of console_font pointer
3380
*/
3381
lea %pc@(L(console_font)),%a1
3382
movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3383
tstl %a0
3384
jeq 1f
3385
lea %pc@(L(console_font_data)),%a4
3386
movel %a0@(FONT_DESC_DATA),%d0
3387
subl #L(console_font),%a1
3388
addl %a1,%d0
3389
movel %d0,%a4@
3390
3391
/*
3392
* Calculate global maxs
3393
* Note - we can use either an
3394
* 8 x 16 or 8 x 8 character font
3395
* 6 x 11 also supported
3396
*/
3397
/* ASSERT: a0 = contents of Lconsole_font */
3398
movel %d3,%d0 /* screen width in pixels */
3399
divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3400
3401
movel %d4,%d1 /* screen height in pixels */
3402
divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3403
subql #1,%d1 /* row range is 0 to num - 1 */
3404
3405
movel %d0,%a2@(Lconsole_struct_num_columns)
3406
movel %d1,%a2@(Lconsole_struct_num_rows)
3407
3408
/*
3409
* Clear the current row and column
3410
*/
3411
clrl %a2@(Lconsole_struct_cur_column)
3412
clrl %a2@(Lconsole_struct_cur_row)
3413
clrl %a2@(Lconsole_struct_left_edge)
3414
3415
/*
3416
* Initialization is complete
3417
*/
3418
1:
3419
func_return console_init
3420
3421
#ifdef CONFIG_LOGO
3422
func_start console_put_penguin,%a0-%a1/%d0-%d7
3423
/*
3424
* Get 'that_penguin' onto the screen in the upper right corner
3425
* penguin is 64 x 74 pixels, align against right edge of screen
3426
*/
3427
lea %pc@(L(mac_dimensions)),%a0
3428
movel %a0@,%d0
3429
andil #0xffff,%d0
3430
subil #64,%d0 /* snug up against the right edge */
3431
clrl %d1 /* start at the top */
3432
movel #73,%d7
3433
lea %pc@(L(that_penguin)),%a1
3434
L(console_penguin_row):
3435
movel #31,%d6
3436
L(console_penguin_pixel_pair):
3437
moveb %a1@,%d2
3438
lsrb #4,%d2
3439
console_plot_pixel %d0,%d1,%d2
3440
addq #1,%d0
3441
moveb %a1@+,%d2
3442
console_plot_pixel %d0,%d1,%d2
3443
addq #1,%d0
3444
dbra %d6,L(console_penguin_pixel_pair)
3445
3446
subil #64,%d0
3447
addq #1,%d1
3448
dbra %d7,L(console_penguin_row)
3449
3450
func_return console_put_penguin
3451
3452
/* include penguin bitmap */
3453
L(that_penguin):
3454
#include "../mac/mac_penguin.S"
3455
#endif
3456
3457
/*
3458
* Calculate source and destination addresses
3459
* output a1 = dest
3460
* a2 = source
3461
*/
3462
3463
func_start console_scroll,%a0-%a4/%d0-%d7
3464
lea %pc@(L(mac_videobase)),%a0
3465
movel %a0@,%a1
3466
movel %a1,%a2
3467
lea %pc@(L(mac_rowbytes)),%a0
3468
movel %a0@,%d5
3469
movel %pc@(L(console_font)),%a0
3470
tstl %a0
3471
jeq 1f
3472
mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3473
addal %d5,%a2
3474
3475
/*
3476
* Get dimensions
3477
*/
3478
lea %pc@(L(mac_dimensions)),%a0
3479
movel %a0@,%d3
3480
movel %d3,%d4
3481
swap %d4
3482
andl #0xffff,%d3 /* d3 = screen width in pixels */
3483
andl #0xffff,%d4 /* d4 = screen height in pixels */
3484
3485
/*
3486
* Calculate number of bytes to move
3487
*/
3488
lea %pc@(L(mac_rowbytes)),%a0
3489
movel %a0@,%d6
3490
movel %pc@(L(console_font)),%a0
3491
subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3492
mulul %d4,%d6 /* scan line bytes x num scan lines */
3493
divul #32,%d6 /* we'll move 8 longs at a time */
3494
subq #1,%d6
3495
3496
L(console_scroll_loop):
3497
movel %a2@+,%a1@+
3498
movel %a2@+,%a1@+
3499
movel %a2@+,%a1@+
3500
movel %a2@+,%a1@+
3501
movel %a2@+,%a1@+
3502
movel %a2@+,%a1@+
3503
movel %a2@+,%a1@+
3504
movel %a2@+,%a1@+
3505
dbra %d6,L(console_scroll_loop)
3506
3507
lea %pc@(L(mac_rowbytes)),%a0
3508
movel %a0@,%d6
3509
movel %pc@(L(console_font)),%a0
3510
mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3511
divul #32,%d6 /* we'll move 8 words at a time */
3512
subq #1,%d6
3513
3514
moveq #-1,%d0
3515
L(console_scroll_clear_loop):
3516
movel %d0,%a1@+
3517
movel %d0,%a1@+
3518
movel %d0,%a1@+
3519
movel %d0,%a1@+
3520
movel %d0,%a1@+
3521
movel %d0,%a1@+
3522
movel %d0,%a1@+
3523
movel %d0,%a1@+
3524
dbra %d6,L(console_scroll_clear_loop)
3525
3526
1:
3527
func_return console_scroll
3528
3529
3530
func_start console_putc,%a0/%a1/%d0-%d7
3531
3532
is_not_mac(L(console_exit))
3533
tstl %pc@(L(console_font))
3534
jeq L(console_exit)
3535
3536
lea %pc@(L(console_globals)),%a0
3537
3538
/* Output character in d7 on console.
