Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/m68k/mac/misc.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Miscellaneous Mac68K-specific stuff
4
*/
5
6
#include <linux/types.h>
7
#include <linux/errno.h>
8
#include <linux/kernel.h>
9
#include <linux/delay.h>
10
#include <linux/sched.h>
11
#include <linux/time.h>
12
#include <linux/rtc.h>
13
#include <linux/mm.h>
14
15
#include <linux/adb.h>
16
#include <linux/cuda.h>
17
#include <linux/pmu.h>
18
19
#include <linux/uaccess.h>
20
#include <asm/io.h>
21
#include <asm/setup.h>
22
#include <asm/macintosh.h>
23
#include <asm/mac_via.h>
24
#include <asm/mac_oss.h>
25
26
#include <asm/machdep.h>
27
28
#include "mac.h"
29
30
/*
31
* Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU
32
* times wrap in 2040. If we need to handle later times, the read_time functions
33
* need to be changed to interpret wrapped times as post-2040.
34
*/
35
36
#define RTC_OFFSET 2082844800
37
38
static void (*rom_reset)(void);
39
40
#if IS_ENABLED(CONFIG_NVRAM)
41
#ifdef CONFIG_ADB_CUDA
42
static unsigned char cuda_pram_read_byte(int offset)
43
{
44
struct adb_request req;
45
46
if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM,
47
(offset >> 8) & 0xFF, offset & 0xFF) < 0)
48
return 0;
49
while (!req.complete)
50
cuda_poll();
51
return req.reply[3];
52
}
53
54
static void cuda_pram_write_byte(unsigned char data, int offset)
55
{
56
struct adb_request req;
57
58
if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM,
59
(offset >> 8) & 0xFF, offset & 0xFF, data) < 0)
60
return;
61
while (!req.complete)
62
cuda_poll();
63
}
64
#endif /* CONFIG_ADB_CUDA */
65
66
#ifdef CONFIG_ADB_PMU
67
static unsigned char pmu_pram_read_byte(int offset)
68
{
69
struct adb_request req;
70
71
if (pmu_request(&req, NULL, 3, PMU_READ_XPRAM,
72
offset & 0xFF, 1) < 0)
73
return 0;
74
pmu_wait_complete(&req);
75
76
return req.reply[0];
77
}
78
79
static void pmu_pram_write_byte(unsigned char data, int offset)
80
{
81
struct adb_request req;
82
83
if (pmu_request(&req, NULL, 4, PMU_WRITE_XPRAM,
84
offset & 0xFF, 1, data) < 0)
85
return;
86
pmu_wait_complete(&req);
87
}
88
#endif /* CONFIG_ADB_PMU */
89
#endif /* CONFIG_NVRAM */
90
91
/*
92
* VIA PRAM/RTC access routines
93
*
94
* Must be called with interrupts disabled and
95
* the RTC should be enabled.
96
*/
97
98
static __u8 via_rtc_recv(void)
99
{
100
int i, reg;
101
__u8 data;
102
103
reg = via1[vBufB] & ~VIA1B_vRTCClk;
104
105
/* Set the RTC data line to be an input. */
106
107
via1[vDirB] &= ~VIA1B_vRTCData;
108
109
/* The bits of the byte come out in MSB order */
110
111
data = 0;
112
for (i = 0 ; i < 8 ; i++) {
113
via1[vBufB] = reg;
114
via1[vBufB] = reg | VIA1B_vRTCClk;
115
data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData);
116
}
117
118
/* Return RTC data line to output state */
119
120
via1[vDirB] |= VIA1B_vRTCData;
121
122
return data;
123
}
124
125
static void via_rtc_send(__u8 data)
126
{
127
int i, reg, bit;
128
129
reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData);
130
131
/* The bits of the byte go into the RTC in MSB order */
132
133
for (i = 0 ; i < 8 ; i++) {
134
bit = data & 0x80? 1 : 0;
135
data <<= 1;
136
via1[vBufB] = reg | bit;
137
via1[vBufB] = reg | bit | VIA1B_vRTCClk;
138
}
139
}
140
141
/*
142
* These values can be found in Inside Macintosh vol. III ch. 2
143
* which has a description of the RTC chip in the original Mac.
