Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/m68k/math-emu/multi_arith.h
26424 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/* multi_arith.h: multi-precision integer arithmetic functions, needed
3
to do extended-precision floating point.
4
5
(c) 1998 David Huggins-Daines.
6
7
Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
8
David Mosberger-Tang.
9
10
*/
11
12
/* Note:
13
14
These are not general multi-precision math routines. Rather, they
15
implement the subset of integer arithmetic that we need in order to
16
multiply, divide, and normalize 128-bit unsigned mantissae. */
17
18
#ifndef _MULTI_ARITH_H
19
#define _MULTI_ARITH_H
20
21
#include "fp_emu.h"
22
23
static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
24
{
25
reg->exp += cnt;
26
27
switch (cnt) {
28
case 0 ... 8:
29
reg->lowmant = reg->mant.m32[1] << (8 - cnt);
30
reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
31
(reg->mant.m32[0] << (32 - cnt));
32
reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
33
break;
34
case 9 ... 32:
35
reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
36
if (reg->mant.m32[1] << (40 - cnt))
37
reg->lowmant |= 1;
38
reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
39
(reg->mant.m32[0] << (32 - cnt));
40
reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
41
break;
42
case 33 ... 39:
43
asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
44
: "m" (reg->mant.m32[0]), "d" (64 - cnt));
45
if (reg->mant.m32[1] << (40 - cnt))
46
reg->lowmant |= 1;
47
reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
48
reg->mant.m32[0] = 0;
49
break;
50
case 40 ... 71:
51
reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
52
if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
53
reg->lowmant |= 1;
54
reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
55
reg->mant.m32[0] = 0;
56
break;
57
default:
58
reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
59
reg->mant.m32[0] = 0;
60
reg->mant.m32[1] = 0;
61
break;
62
}
63
}
64
65
static inline int fp_overnormalize(struct fp_ext *reg)
66
{
67
int shift;
68
69
if (reg->mant.m32[0]) {
70
asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
71
reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
72
reg->mant.m32[1] = (reg->mant.m32[1] << shift);
73
} else {
74
asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
75
reg->mant.m32[0] = (reg->mant.m32[1] << shift);
76
reg->mant.m32[1] = 0;
77
shift += 32;
78
}
79
80
return shift;
81
}
82
83
static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
84
{
85
int carry;
86
87
/* we assume here, gcc only insert move and a clr instr */
88
asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
89
: "g,d" (src->lowmant), "0,0" (dest->lowmant));
90
asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
91
: "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
92
asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
93
: "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
94
asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
95
96
return carry;
97
}
98
99
static inline int fp_addcarry(struct fp_ext *reg)
100
{
101
if (++reg->exp == 0x7fff) {
102
if (reg->mant.m64)
103
fp_set_sr(FPSR_EXC_INEX2);
104
reg->mant.m64 = 0;
105
fp_set_sr(FPSR_EXC_OVFL);
106
return 0;
107
}
108
reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
109
reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
110
(reg->mant.m32[0] << 31);
111
reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
112
113
return 1;
114
}
115
116
static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1,
117
struct fp_ext *src2)
118
{
119
/* we assume here, gcc only insert move and a clr instr */
120
asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
121
: "g,d" (src2->lowmant), "0,0" (src1->lowmant));
122
asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
123
: "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
124
asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
125
: "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
126
}
127
128
#define fp_mul64(desth, destl, src1, src2) ({ \
129
asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth) \
130
: "dm" (src1), "0" (src2)); \
131
})
132
#define fp_div64(quot, rem, srch, srcl, div) \
133
asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem) \
134
: "dm" (div), "1" (srch), "0" (srcl))
135
#define fp_add64(dest1, dest2, src1, src2) ({ \
136
asm ("add.l %1,%0" : "=d,dm" (dest2) \
137
: "dm,d" (src2), "0,0" (dest2)); \
138
asm ("addx.l %1,%0" : "=d" (dest1) \
139
: "d" (src1), "0" (dest1)); \
140
})
141
#define fp_addx96(dest, src) ({ \
142
/* we assume here, gcc only insert move and a clr instr */ \
143
asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2]) \
