Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/alchemy/common/dbdma.c
26481 views
1
/*
2
*
3
* BRIEF MODULE DESCRIPTION
4
* The Descriptor Based DMA channel manager that first appeared
5
* on the Au1550. I started with dma.c, but I think all that is
6
* left is this initial comment :-)
7
*
8
* Copyright 2004 Embedded Edge, LLC
9
* [email protected]
10
*
11
* This program is free software; you can redistribute it and/or modify it
12
* under the terms of the GNU General Public License as published by the
13
* Free Software Foundation; either version 2 of the License, or (at your
14
* option) any later version.
15
*
16
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
*
27
* You should have received a copy of the GNU General Public License along
28
* with this program; if not, write to the Free Software Foundation, Inc.,
29
* 675 Mass Ave, Cambridge, MA 02139, USA.
30
*
31
*/
32
33
#include <linux/dma-map-ops.h> /* for dma_default_coherent */
34
#include <linux/init.h>
35
#include <linux/kernel.h>
36
#include <linux/slab.h>
37
#include <linux/spinlock.h>
38
#include <linux/interrupt.h>
39
#include <linux/export.h>
40
#include <linux/syscore_ops.h>
41
#include <asm/mach-au1x00/au1000.h>
42
#include <asm/mach-au1x00/au1xxx_dbdma.h>
43
44
/*
45
* The Descriptor Based DMA supports up to 16 channels.
46
*
47
* There are 32 devices defined. We keep an internal structure
48
* of devices using these channels, along with additional
49
* information.
50
*
51
* We allocate the descriptors and allow access to them through various
52
* functions. The drivers allocate the data buffers and assign them
53
* to the descriptors.
54
*/
55
static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
56
57
/* I couldn't find a macro that did this... */
58
#define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
59
60
static dbdma_global_t *dbdma_gptr =
61
(dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
62
static int dbdma_initialized;
63
64
static dbdev_tab_t *dbdev_tab;
65
66
static dbdev_tab_t au1550_dbdev_tab[] __initdata = {
67
/* UARTS */
68
{ AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
69
{ AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
70
{ AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
71
{ AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
72
73
/* EXT DMA */
74
{ AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
75
{ AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
76
{ AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
77
{ AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
78
79
/* USB DEV */
80
{ AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
81
{ AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
82
{ AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
83
{ AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
84
{ AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
85
{ AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
86
87
/* PSCs */
88
{ AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
89
{ AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
90
{ AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
91
{ AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
92
{ AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
93
{ AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
94
{ AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
95
{ AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
96
97
{ AU1550_DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
98
{ AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
99
100
/* MAC 0 */
101
{ AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
102
{ AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
103
104
/* MAC 1 */
105
{ AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
106
{ AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
107
108
{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
109
{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
110
};
111
112
static dbdev_tab_t au1200_dbdev_tab[] __initdata = {
113
{ AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
114
{ AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
115
{ AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
116
{ AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
117
118
{ AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
119
{ AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
120
121
{ AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
122
{ AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
123
{ AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
124
{ AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
125
126
{ AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
127
{ AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
128
{ AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
129
{ AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
130
131
{ AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
132
{ AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
133
134
{ AU1200_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
135
{ AU1200_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
136
{ AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
137
{ AU1200_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
138
{ AU1200_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
139
{ AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
140
141
{ AU1200_DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
142
{ AU1200_DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
143
{ AU1200_DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
144
{ AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
145
146
{ AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
147
148
{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
149
{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
150
};
151
152
static dbdev_tab_t au1300_dbdev_tab[] __initdata = {
153
{ AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x10100004, 0, 0 },
154
{ AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x10100000, 0, 0 },
155
{ AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x10101004, 0, 0 },
156
{ AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x10101000, 0, 0 },
157
{ AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8, 0x10102004, 0, 0 },
158
{ AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN, 0, 8, 0x10102000, 0, 0 },
159
{ AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x10103004, 0, 0 },
160
{ AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x10103000, 0, 0 },
161
162
{ AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
163
{ AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
164
{ AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8, 0x10601000, 0, 0 },
165
{ AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 8, 8, 0x10601004, 0, 0 },
166
167
{ AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
168
{ AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
169
170
{ AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0001c, 0, 0 },
171
{ AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x10a0001c, 0, 0 },
172
{ AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0101c, 0, 0 },
173
{ AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x10a0101c, 0, 0 },
174
{ AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0201c, 0, 0 },
175
{ AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 16, 0x10a0201c, 0, 0 },
176
{ AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0301c, 0, 0 },
177
{ AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 16, 0x10a0301c, 0, 0 },
178
179
{ AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
180
{ AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
181
182
{ AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8, 0x10602000, 0, 0 },
183
{ AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN, 4, 8, 0x10602004, 0, 0 },
184
185
{ AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
186
187
{ AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE, 0, 32, 0x14001810, 0, 0 },
188
189
{ AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
190
{ AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
191
192
{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
193
{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
194
};
195
196
/* 32 predefined plus 32 custom */
197
#define DBDEV_TAB_SIZE 64
198
199
static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
200
201
static dbdev_tab_t *find_dbdev_id(u32 id)
202
{
203
int i;
204
dbdev_tab_t *p;
205
for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
206
p = &dbdev_tab[i];
207
if (p->dev_id == id)
208
return p;
209
}
210
return NULL;
211
}
212
213
void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
214
{
215
return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
216
}
217
EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
218
219
u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
220
{
221
u32 ret = 0;
222
dbdev_tab_t *p;
223
static u16 new_id = 0x1000;
224
225
p = find_dbdev_id(~0);
226
if (NULL != p) {
227
memcpy(p, dev, sizeof(dbdev_tab_t));
228
p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
229
ret = p->dev_id;
230
new_id++;
231
#if 0
232
printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
233
p->dev_id, p->dev_flags, p->dev_physaddr);
234
#endif
235
}
236
237
return ret;
238
}
239
EXPORT_SYMBOL(au1xxx_ddma_add_device);
240
241
void au1xxx_ddma_del_device(u32 devid)
242
{
243
dbdev_tab_t *p = find_dbdev_id(devid);
244
245
if (p != NULL) {
246
memset(p, 0, sizeof(dbdev_tab_t));
247
p->dev_id = ~0;
248
}
249
}
250
EXPORT_SYMBOL(au1xxx_ddma_del_device);
251
252
/* Allocate a channel and return a non-zero descriptor if successful. */
253
u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
254
void (*callback)(int, void *), void *callparam)
255
{
256
unsigned long flags;
257
u32 used, chan;
258
u32 dcp;
259
int i;
260
dbdev_tab_t *stp, *dtp;
261
chan_tab_t *ctp;
262
au1x_dma_chan_t *cp;
263
264
/*
265
* We do the initialization on the first channel allocation.
266
* We have to wait because of the interrupt handler initialization
267
* which can't be done successfully during board set up.
268
*/
269
if (!dbdma_initialized)
270
return 0;
271
272
stp = find_dbdev_id(srcid);
273
if (stp == NULL)
274
return 0;
275
dtp = find_dbdev_id(destid);
276
if (dtp == NULL)
277
return 0;
278
279
used = 0;
280
281
/* Check to see if we can get both channels. */
282
spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
283
if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
284
(stp->dev_flags & DEV_FLAGS_ANYUSE)) {
285
/* Got source */
286
stp->dev_flags |= DEV_FLAGS_INUSE;
287
if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
288
(dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
289
/* Got destination */
290
dtp->dev_flags |= DEV_FLAGS_INUSE;
291
} else {
292
/* Can't get dest. Release src. */
293
stp->dev_flags &= ~DEV_FLAGS_INUSE;
294
used++;
295
}
296
} else
297
used++;
298
spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
299
300
if (used)
301
return 0;
302
303
/* Let's see if we can allocate a channel for it. */
304
ctp = NULL;
305
chan = 0;
306
spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
307
for (i = 0; i < NUM_DBDMA_CHANS; i++)
308
if (chan_tab_ptr[i] == NULL) {
309
/*
310
* If kmalloc fails, it is caught below same
311
* as a channel not available.