144
*/
145
146
#define RTC_FLG_READ BIT(7)
147
#define RTC_FLG_WRITE_PROTECT BIT(7)
148
#define RTC_CMD_READ(r) (RTC_FLG_READ | (r << 2))
149
#define RTC_CMD_WRITE(r) (r << 2)
150
#define RTC_REG_SECONDS_0 0
151
#define RTC_REG_SECONDS_1 1
152
#define RTC_REG_SECONDS_2 2
153
#define RTC_REG_SECONDS_3 3
154
#define RTC_REG_WRITE_PROTECT 13
155
156
/*
157
* Inside Mac has no information about two-byte RTC commands but
158
* the MAME/MESS source code has the essentials.
159
*/
160
161
#define RTC_REG_XPRAM 14
162
#define RTC_CMD_XPRAM_READ (RTC_CMD_READ(RTC_REG_XPRAM) << 8)
163
#define RTC_CMD_XPRAM_WRITE (RTC_CMD_WRITE(RTC_REG_XPRAM) << 8)
164
#define RTC_CMD_XPRAM_ARG(a) (((a & 0xE0) << 3) | ((a & 0x1F) << 2))
165
166
/*
167
* Execute a VIA PRAM/RTC command. For read commands
168
* data should point to a one-byte buffer for the
169
* resulting data. For write commands it should point
170
* to the data byte to for the command.
171
*
172
* This function disables all interrupts while running.
173
*/
174
175
static void via_rtc_command(int command, __u8 *data)
176
{
177
unsigned long flags;
178
int is_read;
179
180
local_irq_save(flags);
181
182
/* The least significant bits must be 0b01 according to Inside Mac */
183
184
command = (command & ~3) | 1;
185
186
/* Enable the RTC and make sure the strobe line is high */
187
188
via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb;
189
190
if (command & 0xFF00) { /* extended (two-byte) command */
191
via_rtc_send((command & 0xFF00) >> 8);
192
via_rtc_send(command & 0xFF);
193
is_read = command & (RTC_FLG_READ << 8);
194
} else { /* one-byte command */
195
via_rtc_send(command);
196
is_read = command & RTC_FLG_READ;
197
}
198
if (is_read) {
199
*data = via_rtc_recv();
200
} else {
201
via_rtc_send(*data);
202
}
203
204
/* All done, disable the RTC */
205
206
via1[vBufB] |= VIA1B_vRTCEnb;
207
208
local_irq_restore(flags);
209
}
210
211
#if IS_ENABLED(CONFIG_NVRAM)
212
static unsigned char via_pram_read_byte(int offset)
213
{
214
unsigned char temp;
215
216
via_rtc_command(RTC_CMD_XPRAM_READ | RTC_CMD_XPRAM_ARG(offset), &temp);
217
218
return temp;
219
}
220
221
static void via_pram_write_byte(unsigned char data, int offset)
222
{
223
unsigned char temp;
224
225
temp = 0x55;
226
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
227
228
temp = data;
229
via_rtc_command(RTC_CMD_XPRAM_WRITE | RTC_CMD_XPRAM_ARG(offset), &temp);
230
231
temp = 0x55 | RTC_FLG_WRITE_PROTECT;
232
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
233
}
234
#endif /* CONFIG_NVRAM */
235
236
/*
237
* Return the current time in seconds since January 1, 1904.
238
*
239
* This only works on machines with the VIA-based PRAM/RTC, which
240
* is basically any machine with Mac II-style ADB.
241
*/
242
243
static time64_t via_read_time(void)
244
{
245
union {
246
__u8 cdata[4];
247
__u32 idata;
248
} result, last_result;
249
int count = 1;
250
251
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0), &last_result.cdata[3]);
252
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1), &last_result.cdata[2]);
253
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2), &last_result.cdata[1]);
254
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3), &last_result.cdata[0]);
255
256
/*
257
* The NetBSD guys say to loop until you get the same reading
258
* twice in a row.
259
*/
260
261
while (1) {
262
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0),
263
&result.cdata[3]);
264
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1),
265
&result.cdata[2]);
266
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2),
267
&result.cdata[1]);
268
via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3),
269
&result.cdata[0]);
270
271
if (result.idata == last_result.idata)
272
return (time64_t)result.idata - RTC_OFFSET;
273
274
if (++count > 10)
275
break;
276
277
last_result.idata = result.idata;
278
}
279
280
pr_err("%s: failed to read a stable value; got 0x%08x then 0x%08x\n",
281
__func__, last_result.idata, result.idata);
282
283
return 0;
284
}
285
286
/*
287
* Set the current time to a number of seconds since January 1, 1904.