144
: "g,d" (temp.m32[1]), "0,0" (dest->m32[2])); \
145
asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1]) \
146
: "d" (temp.m32[0]), "0" (dest->m32[1])); \
147
asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0]) \
148
: "d" (0), "0" (dest->m32[0])); \
149
})
150
#define fp_sub64(dest, src) ({ \
151
asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1]) \
152
: "dm,d" (src.m32[1]), "0,0" (dest.m32[1])); \
153
asm ("subx.l %1,%0" : "=d" (dest.m32[0]) \
154
: "d" (src.m32[0]), "0" (dest.m32[0])); \
155
})
156
#define fp_sub96c(dest, srch, srcm, srcl) ({ \
157
char carry; \
158
asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2]) \
159
: "dm,d" (srcl), "0,0" (dest.m32[2])); \
160
asm ("subx.l %1,%0" : "=d" (dest.m32[1]) \
161
: "d" (srcm), "0" (dest.m32[1])); \
162
asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0]) \
163
: "d" (srch), "1" (dest.m32[0])); \
164
carry; \
165
})
166
167
static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1,
168
struct fp_ext *src2)
169
{
170
union fp_mant64 temp;
171
172
fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
173
fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
174
175
fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
176
fp_addx96(dest, temp);
177
178
fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
179
fp_addx96(dest, temp);
180
}
181
182
static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src,
183
struct fp_ext *div)
184
{
185
union fp_mant128 tmp;
186
union fp_mant64 tmp64;
187
unsigned long *mantp = dest->m32;
188
unsigned long fix, rem, first, dummy;
189
int i;
190
191
/* the algorithm below requires dest to be smaller than div,
192
but both have the high bit set */
193
if (src->mant.m64 >= div->mant.m64) {
194
fp_sub64(src->mant, div->mant);
195
*mantp = 1;
196
} else
197
*mantp = 0;
198
mantp++;
199
200
/* basic idea behind this algorithm: we can't divide two 64bit numbers
201
(AB/CD) directly, but we can calculate AB/C0, but this means this
202
quotient is off by C0/CD, so we have to multiply the first result
203
to fix the result, after that we have nearly the correct result
204
and only a few corrections are needed. */
205
206
/* C0/CD can be precalculated, but it's an 64bit division again, but
207
we can make it a bit easier, by dividing first through C so we get
208
10/1D and now only a single shift and the value fits into 32bit. */
209
fix = 0x80000000;
210
dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
211
dummy = (dummy >> 1) | fix;
212
fp_div64(fix, dummy, fix, 0, dummy);
213
fix--;
214
215
for (i = 0; i < 3; i++, mantp++) {
216
if (src->mant.m32[0] == div->mant.m32[0]) {
217
fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
218
219
fp_mul64(*mantp, dummy, first, fix);
220
*mantp += fix;
221
} else {
222
fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
223
224
fp_mul64(*mantp, dummy, first, fix);
225
}
226
227
fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
228
fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
229
tmp.m32[2] = 0;
230
231
fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
232
fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
233
234
src->mant.m32[0] = tmp.m32[1];
235
src->mant.m32[1] = tmp.m32[2];
236
237
while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
238
src->mant.m32[0] = tmp.m32[1];
239
src->mant.m32[1] = tmp.m32[2];
240
*mantp += 1;
241
}
242
}
243
}
244
245
static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src,
246
int shift)
247
{
248
unsigned long tmp;
249
250
switch (shift) {
251
case 0:
252
dest->mant.m64 = src->m64[0];
253
dest->lowmant = src->m32[2] >> 24;
254
if (src->m32[3] || (src->m32[2] << 8))
255
dest->lowmant |= 1;
256
break;
257
case 1:
258
asm volatile ("lsl.l #1,%0"
259
: "=d" (tmp) : "0" (src->m32[2]));
260
asm volatile ("roxl.l #1,%0"
261
: "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
262
asm volatile ("roxl.l #1,%0"
263
: "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
264
dest->lowmant = tmp >> 24;
265
if (src->m32[3] || (tmp << 8))
266
dest->lowmant |= 1;
267
break;
268
case 31:
269
asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
270
: "=d" (dest->mant.m32[0])
271
: "d" (src->m32[0]), "0" (src->m32[1]));
272
asm volatile ("roxr.l #1,%0"
273
: "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
274
asm volatile ("roxr.l #1,%0"
275
: "=d" (tmp) : "0" (src->m32[3]));
276
dest->lowmant = tmp >> 24;
277
if (src->m32[3] << 7)
278
dest->lowmant |= 1;
279
break;
280
case 32:
281
dest->mant.m32[0] = src->m32[1];
282
dest->mant.m32[1] = src->m32[2];
283
dest->lowmant = src->m32[3] >> 24;
284
if (src->m32[3] << 8)
285
dest->lowmant |= 1;
286
break;
287
}
288
}
289
290
#endif /* _MULTI_ARITH_H */
291
292