Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/m68k/mac/via.c
26451 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* 6522 Versatile Interface Adapter (VIA)
4
*
5
* There are two of these on the Mac II. Some IRQs are vectored
6
* via them as are assorted bits and bobs - eg RTC, ADB.
7
*
8
* CSA: Motorola seems to have removed documentation on the 6522 from
9
* their web site; try
10
* http://nerini.drf.com/vectrex/other/text/chips/6522/
11
* http://www.zymurgy.net/classic/vic20/vicdet1.htm
12
* and
13
* http://193.23.168.87/mikro_laborversuche/via_iobaustein/via6522_1.html
14
* for info. A full-text web search on 6522 AND VIA will probably also
15
* net some usefulness. <[email protected]> 20apr1999
16
*
17
* Additional data is here (the SY6522 was used in the Mac II etc):
18
* http://www.6502.org/documents/datasheets/synertek/synertek_sy6522.pdf
19
* http://www.6502.org/documents/datasheets/synertek/synertek_sy6522_programming_reference.pdf
20
*
21
* PRAM/RTC access algorithms are from the NetBSD RTC toolkit version 1.08b
22
* by Erik Vogan and adapted to Linux by Joshua M. Thompson ([email protected])
23
*
24
*/
25
26
#include <linux/clocksource.h>
27
#include <linux/types.h>
28
#include <linux/kernel.h>
29
#include <linux/mm.h>
30
#include <linux/delay.h>
31
#include <linux/init.h>
32
#include <linux/module.h>
33
#include <linux/irq.h>
34
35
#include <asm/macintosh.h>
36
#include <asm/macints.h>
37
#include <asm/mac_via.h>
38
#include <asm/mac_psc.h>
39
#include <asm/mac_oss.h>
40
41
#include "mac.h"
42
43
volatile __u8 *via1, *via2;
44
int rbv_present;
45
int via_alt_mapping;
46
EXPORT_SYMBOL(via_alt_mapping);
47
static __u8 rbv_clear;
48
49
/*
50
* Globals for accessing the VIA chip registers without having to
51
* check if we're hitting a real VIA or an RBV. Normally you could
52
* just hit the combined register (ie, vIER|rIER) but that seems to
53
* break on AV Macs...probably because they actually decode more than
54
* eight address bits. Why can't Apple engineers at least be
55
* _consistently_ lazy? - 1999-05-21 (jmt)
56
*/
57
58
static int gIER,gIFR,gBufA,gBufB;
59
60
/*
61
* On Macs with a genuine VIA chip there is no way to mask an individual slot
62
* interrupt. This limitation also seems to apply to VIA clone logic cores in
63
* Quadra-like ASICs. (RBV and OSS machines don't have this limitation.)
64
*
65
* We used to fake it by configuring the relevant VIA pin as an output
66
* (to mask the interrupt) or input (to unmask). That scheme did not work on
67
* (at least) the Quadra 700. A NuBus card's /NMRQ signal is an open-collector
68
* circuit (see Designing Cards and Drivers for Macintosh II and Macintosh SE,
69
* p. 10-11 etc) but VIA outputs are not (see datasheet).
70
*
71
* Driving these outputs high must cause the VIA to source current and the
72
* card to sink current when it asserts /NMRQ. Current will flow but the pin
73
* voltage is uncertain and so the /NMRQ condition may still cause a transition
74
* at the VIA2 CA1 input (which explains the lost interrupts). A side effect
75
* is that a disabled slot IRQ can never be tested as pending or not.
76
*
77
* Driving these outputs low doesn't work either. All the slot /NMRQ lines are
78
* (active low) OR'd together to generate the CA1 (aka "SLOTS") interrupt (see
79
* The Guide To Macintosh Family Hardware, 2nd edition p. 167). If we drive a
80
* disabled /NMRQ line low, the falling edge immediately triggers a CA1
81
* interrupt and all slot interrupts after that will generate no transition
82
* and therefore no interrupt, even after being re-enabled.