312
*/
313
ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
314
chan_tab_ptr[i] = ctp;
315
break;
316
}
317
spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
318
319
if (ctp != NULL) {
320
memset(ctp, 0, sizeof(chan_tab_t));
321
ctp->chan_index = chan = i;
322
dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
323
dcp += (0x0100 * chan);
324
ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
325
cp = (au1x_dma_chan_t *)dcp;
326
ctp->chan_src = stp;
327
ctp->chan_dest = dtp;
328
ctp->chan_callback = callback;
329
ctp->chan_callparam = callparam;
330
331
/* Initialize channel configuration. */
332
i = 0;
333
if (stp->dev_intlevel)
334
i |= DDMA_CFG_SED;
335
if (stp->dev_intpolarity)
336
i |= DDMA_CFG_SP;
337
if (dtp->dev_intlevel)
338
i |= DDMA_CFG_DED;
339
if (dtp->dev_intpolarity)
340
i |= DDMA_CFG_DP;
341
if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
342
(dtp->dev_flags & DEV_FLAGS_SYNC))
343
i |= DDMA_CFG_SYNC;
344
cp->ddma_cfg = i;
345
wmb(); /* drain writebuffer */
346
347
/*
348
* Return a non-zero value that can be used to find the channel
349
* information in subsequent operations.
350
*/
351
return (u32)(&chan_tab_ptr[chan]);
352
}
353
354
/* Release devices */
355
stp->dev_flags &= ~DEV_FLAGS_INUSE;
356
dtp->dev_flags &= ~DEV_FLAGS_INUSE;
357
358
return 0;
359
}
360
EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
361
362
/*
363
* Set the device width if source or destination is a FIFO.
364
* Should be 8, 16, or 32 bits.
365
*/
366
u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
367
{
368
u32 rv;
369
chan_tab_t *ctp;
370
dbdev_tab_t *stp, *dtp;
371
372
ctp = *((chan_tab_t **)chanid);
373
stp = ctp->chan_src;
374
dtp = ctp->chan_dest;
375
rv = 0;
376
377
if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
378
rv = stp->dev_devwidth;
379
stp->dev_devwidth = bits;
380
}
381
if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
382
rv = dtp->dev_devwidth;
383
dtp->dev_devwidth = bits;
384
}
385
386
return rv;
387
}
388
EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
389
390
/* Allocate a descriptor ring, initializing as much as possible. */
391
u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
392
{
393
int i;
394
u32 desc_base, srcid, destid;
395
u32 cmd0, cmd1, src1, dest1;
396
u32 src0, dest0;
397
chan_tab_t *ctp;
398
dbdev_tab_t *stp, *dtp;
399
au1x_ddma_desc_t *dp;
400
401
/*
402
* I guess we could check this to be within the
403
* range of the table......
404
*/
405
ctp = *((chan_tab_t **)chanid);
406
stp = ctp->chan_src;
407
dtp = ctp->chan_dest;
408
409
/*
410
* The descriptors must be 32-byte aligned. There is a
411
* possibility the allocation will give us such an address,
412
* and if we try that first we are likely to not waste larger
413
* slabs of memory.
414
*/
415
desc_base = (u32)kmalloc_array(entries, sizeof(au1x_ddma_desc_t),
416
GFP_KERNEL|GFP_DMA);
417
if (desc_base == 0)
418
return 0;
419
420
if (desc_base & 0x1f) {
421
/*
422
* Lost....do it again, allocate extra, and round
423
* the address base.