288
*
289
* This only works on machines with the VIA-based PRAM/RTC, which
290
* is basically any machine with Mac II-style ADB.
291
*/
292
293
static void via_set_rtc_time(struct rtc_time *tm)
294
{
295
union {
296
__u8 cdata[4];
297
__u32 idata;
298
} data;
299
__u8 temp;
300
time64_t time;
301
302
time = mktime64(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
303
tm->tm_hour, tm->tm_min, tm->tm_sec);
304
305
/* Clear the write protect bit */
306
307
temp = 0x55;
308
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
309
310
data.idata = lower_32_bits(time + RTC_OFFSET);
311
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_0), &data.cdata[3]);
312
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_1), &data.cdata[2]);
313
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_2), &data.cdata[1]);
314
via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_3), &data.cdata[0]);
315
316
/* Set the write protect bit */
317
318
temp = 0x55 | RTC_FLG_WRITE_PROTECT;
319
via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
320
}
321
322
static void via_shutdown(void)
323
{
324
if (rbv_present) {
325
via2[rBufB] &= ~0x04;
326
} else {
327
/* Direction of vDirB is output */
328
via2[vDirB] |= 0x04;
329
/* Send a value of 0 on that line */
330
via2[vBufB] &= ~0x04;
331
mdelay(1000);
332
}
333
}
334
335
static void oss_shutdown(void)
336
{
337
oss->rom_ctrl = OSS_POWEROFF;
338
}
339
340
#ifdef CONFIG_ADB_CUDA
341
static void cuda_restart(void)
342
{
343
struct adb_request req;
344
345
if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0)
346
return;
347
while (!req.complete)
348
cuda_poll();
349
}
350
351
static void cuda_shutdown(void)
352
{
353
struct adb_request req;
354
355
if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0)
356
return;
357
358
/* Avoid infinite polling loop when PSU is not under Cuda control */
359
switch (macintosh_config->ident) {
360
case MAC_MODEL_C660:
361
case MAC_MODEL_Q605:
362
case MAC_MODEL_Q605_ACC:
363
case MAC_MODEL_P475:
364
case MAC_MODEL_P475F:
365
return;
366
}
367
368
while (!req.complete)
369
cuda_poll();
370
}
371
#endif /* CONFIG_ADB_CUDA */
372
373
/*
374
*-------------------------------------------------------------------
375
* Below this point are the generic routines; they'll dispatch to the
376
* correct routine for the hardware on which we're running.
377
*-------------------------------------------------------------------
378
*/
379
380
#if IS_ENABLED(CONFIG_NVRAM)
381
unsigned char mac_pram_read_byte(int addr)
382
{
383
switch (macintosh_config->adb_type) {
384
case MAC_ADB_IOP:
385
case MAC_ADB_II:
386
case MAC_ADB_PB1:
387
return via_pram_read_byte(addr);
388
#ifdef CONFIG_ADB_CUDA
389
case MAC_ADB_EGRET:
390
case MAC_ADB_CUDA:
391
return cuda_pram_read_byte(addr);
392
#endif
393
#ifdef CONFIG_ADB_PMU
394
case MAC_ADB_PB2:
395
return pmu_pram_read_byte(addr);
396
#endif
397
default:
398
return 0xFF;
399
}
400
}
401
402
void mac_pram_write_byte(unsigned char val, int addr)
403
{
404
switch (macintosh_config->adb_type) {
405
case MAC_ADB_IOP:
406
case MAC_ADB_II:
407
case MAC_ADB_PB1:
408
via_pram_write_byte(val, addr);
409
break;
410
#ifdef CONFIG_ADB_CUDA
411
case MAC_ADB_EGRET:
412
case MAC_ADB_CUDA:
413
cuda_pram_write_byte(val, addr);
414
break;
415
#endif
416
#ifdef CONFIG_ADB_PMU
417
case MAC_ADB_PB2:
418
pmu_pram_write_byte(val, addr);
419
break;
420
#endif
421
default:
422
break;
423
}
424
}
425
426