83
*
84
* So we make the VIA port A I/O lines inputs and use nubus_disabled to keep
85
* track of their states. When any slot IRQ becomes disabled we mask the CA1
86
* umbrella interrupt. Only when all slot IRQs become enabled do we unmask
87
* the CA1 interrupt. It must remain enabled even when cards have no interrupt
88
* handler registered. Drivers must therefore disable a slot interrupt at the
89
* device before they call free_irq (like shared and autovector interrupts).
90
*
91
* There is also a related problem when MacOS is used to boot Linux. A network
92
* card brought up by a MacOS driver may raise an interrupt while Linux boots.
93
* This can be fatal since it can't be handled until the right driver loads
94
* (if such a driver exists at all). Apparently related to this hardware
95
* limitation, "Designing Cards and Drivers", p. 9-8, says that a slot
96
* interrupt with no driver would crash MacOS (the book was written before
97
* the appearance of Macs with RBV or OSS).
98
*/
99
100
static u8 nubus_disabled;
101
102
void via_debug_dump(void);
103
static void via_nubus_init(void);
104
105
/*
106
* Initialize the VIAs
107
*
108
* First we figure out where they actually _are_ as well as what type of
109
* VIA we have for VIA2 (it could be a real VIA or an RBV or even an OSS.)
110
* Then we pretty much clear them out and disable all IRQ sources.
111
*/
112
113
void __init via_init(void)
114
{
115
via1 = (void *)VIA1_BASE;
116
pr_debug("VIA1 detected at %p\n", via1);
117
118
if (oss_present) {
119
via2 = NULL;
120
rbv_present = 0;
121
} else {
122
switch (macintosh_config->via_type) {
123
124
/* IIci, IIsi, IIvx, IIvi (P6xx), LC series */
125
126
case MAC_VIA_IICI:
127
via2 = (void *)RBV_BASE;
128
pr_debug("VIA2 (RBV) detected at %p\n", via2);
129
rbv_present = 1;
130
if (macintosh_config->ident == MAC_MODEL_LCIII) {
131
rbv_clear = 0x00;
132
} else {
133
/* on most RBVs (& unlike the VIAs), you */
134
/* need to set bit 7 when you write to IFR */
135
/* in order for your clear to occur. */
136
rbv_clear = 0x80;
137
}
138
gIER = rIER;
139
gIFR = rIFR;
140
gBufA = rSIFR;
141
gBufB = rBufB;
142
break;
143
144
/* Quadra and early MacIIs agree on the VIA locations */
145
146
case MAC_VIA_QUADRA:
147
case MAC_VIA_II:
148
via2 = (void *) VIA2_BASE;
149
pr_debug("VIA2 detected at %p\n", via2);
150
rbv_present = 0;
151
rbv_clear = 0x00;
152
gIER = vIER;
153
gIFR = vIFR;
154
gBufA = vBufA;
155
gBufB = vBufB;
156
break;
157
158
default:
159
panic("UNKNOWN VIA TYPE");
160
}
161
}
162
163
#ifdef DEBUG_VIA
164
via_debug_dump();
165
#endif
166
167
/*
168
* Shut down all IRQ sources, reset the timers, and
169
* kill the timer latch on VIA1.
170
*/
171
172
via1[vIER] = 0x7F;
173
via1[vIFR] = 0x7F;
174
via1[vT1CL] = 0;
175
via1[vT1CH] = 0;
176
via1[vT2CL] = 0;
177
via1[vT2CH] = 0;
178
via1[vACR] &= ~0xC0; /* setup T1 timer with no PB7 output */
179
via1[vACR] &= ~0x03; /* disable port A & B latches */
180
181
/*
182
* SE/30: disable video IRQ
183
*/
184
185
if (macintosh_config->ident == MAC_MODEL_SE30) {
186
via1[vDirB] |= 0x40;
187
via1[vBufB] |= 0x40;
188
}
189
190
switch (macintosh_config->adb_type) {
191
case MAC_ADB_IOP:
192
case MAC_ADB_II:
193
case MAC_ADB_PB1:
194
/*
195
* Set the RTC bits to a known state: all lines to outputs and
196
* RTC disabled (yes that's 0 to enable and 1 to disable).