424
*/
425
kfree((const void *)desc_base);
426
i = entries * sizeof(au1x_ddma_desc_t);
427
i += (sizeof(au1x_ddma_desc_t) - 1);
428
desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
429
if (desc_base == 0)
430
return 0;
431
432
ctp->cdb_membase = desc_base;
433
desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
434
} else
435
ctp->cdb_membase = desc_base;
436
437
dp = (au1x_ddma_desc_t *)desc_base;
438
439
/* Keep track of the base descriptor. */
440
ctp->chan_desc_base = dp;
441
442
/* Initialize the rings with as much information as we know. */
443
srcid = stp->dev_id;
444
destid = dtp->dev_id;
445
446
cmd0 = cmd1 = src1 = dest1 = 0;
447
src0 = dest0 = 0;
448
449
cmd0 |= DSCR_CMD0_SID(srcid);
450
cmd0 |= DSCR_CMD0_DID(destid);
451
cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
452
cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
453
454
/* Is it mem to mem transfer? */
455
if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
456
(DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
457
((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
458
(DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
459
cmd0 |= DSCR_CMD0_MEM;
460
461
switch (stp->dev_devwidth) {
462
case 8:
463
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
464
break;
465
case 16:
466
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
467
break;
468
case 32:
469
default:
470
cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
471
break;
472
}
473
474
switch (dtp->dev_devwidth) {
475
case 8:
476
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
477
break;
478
case 16:
479
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
480
break;
481
case 32:
482
default:
483
cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
484
break;
485
}
486
487
/*
488
* If the device is marked as an in/out FIFO, ensure it is
489
* set non-coherent.
490
*/
491
if (stp->dev_flags & DEV_FLAGS_IN)
492
cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */
493
if (dtp->dev_flags & DEV_FLAGS_OUT)
494
cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */
495
496
/*
497
* Set up source1. For now, assume no stride and increment.
498
* A channel attribute update can change this later.
499
*/
500
switch (stp->dev_tsize) {
501
case 1:
502
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
503
break;
504
case 2:
505
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
506
break;
507
case 4:
508
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
509
break;
510
case 8:
511
default:
512
src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
513
break;
514
}
515
516
/* If source input is FIFO, set static address. */
517
if (stp->dev_flags & DEV_FLAGS_IN) {
518
if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
519
src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
520
else
521
src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
522
}
523
524
if (stp->dev_physaddr)
525
src0 = stp->dev_physaddr;
526
527
/*
528
* Set up dest1. For now, assume no stride and increment.
529
* A channel attribute update can change this later.
530
*/
531
switch (dtp->dev_tsize) {
532
case 1:
533
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
534
break;
535
case 2:
536
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
537
break;
538
case 4:
539
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
540
break;
541
case 8:
542
default:
543
dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
544
break;
545
}
546
547
/* If destination output is FIFO, set static address. */
548
if (dtp->dev_flags & DEV_FLAGS_OUT) {
549
if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
550
dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
551
else
552
dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
553
}
554
555
if (dtp->dev_physaddr)
556
dest0 = dtp->dev_physaddr;
557
558
#if 0
559
printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
560
"source1:%x dest0:%x dest1:%x\n",
561
dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
562
src1, dest0, dest1);
563
#endif
564
for (i = 0; i < entries; i++) {
565
dp->dscr_cmd0 = cmd0;
566
dp->dscr_cmd1 = cmd1;
567
dp->dscr_source0 = src0;
568
dp->dscr_source1 = src1;
569
dp->dscr_dest0 = dest0;
570
dp->dscr_dest1 = dest1;
571
dp->dscr_stat = 0;
572
dp->sw_context = 0;
573
dp->sw_status = 0;
574
dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
575
dp++;
576
}
577
578
/* Make last descriptor point to the first. */
579
dp--;
580
dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
581
ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
582
583
return (u32)ctp->chan_desc_base;
584
}
585
EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
586
587
/*
588
* Put a source buffer into the DMA ring.