ssize_t mac_pram_get_size(void)
427
{
428
return 256;
429
}
430
#endif /* CONFIG_NVRAM */
431
432
void mac_poweroff(void)
433
{
434
if (oss_present) {
435
oss_shutdown();
436
} else if (macintosh_config->adb_type == MAC_ADB_II) {
437
via_shutdown();
438
#ifdef CONFIG_ADB_CUDA
439
} else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
440
macintosh_config->adb_type == MAC_ADB_CUDA) {
441
cuda_shutdown();
442
#endif
443
#ifdef CONFIG_ADB_PMU
444
} else if (macintosh_config->adb_type == MAC_ADB_PB2) {
445
pmu_shutdown();
446
#endif
447
}
448
449
pr_crit("It is now safe to turn off your Macintosh.\n");
450
local_irq_disable();
451
while(1);
452
}
453
454
void mac_reset(void)
455
{
456
#ifdef CONFIG_ADB_CUDA
457
if (macintosh_config->adb_type == MAC_ADB_EGRET ||
458
macintosh_config->adb_type == MAC_ADB_CUDA) {
459
cuda_restart();
460
} else
461
#endif
462
#ifdef CONFIG_ADB_PMU
463
if (macintosh_config->adb_type == MAC_ADB_PB2) {
464
pmu_restart();
465
} else
466
#endif
467
if (CPU_IS_030) {
468
/* 030-specific reset routine. The idea is general, but the
469
* specific registers to reset are '030-specific. Until I
470
* have a non-030 machine, I can't test anything else.
471
* -- C. Scott Ananian <[email protected]>
472
*/
473
474
unsigned long rombase = 0x40000000;
475
476
/* make a 1-to-1 mapping, using the transparent tran. reg. */
477
unsigned long virt = (unsigned long) mac_reset;
478
unsigned long phys = virt_to_phys(mac_reset);
479
unsigned long addr = (phys&0xFF000000)|0x8777;
480
unsigned long offset = phys-virt;
481
482
local_irq_disable(); /* lets not screw this up, ok? */
483
__asm__ __volatile__(".chip 68030\n\t"
484
"pmove %0,%/tt0\n\t"
485
".chip 68k"
486
: : "m" (addr));
487
/* Now jump to physical address so we can disable MMU */
488
__asm__ __volatile__(
489
".chip 68030\n\t"
490
"lea %/pc@(1f),%/a0\n\t"
491
"addl %0,%/a0\n\t"/* fixup target address and stack ptr */
492
"addl %0,%/sp\n\t"
493
"pflusha\n\t"
494
"jmp %/a0@\n\t" /* jump into physical memory */
495
"0:.long 0\n\t" /* a constant zero. */
496
/* OK. Now reset everything and jump to reset vector. */
497
"1:\n\t"
498
"lea %/pc@(0b),%/a0\n\t"
499
"pmove %/a0@, %/tc\n\t" /* disable mmu */
500
"pmove %/a0@, %/tt0\n\t" /* disable tt0 */
501
"pmove %/a0@, %/tt1\n\t" /* disable tt1 */
502
"movel #0, %/a0\n\t"
503
"movec %/a0, %/vbr\n\t" /* clear vector base register */
504
"movec %/a0, %/cacr\n\t" /* disable caches */
505
"movel #0x0808,%/a0\n\t"
506
"movec %/a0, %/cacr\n\t" /* flush i&d caches */
507
"movew #0x2700,%/sr\n\t" /* set up status register */
508
"movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */
509
"movec %/a0, %/isp\n\t"
510
"movel %1@(0x4),%/a0\n\t" /* load reset vector */
511
"reset\n\t" /* reset external devices */
512
"jmp %/a0@\n\t" /* jump to the reset vector */
513
".chip 68k"
514
: : "r" (offset), "a" (rombase) : "a0");
515
} else {
516
/* need ROMBASE in booter */
517
/* indeed, plus need to MAP THE ROM !! */
518
519
if (mac_bi_data.rombase == 0)
520
mac_bi_data.rombase = 0x40800000;
521
522
/* works on some */
523
rom_reset = (void *)(mac_bi_data.rombase + 0xa);
524
525
local_irq_disable();
526
rom_reset();
527
}
528
529
/* should never get here */
530
pr_crit("Restart failed. Please restart manually.\n");
531
local_irq_disable();
532
while(1);
533
}
534
535
/*
536
* This function translates seconds since 1970 into a proper date.
537
*
538
* Algorithm cribbed from glibc2.1, __offtime().