3539
*/
3540
movel ARG1,%d7
3541
cmpib #'\n',%d7
3542
jne L(console_not_lf)
3543
3544
clrl %a0@(Lconsole_struct_cur_column) /* implicit \r */
3545
3546
movel %a0@(Lconsole_struct_cur_row),%d0
3547
movel %a0@(Lconsole_struct_num_rows),%d1
3548
cmpl %d1,%d0
3549
jcs 1f
3550
console_scroll
3551
jra L(console_exit)
3552
1:
3553
addql #1,%d0
3554
movel %d0,%a0@(Lconsole_struct_cur_row)
3555
jra L(console_exit)
3556
3557
L(console_not_lf):
3558
cmpib #'\r',%d7
3559
jne L(console_not_lf_not_cr)
3560
clrl %a0@(Lconsole_struct_cur_column)
3561
jra L(console_exit)
3562
3563
/*
3564
* At this point we know that the %d7 character is going to be
3565
* rendered on the screen. Register usage is -
3566
* a0 = pointer to console globals
3567
* a1 = font data
3568
* d0 = cursor column
3569
* d1 = cursor row to draw the character
3570
* d7 = character number
3571
*/
3572
L(console_not_lf_not_cr):
3573
movel %a0@(Lconsole_struct_cur_column),%d0
3574
movel %a0@(Lconsole_struct_cur_row),%d1
3575
3576
/*
3577
* At this point we make a shift in register usage
3578
* a0 = address of pointer to font data (fbcon_font_desc)
3579
*/
3580
movel %pc@(L(console_font)),%a0
3581
movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3582
andl #0x000000ff,%d7
3583
/* ASSERT: a0 = contents of Lconsole_font */
3584
mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3585
addl %d7,%a1 /* a1 = points to char image */
3586
3587
/*
3588
* At this point we make a shift in register usage
3589
* d0 = pixel coordinate, x
3590
* d1 = pixel coordinate, y
3591
* d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3592
* d3 = font scan line data (8 pixels)
3593
* d6 = count down for the font's pixel width (8)
3594
* d7 = count down for the font's pixel count in height
3595
*/
3596
/* ASSERT: a0 = contents of Lconsole_font */
3597
mulul %a0@(FONT_DESC_WIDTH),%d0
3598
mulul %a0@(FONT_DESC_HEIGHT),%d1
3599
movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3600
subq #1,%d7
3601
L(console_read_char_scanline):
3602
moveb %a1@+,%d3
3603
3604
/* ASSERT: a0 = contents of Lconsole_font */
3605
movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3606
subql #1,%d6
3607
3608
L(console_do_font_scanline):
3609
lslb #1,%d3
3610
scsb %d2 /* convert 1 bit into a byte */
3611
console_plot_pixel %d0,%d1,%d2
3612
addq #1,%d0
3613
dbra %d6,L(console_do_font_scanline)
3614
3615
/* ASSERT: a0 = contents of Lconsole_font */
3616
subl %a0@(FONT_DESC_WIDTH),%d0
3617
addq #1,%d1
3618
dbra %d7,L(console_read_char_scanline)
3619
3620
/*
3621
* Register usage in the code below:
3622
* a0 = pointer to console globals
3623
* d0 = cursor column
3624
* d1 = cursor column limit
3625
*/
3626
3627
lea %pc@(L(console_globals)),%a0
3628
3629
movel %a0@(Lconsole_struct_cur_column),%d0
3630
addql #1,%d0
3631
movel %d0,%a0@(Lconsole_struct_cur_column) /* Update cursor pos */
3632
movel %a0@(Lconsole_struct_num_columns),%d1
3633
cmpl %d1,%d0
3634
jcs L(console_exit)
3635
console_putc #'\n' /* Line wrap using tail recursion */
3636
3637
L(console_exit):
3638
func_return console_putc
3639
3640
/*
3641
* Input:
3642
* d0 = x coordinate
3643
* d1 = y coordinate
3644
* d2 = (bit 0) 1/0 for white/black (!)