589
* This updates the source pointer and byte count. Normally used
590
* for memory to fifo transfers.
591
*/
592
u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
593
{
594
chan_tab_t *ctp;
595
au1x_ddma_desc_t *dp;
596
597
/*
598
* I guess we could check this to be within the
599
* range of the table......
600
*/
601
ctp = *(chan_tab_t **)chanid;
602
603
/*
604
* We should have multiple callers for a particular channel,
605
* an interrupt doesn't affect this pointer nor the descriptor,
606
* so no locking should be needed.
607
*/
608
dp = ctp->put_ptr;
609
610
/*
611
* If the descriptor is valid, we are way ahead of the DMA
612
* engine, so just return an error condition.
613
*/
614
if (dp->dscr_cmd0 & DSCR_CMD0_V)
615
return 0;
616
617
/* Load up buffer address and byte count. */
618
dp->dscr_source0 = buf & ~0UL;
619
dp->dscr_cmd1 = nbytes;
620
/* Check flags */
621
if (flags & DDMA_FLAGS_IE)
622
dp->dscr_cmd0 |= DSCR_CMD0_IE;
623
if (flags & DDMA_FLAGS_NOIE)
624
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
625
626
/*
627
* There is an erratum on certain Au1200/Au1550 revisions that could
628
* result in "stale" data being DMA'ed. It has to do with the snoop
629
* logic on the cache eviction buffer. dma_default_coherent is set
630
* to false on these parts.
631
*/
632
if (!dma_default_coherent)
633
dma_cache_wback_inv(KSEG0ADDR(buf), nbytes);
634
dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
635
wmb(); /* drain writebuffer */
636
dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
637
ctp->chan_ptr->ddma_dbell = 0;
638
wmb(); /* force doorbell write out to dma engine */
639
640
/* Get next descriptor pointer. */
641
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
642
643
/* Return something non-zero. */
644
return nbytes;
645
}
646
EXPORT_SYMBOL(au1xxx_dbdma_put_source);
647
648
/* Put a destination buffer into the DMA ring.
649
* This updates the destination pointer and byte count. Normally used
650
* to place an empty buffer into the ring for fifo to memory transfers.
651
*/
652
u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
653
{
654
chan_tab_t *ctp;
655
au1x_ddma_desc_t *dp;
656
657
/* I guess we could check this to be within the
658
* range of the table......
659
*/
660
ctp = *((chan_tab_t **)chanid);
661
662
/* We should have multiple callers for a particular channel,
663
* an interrupt doesn't affect this pointer nor the descriptor,
664
* so no locking should be needed.
665
*/
666
dp = ctp->put_ptr;
667
668
/* If the descriptor is valid, we are way ahead of the DMA
669
* engine, so just return an error condition.
670
*/
671
if (dp->dscr_cmd0 & DSCR_CMD0_V)
672
return 0;
673
674
/* Load up buffer address and byte count */
675
676
/* Check flags */
677
if (flags & DDMA_FLAGS_IE)
678
dp->dscr_cmd0 |= DSCR_CMD0_IE;
679
if (flags & DDMA_FLAGS_NOIE)
680
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
681
682
dp->dscr_dest0 = buf & ~0UL;
683
dp->dscr_cmd1 = nbytes;
684
#if 0
685
printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
686
dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
687
dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
688
#endif
689
/*
690
* There is an erratum on certain Au1200/Au1550 revisions that could
691
* result in "stale" data being DMA'ed. It has to do with the snoop
692
* logic on the cache eviction buffer. dma_default_coherent is set
693
* to false on these parts.