197
*/
198
via1[vDirB] |= VIA1B_vRTCEnb | VIA1B_vRTCClk | VIA1B_vRTCData;
199
via1[vBufB] |= VIA1B_vRTCEnb | VIA1B_vRTCClk;
200
break;
201
}
202
203
/* Everything below this point is VIA2/RBV only... */
204
205
if (oss_present)
206
return;
207
208
if ((macintosh_config->via_type == MAC_VIA_QUADRA) &&
209
(macintosh_config->adb_type != MAC_ADB_PB1) &&
210
(macintosh_config->adb_type != MAC_ADB_PB2) &&
211
(macintosh_config->ident != MAC_MODEL_C660) &&
212
(macintosh_config->ident != MAC_MODEL_Q840)) {
213
via_alt_mapping = 1;
214
via1[vDirB] |= 0x40;
215
via1[vBufB] &= ~0x40;
216
} else {
217
via_alt_mapping = 0;
218
}
219
220
/*
221
* Now initialize VIA2. For RBV we just kill all interrupts;
222
* for a regular VIA we also reset the timers and stuff.
223
*/
224
225
via2[gIER] = 0x7F;
226
via2[gIFR] = 0x7F | rbv_clear;
227
if (!rbv_present) {
228
via2[vT1CL] = 0;
229
via2[vT1CH] = 0;
230
via2[vT2CL] = 0;
231
via2[vT2CH] = 0;
232
via2[vACR] &= ~0xC0; /* setup T1 timer with no PB7 output */
233
via2[vACR] &= ~0x03; /* disable port A & B latches */
234
}
235
236
via_nubus_init();
237
238
/* Everything below this point is VIA2 only... */
239
240
if (rbv_present)
241
return;
242
243
/*
244
* Set vPCR for control line interrupts.
245
*
246
* CA1 (SLOTS IRQ), CB1 (ASC IRQ): negative edge trigger.
247
*
248
* Macs with ESP SCSI have a negative edge triggered SCSI interrupt.
249
* Testing reveals that PowerBooks do too. However, the SE/30
250
* schematic diagram shows an active high NCR5380 IRQ line.
251
*/
252
253
pr_debug("VIA2 vPCR is 0x%02X\n", via2[vPCR]);
254
if (macintosh_config->via_type == MAC_VIA_II) {
255
/* CA2 (SCSI DRQ), CB2 (SCSI IRQ): indep. input, pos. edge */
256
via2[vPCR] = 0x66;
257
} else {
258
/* CA2 (SCSI DRQ), CB2 (SCSI IRQ): indep. input, neg. edge */
259
via2[vPCR] = 0x22;
260
}
261
}
262
263
/*
264
* Debugging dump, used in various places to see what's going on.
265
*/
266
267
void via_debug_dump(void)
268
{
269
printk(KERN_DEBUG "VIA1: DDRA = 0x%02X DDRB = 0x%02X ACR = 0x%02X\n",
270
(uint) via1[vDirA], (uint) via1[vDirB], (uint) via1[vACR]);
271
printk(KERN_DEBUG " PCR = 0x%02X IFR = 0x%02X IER = 0x%02X\n",
272
(uint) via1[vPCR], (uint) via1[vIFR], (uint) via1[vIER]);
273
if (!via2)
274
return;
275
if (rbv_present) {
276
printk(KERN_DEBUG "VIA2: IFR = 0x%02X IER = 0x%02X\n",
277
(uint) via2[rIFR], (uint) via2[rIER]);
278
printk(KERN_DEBUG " SIFR = 0x%02X SIER = 0x%02X\n",
279
(uint) via2[rSIFR], (uint) via2[rSIER]);
280
} else {
281
printk(KERN_DEBUG "VIA2: DDRA = 0x%02X DDRB = 0x%02X ACR = 0x%02X\n",
282
(uint) via2[vDirA], (uint) via2[vDirB],
283
(uint) via2[vACR]);
284
printk(KERN_DEBUG " PCR = 0x%02X IFR = 0x%02X IER = 0x%02X\n",
285
(uint) via2[vPCR],
286
(uint) via2[vIFR], (uint) via2[vIER]);
287
}
288
}
289
290
/*
291
* Flush the L2 cache on Macs that have it by flipping
292
* the system into 24-bit mode for an instant.