3645
* All registers are preserved
3646
*/
3647
func_start console_plot_pixel,%a0-%a1/%d0-%d4
3648
3649
movel %pc@(L(mac_videobase)),%a1
3650
movel %pc@(L(mac_videodepth)),%d3
3651
movel ARG1,%d0
3652
movel ARG2,%d1
3653
mulul %pc@(L(mac_rowbytes)),%d1
3654
movel ARG3,%d2
3655
3656
/*
3657
* Register usage:
3658
* d0 = x coord becomes byte offset into frame buffer
3659
* d1 = y coord
3660
* d2 = black or white (0/1)
3661
* d3 = video depth
3662
* d4 = temp of x (d0) for many bit depths
3663
*/
3664
L(test_1bit):
3665
cmpb #1,%d3
3666
jbne L(test_2bit)
3667
movel %d0,%d4 /* we need the low order 3 bits! */
3668
divul #8,%d0
3669
addal %d0,%a1
3670
addal %d1,%a1
3671
andb #7,%d4
3672
eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3673
andb #1,%d2
3674
jbne L(white_1)
3675
bsetb %d4,%a1@
3676
jbra L(console_plot_pixel_exit)
3677
L(white_1):
3678
bclrb %d4,%a1@
3679
jbra L(console_plot_pixel_exit)
3680
3681
L(test_2bit):
3682
cmpb #2,%d3
3683
jbne L(test_4bit)
3684
movel %d0,%d4 /* we need the low order 2 bits! */
3685
divul #4,%d0
3686
addal %d0,%a1
3687
addal %d1,%a1
3688
andb #3,%d4
3689
eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3690
lsll #1,%d4 /* ! */
3691
andb #1,%d2
3692
jbne L(white_2)
3693
bsetb %d4,%a1@
3694
addq #1,%d4
3695
bsetb %d4,%a1@
3696
jbra L(console_plot_pixel_exit)
3697
L(white_2):
3698
bclrb %d4,%a1@
3699
addq #1,%d4
3700
bclrb %d4,%a1@
3701
jbra L(console_plot_pixel_exit)
3702
3703
L(test_4bit):
3704
cmpb #4,%d3
3705
jbne L(test_8bit)
3706
movel %d0,%d4 /* we need the low order bit! */
3707
divul #2,%d0
3708
addal %d0,%a1
3709
addal %d1,%a1
3710
andb #1,%d4
3711
eorb #1,%d4
3712
lsll #2,%d4 /* ! */
3713
andb #1,%d2
3714
jbne L(white_4)
3715
bsetb %d4,%a1@
3716
addq #1,%d4
3717
bsetb %d4,%a1@
3718
addq #1,%d4
3719
bsetb %d4,%a1@
3720
addq #1,%d4
3721
bsetb %d4,%a1@
3722
jbra L(console_plot_pixel_exit)
3723
L(white_4):
3724
bclrb %d4,%a1@
3725
addq #1,%d4
3726
bclrb %d4,%a1@
3727
addq #1,%d4
3728
bclrb %d4,%a1@
3729
addq #1,%d4
3730
bclrb %d4,%a1@
3731
jbra L(console_plot_pixel_exit)
3732
3733
L(test_8bit):
3734
cmpb #8,%d3
3735
jbne L(test_16bit)
3736
addal %d0,%a1
3737
addal %d1,%a1
3738
andb #1,%d2
3739
jbne L(white_8)
3740
moveb #0xff,%a1@
3741
jbra L(console_plot_pixel_exit)
3742
L(white_8):
3743
clrb %a1@
3744
jbra L(console_plot_pixel_exit)
3745
3746
L(test_16bit):
3747
cmpb #16,%d3
3748
jbne L(console_plot_pixel_exit)
3749
addal %d0,%a1
3750
addal %d0,%a1
3751
addal %d1,%a1
3752
andb #1,%d2
3753
jbne L(white_16)
3754
clrw %a1@
3755
jbra L(console_plot_pixel_exit)
3756
L(white_16):
3757
movew #0x0fff,%a1@
3758
jbra L(console_plot_pixel_exit)
3759
3760
L(console_plot_pixel_exit):
3761
func_return console_plot_pixel
3762
#endif /* CONSOLE_DEBUG */
3763
3764
3765
__INITDATA
3766
.align 4
3767
3768
m68k_init_mapped_size:
3769
.long 0
3770
3771
#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3772
defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3773
L(custom):
3774
L(iobase):
3775
.long 0
3776
#endif
3777
3778
#ifdef CONSOLE_DEBUG
3779
L(console_globals):
3780
.long 0 /* cursor column */
3781
.long 0 /* cursor row */
3782
.long 0 /* max num columns */
3783
.long 0 /* max num rows */
3784
.long 0 /* left edge */
3785
L(console_font):
3786
.long 0 /* pointer to console font (struct font_desc) */
3787
L(console_font_data):
3788
.long 0 /* pointer to console font data */
3789
#endif /* CONSOLE_DEBUG */
3790
3791
#if defined(MMU_PRINT)
3792
L(mmu_print_data):
3793
.long 0 /* valid flag */
3794
.long 0 /* start logical */
3795
.long 0 /* next logical */
3796
.long 0 /* start physical */
3797
.long 0 /* next physical */
3798
#endif /* MMU_PRINT */
3799
3800
L(cputype):
3801
.long 0
3802
L(mmu_cached_pointer_tables):
3803
.long 0
3804
L(mmu_num_pointer_tables):
3805
.long 0
3806
L(phys_kernel_start):
3807
.long 0
3808
L(kernel_end):
3809
.long 0
3810
L(memory_start):
3811
.long 0
3812
L(kernel_pgdir_ptr):
3813
.long 0
3814
L(temp_mmap_mem):
3815
.long 0
3816
3817
#if defined (CONFIG_MVME147)
3818
M147_SCC_CTRL_A = 0xfffe3002
3819
M147_SCC_DATA_A = 0xfffe3003
3820
#endif
3821
3822
#if defined (CONFIG_MVME16x)
3823
M162_SCC_CTRL_A = 0xfff45005
3824
M167_CYCAR = 0xfff450ee
3825
M167_CYIER = 0xfff45011
3826
M167_CYLICR = 0xfff45026
3827
M167_CYTEOIR = 0xfff45085
3828
M167_CYTDR = 0xfff450f8
3829
M167_PCSCCMICR = 0xfff4201d
3830
M167_PCSCCTICR = 0xfff4201e
3831
M167_PCSCCRICR = 0xfff4201f
3832
M167_PCTPIACKR = 0xfff42025
3833
#endif
3834
3835
#if defined (CONFIG_BVME6000)
3836
BVME_SCC_CTRL_A = 0xffb0000b
3837
BVME_SCC_DATA_A = 0xffb0000f
3838
#endif
3839
3840
#if defined(CONFIG_MAC)
3841
L(mac_videobase):
3842
.long 0
3843
L(mac_videodepth):
3844
.long 0
3845
L(mac_dimensions):
3846
.long 0
3847
L(mac_rowbytes):
3848
.long 0
3849
L(mac_sccbase):
3850
.long 0
3851
#endif /* CONFIG_MAC */
3852
3853
#if defined (CONFIG_APOLLO)
3854
LSRB0 = 0x10412
3855
LTHRB0 = 0x10416
3856
LCPUCTRL = 0x10100
3857
#endif
3858
3859
#if defined(CONFIG_HP300)
3860
DCADATA = 0x11
3861
DCALSR = 0x1b
3862
APCIDATA = 0x00
3863
APCILSR = 0x14
3864
L(uartbase):
3865
.long 0
3866
L(uart_scode):
3867
.long -1
3868
#endif
3869
3870
__FINIT
3871
.data
3872
.align 4
3873
3874
availmem:
3875
.long 0
3876
m68k_pgtable_cachemode:
3877
.long 0
3878
m68k_supervisor_cachemode:
3879
.long 0
3880
#if defined(CONFIG_MVME16x)
3881
mvme_bdid:
3882
.long 0,0,0,0,0,0,0,0
3883
#endif
3884
#if defined(CONFIG_Q40)
3885
q40_mem_cptr:
3886
.long 0
3887
L(q40_do_debug):
3888
.long 0
3889
#endif
3890
3891
#if defined(CONFIG_VIRT)
3892
GF_PUT_CHAR = 0x00
3893
L(virt_gf_tty_base):
3894
.long 0
3895
#endif /* CONFIG_VIRT */
3896
3897