694
*/
695
if (!dma_default_coherent)
696
dma_cache_inv(KSEG0ADDR(buf), nbytes);
697
dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
698
wmb(); /* drain writebuffer */
699
dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
700
ctp->chan_ptr->ddma_dbell = 0;
701
wmb(); /* force doorbell write out to dma engine */
702
703
/* Get next descriptor pointer. */
704
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
705
706
/* Return something non-zero. */
707
return nbytes;
708
}
709
EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
710
711
/*
712
* Get a destination buffer into the DMA ring.
713
* Normally used to get a full buffer from the ring during fifo
714
* to memory transfers. This does not set the valid bit, you will
715
* have to put another destination buffer to keep the DMA going.
716
*/
717
u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
718
{
719
chan_tab_t *ctp;
720
au1x_ddma_desc_t *dp;
721
u32 rv;
722
723
/*
724
* I guess we could check this to be within the
725
* range of the table......
726
*/
727
ctp = *((chan_tab_t **)chanid);
728
729
/*
730
* We should have multiple callers for a particular channel,
731
* an interrupt doesn't affect this pointer nor the descriptor,
732
* so no locking should be needed.
733
*/
734
dp = ctp->get_ptr;
735
736
/*
737
* If the descriptor is valid, we are way ahead of the DMA
738
* engine, so just return an error condition.
739
*/
740
if (dp->dscr_cmd0 & DSCR_CMD0_V)
741
return 0;
742
743
/* Return buffer address and byte count. */
744
*buf = (void *)(phys_to_virt(dp->dscr_dest0));
745
*nbytes = dp->dscr_cmd1;
746
rv = dp->dscr_stat;
747
748
/* Get next descriptor pointer. */
749
ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
750
751
/* Return something non-zero. */
752
return rv;
753
}
754
EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
755
756
void au1xxx_dbdma_stop(u32 chanid)
757
{
758
chan_tab_t *ctp;
759
au1x_dma_chan_t *cp;
760
int halt_timeout = 0;
761
762
ctp = *((chan_tab_t **)chanid);
763
764
cp = ctp->chan_ptr;
765
cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
766
wmb(); /* drain writebuffer */
767
while (!(cp->ddma_stat & DDMA_STAT_H)) {
768
udelay(1);
769
halt_timeout++;
770
if (halt_timeout > 100) {
771
printk(KERN_WARNING "warning: DMA channel won't halt\n");
772
break;
773
}
774
}
775
/* clear current desc valid and doorbell */
776
cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
777
wmb(); /* drain writebuffer */
778
}
779
EXPORT_SYMBOL(au1xxx_dbdma_stop);
780
781
/*
782
* Start using the current descriptor pointer. If the DBDMA encounters
783
* a non-valid descriptor, it will stop. In this case, we can just
784
* continue by adding a buffer to the list and starting again.
785
*/
786
void au1xxx_dbdma_start(u32 chanid)
787
{
788
chan_tab_t *ctp;
789
au1x_dma_chan_t *cp;
790
791
ctp = *((chan_tab_t **)chanid);
792
cp = ctp->chan_ptr;
793
cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
794
cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
795
wmb(); /* drain writebuffer */
796
cp->ddma_dbell = 0;
797
wmb(); /* drain writebuffer */
798
}
799
EXPORT_SYMBOL(au1xxx_dbdma_start);
800
801
void au1xxx_dbdma_reset(u32 chanid)
802
{
803
chan_tab_t *ctp;
804
au1x_ddma_desc_t *dp;
805
806
au1xxx_dbdma_stop(chanid);
807
808
ctp = *((chan_tab_t **)chanid);
809
ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
810
811
/* Run through the descriptors and reset the valid indicator. */
812
dp = ctp->chan_desc_base;
813
814
do {
815
dp->dscr_cmd0 &= ~DSCR_CMD0_V;
816
/*
817
* Reset our software status -- this is used to determine
818
* if a descriptor is in use by upper level software. Since
819
* posting can reset 'V' bit.