293
*/
294
295
void via_l2_flush(int writeback)
296
{
297
unsigned long flags;
298
299
local_irq_save(flags);
300
via2[gBufB] &= ~VIA2B_vMode32;
301
via2[gBufB] |= VIA2B_vMode32;
302
local_irq_restore(flags);
303
}
304
305
/*
306
* Initialize VIA2 for Nubus access
307
*/
308
309
static void __init via_nubus_init(void)
310
{
311
/* unlock nubus transactions */
312
313
if ((macintosh_config->adb_type != MAC_ADB_PB1) &&
314
(macintosh_config->adb_type != MAC_ADB_PB2)) {
315
/* set the line to be an output on non-RBV machines */
316
if (!rbv_present)
317
via2[vDirB] |= 0x02;
318
319
/* this seems to be an ADB bit on PMU machines */
320
/* according to MkLinux. -- jmt */
321
via2[gBufB] |= 0x02;
322
}
323
324
/*
325
* Disable the slot interrupts. On some hardware that's not possible.
326
* On some hardware it's unclear what all of these I/O lines do.
327
*/
328
329
switch (macintosh_config->via_type) {
330
case MAC_VIA_II:
331
case MAC_VIA_QUADRA:
332
pr_debug("VIA2 vDirA is 0x%02X\n", via2[vDirA]);
333
break;
334
case MAC_VIA_IICI:
335
/* RBV. Disable all the slot interrupts. SIER works like IER. */
336
via2[rSIER] = 0x7F;
337
break;
338
}
339
}
340
341
void via_nubus_irq_startup(int irq)
342
{
343
int irq_idx = IRQ_IDX(irq);
344
345
switch (macintosh_config->via_type) {
346
case MAC_VIA_II:
347
case MAC_VIA_QUADRA:
348
/* Make the port A line an input. Probably redundant. */
349
if (macintosh_config->via_type == MAC_VIA_II) {
350
/* The top two bits are RAM size outputs. */
351
via2[vDirA] &= 0xC0 | ~(1 << irq_idx);
352
} else {
353
/* Allow NuBus slots 9 through F. */
354
via2[vDirA] &= 0x80 | ~(1 << irq_idx);
355
}
356
fallthrough;
357
case MAC_VIA_IICI:
358
via_irq_enable(irq);
359
break;
360
}
361
}
362
363
void via_nubus_irq_shutdown(int irq)
364
{
365
switch (macintosh_config->via_type) {
366
case MAC_VIA_II:
367
case MAC_VIA_QUADRA:
368
/* Ensure that the umbrella CA1 interrupt remains enabled. */
369
via_irq_enable(irq);
370
break;
371
case MAC_VIA_IICI:
372
via_irq_disable(irq);
373
break;
374
}
375
}
376
377
/*
378
* The generic VIA interrupt routines (shamelessly stolen from Alan Cox's
379
* via6522.c :-), disable/pending masks added.
380
*/
381
382
#define VIA_TIMER_1_INT BIT(6)
383
384
void via1_irq(struct irq_desc *desc)
385
{
386
int irq_num;
387
unsigned char irq_bit, events;
388
389
events = via1[vIFR] & via1[vIER] & 0x7F;
390
if (!events)
391
return;
392
393
irq_num = IRQ_MAC_TIMER_1;
394
irq_bit = VIA_TIMER_1_INT;
395
if (events & irq_bit) {
396
unsigned long flags;
397
398
local_irq_save(flags);
399
via1[vIFR] = irq_bit;
400
generic_handle_irq(irq_num);
401
local_irq_restore(flags);
402
403
events &= ~irq_bit;
404
if (!events)
405
return;
406
}
407
408
irq_num = VIA1_SOURCE_BASE;
409
irq_bit = 1;
410
do {
411
if (events & irq_bit) {
412
via1[vIFR] = irq_bit;
413
generic_handle_irq(irq_num);
414
}
415
++irq_num;
416
irq_bit <<= 1;
417
} while (events >= irq_bit);
418
}
419
420
static void via2_irq(struct irq_desc *desc)
421
{
422
int irq_num;
423
unsigned char irq_bit, events;
424
425
events = via2[gIFR] & via2[gIER] & 0x7F;
426
if (!events)
427
return;
428
429
irq_num = VIA2_SOURCE_BASE;
430
irq_bit = 1;
431
do {
432
if (events & irq_bit) {
433
via2[gIFR] = irq_bit | rbv_clear;
434
generic_handle_irq(irq_num);
435
}
436
++irq_num;
437
irq_bit <<= 1;
438
} while (events >= irq_bit);
439
}
440
441
/*
442
* Dispatch Nubus interrupts. We are called as a secondary dispatch by the
443
* VIA2 dispatcher as a fast interrupt handler.