539
*
540
* This is roughly same as rtc_time64_to_tm(), which we should probably
541
* use here, but it's only available when CONFIG_RTC_LIB is enabled.
542
*/
543
#define SECS_PER_MINUTE (60)
544
#define SECS_PER_HOUR (SECS_PER_MINUTE * 60)
545
#define SECS_PER_DAY (SECS_PER_HOUR * 24)
546
547
static void unmktime(time64_t time, long offset,
548
int *yearp, int *monp, int *dayp,
549
int *hourp, int *minp, int *secp)
550
{
551
/* How many days come before each month (0-12). */
552
static const unsigned short int __mon_yday[2][13] =
553
{
554
/* Normal years. */
555
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
556
/* Leap years. */
557
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
558
};
559
int days, rem, y, wday;
560
const unsigned short int *ip;
561
562
days = div_u64_rem(time, SECS_PER_DAY, &rem);
563
rem += offset;
564
while (rem < 0) {
565
rem += SECS_PER_DAY;
566
--days;
567
}
568
while (rem >= SECS_PER_DAY) {
569
rem -= SECS_PER_DAY;
570
++days;
571
}
572
*hourp = rem / SECS_PER_HOUR;
573
rem %= SECS_PER_HOUR;
574
*minp = rem / SECS_PER_MINUTE;
575
*secp = rem % SECS_PER_MINUTE;
576
/* January 1, 1970 was a Thursday. */
577
wday = (4 + days) % 7; /* Day in the week. Not currently used */
578
if (wday < 0) wday += 7;
579
y = 1970;
580
581
#define DIV(a, b) ((a) / (b) - ((a) % (b) < 0))
582
#define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))
583
#define __isleap(year) \
584
((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))
585
586
while (days < 0 || days >= (__isleap (y) ? 366 : 365))
587
{
588
/* Guess a corrected year, assuming 365 days per year. */
589
long int yg = y + days / 365 - (days % 365 < 0);
590
591
/* Adjust DAYS and Y to match the guessed year. */
592
days -= (yg - y) * 365 +
593
LEAPS_THRU_END_OF(yg - 1) - LEAPS_THRU_END_OF(y - 1);
594
y = yg;
595
}
596
*yearp = y - 1900;
597
ip = __mon_yday[__isleap(y)];
598
for (y = 11; days < (long int) ip[y]; --y)
599
continue;
600
days -= ip[y];
601
*monp = y;
602
*dayp = days + 1; /* day in the month */
603
return;
604
}
605
606
/*
607
* Read/write the hardware clock.
608
*/
609
610
int mac_hwclk(int op, struct rtc_time *t)
611
{
612
time64_t now;
613
614
if (!op) { /* read */
615
switch (macintosh_config->adb_type) {
616
case MAC_ADB_IOP:
617
case MAC_ADB_II:
618
case MAC_ADB_PB1:
619
now = via_read_time();
620
break;
621
#ifdef CONFIG_ADB_CUDA
622
case MAC_ADB_EGRET:
623
case MAC_ADB_CUDA:
624
now = cuda_get_time();
625
break;
626
#endif
627
#ifdef CONFIG_ADB_PMU
628
case MAC_ADB_PB2:
629
now = pmu_get_time();
630
break;
631
#endif
632
default:
633
now = 0;
634
}
635
636
t->tm_wday = 0;
637
unmktime(now, 0,
638
&t->tm_year, &t->tm_mon, &t->tm_mday,
639
&t->tm_hour, &t->tm_min, &t->tm_sec);
640
pr_debug("%s: read %ptR\n", __func__, t);
641
} else { /* write */
642
pr_debug("%s: tried to write %ptR\n", __func__, t);
643
644
switch (macintosh_config->adb_type) {
645
case MAC_ADB_IOP:
646
case MAC_ADB_II:
647
case MAC_ADB_PB1:
648
via_set_rtc_time(t);
649
break;
650
#ifdef CONFIG_ADB_CUDA
651
case MAC_ADB_EGRET:
652
case MAC_ADB_CUDA:
653
cuda_set_rtc_time(t);
654
break;
655
#endif
656
#ifdef CONFIG_ADB_PMU
657
case MAC_ADB_PB2:
658
pmu_set_rtc_time(t);
659
break;
660
#endif
661
default:
662
return -ENODEV;
663
}
664
}
665
return 0;
666
}
667
668