820
*/
821
dp->sw_status = 0;
822
dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
823
} while (dp != ctp->chan_desc_base);
824
}
825
EXPORT_SYMBOL(au1xxx_dbdma_reset);
826
827
u32 au1xxx_get_dma_residue(u32 chanid)
828
{
829
chan_tab_t *ctp;
830
au1x_dma_chan_t *cp;
831
u32 rv;
832
833
ctp = *((chan_tab_t **)chanid);
834
cp = ctp->chan_ptr;
835
836
/* This is only valid if the channel is stopped. */
837
rv = cp->ddma_bytecnt;
838
wmb(); /* drain writebuffer */
839
840
return rv;
841
}
842
EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
843
844
void au1xxx_dbdma_chan_free(u32 chanid)
845
{
846
chan_tab_t *ctp;
847
dbdev_tab_t *stp, *dtp;
848
849
ctp = *((chan_tab_t **)chanid);
850
stp = ctp->chan_src;
851
dtp = ctp->chan_dest;
852
853
au1xxx_dbdma_stop(chanid);
854
855
kfree((void *)ctp->cdb_membase);
856
857
stp->dev_flags &= ~DEV_FLAGS_INUSE;
858
dtp->dev_flags &= ~DEV_FLAGS_INUSE;
859
chan_tab_ptr[ctp->chan_index] = NULL;
860
861
kfree(ctp);
862
}
863
EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
864
865
static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
866
{
867
u32 intstat;
868
u32 chan_index;
869
chan_tab_t *ctp;
870
au1x_ddma_desc_t *dp;
871
au1x_dma_chan_t *cp;
872
873
intstat = dbdma_gptr->ddma_intstat;
874
wmb(); /* drain writebuffer */
875
chan_index = __ffs(intstat);
876
877
ctp = chan_tab_ptr[chan_index];
878
cp = ctp->chan_ptr;
879
dp = ctp->cur_ptr;
880
881
/* Reset interrupt. */
882
cp->ddma_irq = 0;
883
wmb(); /* drain writebuffer */
884
885
if (ctp->chan_callback)
886
ctp->chan_callback(irq, ctp->chan_callparam);
887
888
ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
889
return IRQ_RETVAL(1);
890
}
891
892
void au1xxx_dbdma_dump(u32 chanid)
893
{
894
chan_tab_t *ctp;
895
au1x_ddma_desc_t *dp;
896
dbdev_tab_t *stp, *dtp;
897
au1x_dma_chan_t *cp;
898
u32 i = 0;
899
900
ctp = *((chan_tab_t **)chanid);
901
stp = ctp->chan_src;
902
dtp = ctp->chan_dest;
903
cp = ctp->chan_ptr;
904
905
printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d)\n",
906
(u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
907
dtp - dbdev_tab);
908
printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
909
(u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
910
(u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
911
912
printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
913
printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
914
cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
915
printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
916
cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
917
cp->ddma_bytecnt);
918
919
/* Run through the descriptors */
920
dp = ctp->chan_desc_base;
921
922
do {
923
printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
924
i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
925
printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
926
dp->dscr_source0, dp->dscr_source1,
927
dp->dscr_dest0, dp->dscr_dest1);
928
printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
929
dp->dscr_stat, dp->dscr_nxtptr);
930
dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
931
} while (dp != ctp->chan_desc_base);
932
}
933
934
/* Put a descriptor into the DMA ring.
935
* This updates the source/destination pointers and byte count.
936
*/
937
u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
938
{
939
chan_tab_t *ctp;
940
au1x_ddma_desc_t *dp;
941
u32 nbytes = 0;
942
943
/*
944
* I guess we could check this to be within the
945
* range of the table......
946
*/
947
ctp = *((chan_tab_t **)chanid);
948
949
/*
950
* We should have multiple callers for a particular channel,
951
* an interrupt doesn't affect this pointer nor the descriptor,
952
* so no locking should be needed.