444
*/
445
446
static void via_nubus_irq(struct irq_desc *desc)
447
{
448
int slot_irq;
449
unsigned char slot_bit, events;
450
451
events = ~via2[gBufA] & 0x7F;
452
if (rbv_present)
453
events &= via2[rSIER];
454
else
455
events &= ~via2[vDirA];
456
if (!events)
457
return;
458
459
do {
460
slot_irq = IRQ_NUBUS_F;
461
slot_bit = 0x40;
462
do {
463
if (events & slot_bit) {
464
events &= ~slot_bit;
465
generic_handle_irq(slot_irq);
466
}
467
--slot_irq;
468
slot_bit >>= 1;
469
} while (events);
470
471
/* clear the CA1 interrupt and make certain there's no more. */
472
via2[gIFR] = 0x02 | rbv_clear;
473
events = ~via2[gBufA] & 0x7F;
474
if (rbv_present)
475
events &= via2[rSIER];
476
else
477
events &= ~via2[vDirA];
478
} while (events);
479
}
480
481
/*
482
* Register the interrupt dispatchers for VIA or RBV machines only.
483
*/
484
485
void __init via_register_interrupts(void)
486
{
487
if (via_alt_mapping) {
488
/* software interrupt */
489
irq_set_chained_handler(IRQ_AUTO_1, via1_irq);
490
/* via1 interrupt */
491
irq_set_chained_handler(IRQ_AUTO_6, via1_irq);
492
} else {
493
irq_set_chained_handler(IRQ_AUTO_1, via1_irq);
494
}
495
irq_set_chained_handler(IRQ_AUTO_2, via2_irq);
496
irq_set_chained_handler(IRQ_MAC_NUBUS, via_nubus_irq);
497
}
498
499
void via_irq_enable(int irq) {
500
int irq_src = IRQ_SRC(irq);
501
int irq_idx = IRQ_IDX(irq);
502
503
if (irq_src == 1) {
504
via1[vIER] = IER_SET_BIT(irq_idx);
505
} else if (irq_src == 2) {
506
if (irq != IRQ_MAC_NUBUS || nubus_disabled == 0)
507
via2[gIER] = IER_SET_BIT(irq_idx);
508
} else if (irq_src == 7) {
509
switch (macintosh_config->via_type) {
510
case MAC_VIA_II:
511
case MAC_VIA_QUADRA:
512
nubus_disabled &= ~(1 << irq_idx);
513
/* Enable the CA1 interrupt when no slot is disabled. */
514
if (!nubus_disabled)
515
via2[gIER] = IER_SET_BIT(1);
516
break;
517
case MAC_VIA_IICI:
518
/* On RBV, enable the slot interrupt.
519
* SIER works like IER.