953
*/
954
dp = ctp->put_ptr;
955
956
/*
957
* If the descriptor is valid, we are way ahead of the DMA
958
* engine, so just return an error condition.
959
*/
960
if (dp->dscr_cmd0 & DSCR_CMD0_V)
961
return 0;
962
963
/* Load up buffer addresses and byte count. */
964
dp->dscr_dest0 = dscr->dscr_dest0;
965
dp->dscr_source0 = dscr->dscr_source0;
966
dp->dscr_dest1 = dscr->dscr_dest1;
967
dp->dscr_source1 = dscr->dscr_source1;
968
dp->dscr_cmd1 = dscr->dscr_cmd1;
969
nbytes = dscr->dscr_cmd1;
970
/* Allow the caller to specify if an interrupt is generated */
971
dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
972
dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
973
ctp->chan_ptr->ddma_dbell = 0;
974
975
/* Get next descriptor pointer. */
976
ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
977
978
/* Return something non-zero. */
979
return nbytes;
980
}
981
982
983
static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
984
985
static int alchemy_dbdma_suspend(void)
986
{
987
int i;
988
void __iomem *addr;
989
990
addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
991
alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
992
alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
993
alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
994
alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
995
996
/* save channel configurations */
997
addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
998
for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
999
alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
1000
alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
1001
alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
1002
alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
1003
alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
1004
alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
1005
1006
/* halt channel */
1007
__raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
1008
wmb();
1009
while (!(__raw_readl(addr + 0x14) & 1))
1010
wmb();
1011
1012
addr += 0x100; /* next channel base */
1013
}
1014
/* disable channel interrupts */
1015
addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1016
__raw_writel(0, addr + 0x0c);
1017
wmb();
1018
1019
return 0;
1020
}
1021
1022
static void alchemy_dbdma_resume(void)
1023
{
1024
int i;
1025
void __iomem *addr;
1026
1027
addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1028
__raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
1029
__raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
1030
__raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
1031
__raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
1032
1033
/* restore channel configurations */
1034
addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
1035
for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
1036
__raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
1037
__raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
1038
__raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
1039
__raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
1040
__raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
1041
__raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
1042
wmb();
1043
addr += 0x100; /* next channel base */
1044
}
1045
}
1046
1047
static struct syscore_ops alchemy_dbdma_syscore_ops = {
1048
.suspend = alchemy_dbdma_suspend,
1049
.resume = alchemy_dbdma_resume,
1050
};
1051
1052
static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable)
1053
{
1054
int ret;
1055
1056
dbdev_tab = kcalloc(DBDEV_TAB_SIZE, sizeof(dbdev_tab_t), GFP_KERNEL);
1057
if (!dbdev_tab)
1058
return -ENOMEM;
1059
1060
memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t));
1061
for (ret = 32; ret < DBDEV_TAB_SIZE; ret++)
1062
dbdev_tab[ret].dev_id = ~0;
1063
1064
dbdma_gptr->ddma_config = 0;
1065
dbdma_gptr->ddma_throttle = 0;
1066
dbdma_gptr->ddma_inten = 0xffff;
1067
wmb(); /* drain writebuffer */
1068
1069
ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr);
1070
if (ret)
1071
printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
1072
else {
1073
dbdma_initialized = 1;
1074
register_syscore_ops(&alchemy_dbdma_syscore_ops);
1075
}
1076
1077
return ret;
1078
}
1079
1080
static int __init alchemy_dbdma_init(void)
1081
{
1082
switch (alchemy_get_cputype()) {
1083
case ALCHEMY_CPU_AU1550:
1084
return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab);
1085
case ALCHEMY_CPU_AU1200:
1086
return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab);
1087
case ALCHEMY_CPU_AU1300:
1088
return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab);
1089
}
1090
return 0;
1091
}
1092
subsys_initcall(alchemy_dbdma_init);
1093
1094