520
*/
521
via2[rSIER] = IER_SET_BIT(irq_idx);
522
break;
523
}
524
}
525
}
526
527
void via_irq_disable(int irq) {
528
int irq_src = IRQ_SRC(irq);
529
int irq_idx = IRQ_IDX(irq);
530
531
if (irq_src == 1) {
532
via1[vIER] = IER_CLR_BIT(irq_idx);
533
} else if (irq_src == 2) {
534
via2[gIER] = IER_CLR_BIT(irq_idx);
535
} else if (irq_src == 7) {
536
switch (macintosh_config->via_type) {
537
case MAC_VIA_II:
538
case MAC_VIA_QUADRA:
539
nubus_disabled |= 1 << irq_idx;
540
if (nubus_disabled)
541
via2[gIER] = IER_CLR_BIT(1);
542
break;
543
case MAC_VIA_IICI:
544
via2[rSIER] = IER_CLR_BIT(irq_idx);
545
break;
546
}
547
}
548
}
549
550
void via1_set_head(int head)
551
{
552
if (head == 0)
553
via1[vBufA] &= ~VIA1A_vHeadSel;
554
else
555
via1[vBufA] |= VIA1A_vHeadSel;
556
}
557
EXPORT_SYMBOL(via1_set_head);
558
559
int via2_scsi_drq_pending(void)
560
{
561
return via2[gIFR] & (1 << IRQ_IDX(IRQ_MAC_SCSIDRQ));
562
}
563
EXPORT_SYMBOL(via2_scsi_drq_pending);
564
565
/* timer and clock source */
566
567
#define VIA_CLOCK_FREQ 783360 /* VIA "phase 2" clock in Hz */
568
#define VIA_TIMER_CYCLES (VIA_CLOCK_FREQ / HZ) /* clock cycles per jiffy */
569
570
#define VIA_TC (VIA_TIMER_CYCLES - 2) /* including 0 and -1 */
571
#define VIA_TC_LOW (VIA_TC & 0xFF)
572
#define VIA_TC_HIGH (VIA_TC >> 8)
573
574
static u64 mac_read_clk(struct clocksource *cs);
575
576
static struct clocksource mac_clk = {
577
.name = "via1",
578
.rating = 250,
579
.read = mac_read_clk,
580
.mask = CLOCKSOURCE_MASK(32),
581
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
582
};
583
584
static u32 clk_total, clk_offset;
585
586
static irqreturn_t via_timer_handler(int irq, void *dev_id)
587
{
588
clk_total += VIA_TIMER_CYCLES;
589
clk_offset = 0;
590
legacy_timer_tick(1);
591
592
return IRQ_HANDLED;
593
}
594
595
void __init via_init_clock(void)
596
{
597
if (request_irq(IRQ_MAC_TIMER_1, via_timer_handler, IRQF_TIMER, "timer",
598
NULL)) {
599
pr_err("Couldn't register %s interrupt\n", "timer");
600
return;
601
}
602
603
via1[vT1CL] = VIA_TC_LOW;
604
via1[vT1CH] = VIA_TC_HIGH;
605
via1[vACR] |= 0x40;
606
607
clocksource_register_hz(&mac_clk, VIA_CLOCK_FREQ);
608
}
609
610
static u64 mac_read_clk(struct clocksource *cs)
611
{
612
unsigned long flags;
613
u8 count_high;
614
u16 count;
615
u32 ticks;
616
617
/*
618
* Timer counter wrap-around is detected with the timer interrupt flag
619
* but reading the counter low byte (vT1CL) would reset the flag.
620
* Also, accessing both counter registers is essentially a data race.
621
* These problems are avoided by ignoring the low byte. Clock accuracy
622
* is 256 times worse (error can reach 0.327 ms) but CPU overhead is
623
* reduced by avoiding slow VIA register accesses.
624
*
625
* The VIA timer counter observably decrements to 0xFFFF before the
626
* counter reload interrupt gets raised. That complicates things a bit.
627
*
628
* State | vT1CH | VIA_TIMER_1_INT | inference drawn
629
* ------+------------+-----------------+-----------------------------
630
* i | FE thru 00 | false | counter is decrementing
631
* ii | FF | false | counter wrapped
632
* iii | FF | true | wrapped, interrupt raised
633
* iv | FF | false | wrapped, interrupt handled
634
* v | FE thru 00 | true | wrapped, interrupt unhandled
635
*
636
* State iv is never observed because handling the interrupt involves
637
* a 6522 register access and every access consumes a "phi 2" clock
638
* cycle. So 0xFF implies either state ii or state iii, depending on
639
* the value of the VIA_TIMER_1_INT bit.
640
*/
641
642
local_irq_save(flags);
643
count_high = via1[vT1CH];
644
if (count_high == 0xFF)
645
count_high = 0;
646
if (count_high > 0 && (via1[vIFR] & VIA_TIMER_1_INT))
647
clk_offset = VIA_TIMER_CYCLES;
648
count = count_high << 8;
649
ticks = VIA_TIMER_CYCLES - count;
650
ticks += clk_offset + clk_total;
651
local_irq_restore(flags);
652
653
return ticks;
654
}
655
656