Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/cavium-octeon/executive/cvmx-bootmem.c
26481 views
1
/***********************license start***************
2
* Author: Cavium Networks
3
*
4
* Contact: [email protected]
5
* This file is part of the OCTEON SDK
6
*
7
* Copyright (c) 2003-2008 Cavium Networks
8
*
9
* This file is free software; you can redistribute it and/or modify
10
* it under the terms of the GNU General Public License, Version 2, as
11
* published by the Free Software Foundation.
12
*
13
* This file is distributed in the hope that it will be useful, but
14
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16
* NONINFRINGEMENT. See the GNU General Public License for more
17
* details.
18
*
19
* You should have received a copy of the GNU General Public License
20
* along with this file; if not, write to the Free Software
21
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22
* or visit http://www.gnu.org/licenses/.
23
*
24
* This file may also be available under a different license from Cavium.
25
* Contact Cavium Networks for more information
26
***********************license end**************************************/
27
28
/*
29
* Simple allocate only memory allocator. Used to allocate memory at
30
* application start time.
31
*/
32
33
#include <linux/export.h>
34
#include <linux/kernel.h>
35
36
#include <asm/octeon/cvmx.h>
37
#include <asm/octeon/cvmx-spinlock.h>
38
#include <asm/octeon/cvmx-bootmem.h>
39
40
/*#define DEBUG */
41
42
43
static struct cvmx_bootmem_desc *cvmx_bootmem_desc;
44
45
/* See header file for descriptions of functions */
46
47
/*
48
* This macro returns a member of the
49
* cvmx_bootmem_named_block_desc_t structure. These members can't
50
* be directly addressed as they might be in memory not directly
51
* reachable. In the case where bootmem is compiled with
52
* LINUX_HOST, the structure itself might be located on a remote
53
* Octeon. The argument "field" is the member name of the
54
* cvmx_bootmem_named_block_desc_t to read. Regardless of the type
55
* of the field, the return type is always a uint64_t. The "addr"
56
* parameter is the physical address of the structure.
57
*/
58
#define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field) \
59
__cvmx_bootmem_desc_get(addr, \
60
offsetof(struct cvmx_bootmem_named_block_desc, field), \
61
sizeof_field(struct cvmx_bootmem_named_block_desc, field))
62
63
/*
64
* This function is the implementation of the get macros defined
65
* for individual structure members. The argument are generated
66
* by the macros inorder to read only the needed memory.
67
*
68
* @param base 64bit physical address of the complete structure
69
* @param offset Offset from the beginning of the structure to the member being
70
* accessed.
71
* @param size Size of the structure member.
72
*
73
* @return Value of the structure member promoted into a uint64_t.
74
*/
75
static inline uint64_t __cvmx_bootmem_desc_get(uint64_t base, int offset,
76
int size)
77
{
78
base = (1ull << 63) | (base + offset);
79
switch (size) {
80
case 4:
81
return cvmx_read64_uint32(base);
82
case 8:
83
return cvmx_read64_uint64(base);
84
default:
85
return 0;
86
}
87
}
88
89
/*
90
* Wrapper functions are provided for reading/writing the size and
91
* next block values as these may not be directly addressible (in 32
92
* bit applications, for instance.) Offsets of data elements in
93
* bootmem list, must match cvmx_bootmem_block_header_t.
94
*/
95
#define NEXT_OFFSET 0
96
#define SIZE_OFFSET 8
97
98
static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
99
{
100
cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
101
}
102
103
static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
104
{
105
cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
106
}
107
108
static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
109
{
110
return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
111
}
112
113
static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
114
{
115
return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
116
}
117
118
/*
119
* Allocate a block of memory from the free list that was
120
* passed to the application by the bootloader within a specified
121
* address range. This is an allocate-only algorithm, so
122
* freeing memory is not possible. Allocation will fail if
123
* memory cannot be allocated in the requested range.
124
*
125
* @size: Size in bytes of block to allocate
126
* @min_addr: defines the minimum address of the range
127
* @max_addr: defines the maximum address of the range
128
* @alignment: Alignment required - must be power of 2
129
* Returns pointer to block of memory, NULL on error
130
*/
131
static void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment,
132
uint64_t min_addr, uint64_t max_addr)
133
{
134
int64_t address;
135
address =
136
cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
137
138
if (address > 0)
139
return cvmx_phys_to_ptr(address);
140
else
141
return NULL;
142
}
143
144
void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address,
145
uint64_t alignment)
146
{
147
return cvmx_bootmem_alloc_range(size, alignment, address,
148
address + size);
149
}
150
151
void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr,
152
uint64_t max_addr, uint64_t align,
153
char *name)
154
{
155
int64_t addr;
156
157
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
158
align, name, 0);
159
if (addr >= 0)
160
return cvmx_phys_to_ptr(addr);
161
else
162
return NULL;
163
}
164
165
void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, char *name)
166
{
167
return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
168
}
169
EXPORT_SYMBOL(cvmx_bootmem_alloc_named);
170
171
void cvmx_bootmem_lock(void)
172
{
173
cvmx_spinlock_lock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
174
}
175
176
void cvmx_bootmem_unlock(void)
177
{
178
cvmx_spinlock_unlock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
179
}
180
181
int cvmx_bootmem_init(void *mem_desc_ptr)
182
{
183
/* Here we set the global pointer to the bootmem descriptor
184
* block. This pointer will be used directly, so we will set
185
* it up to be directly usable by the application. It is set
186
* up as follows for the various runtime/ABI combinations:
187
*
188
* Linux 64 bit: Set XKPHYS bit
189
* Linux 32 bit: use mmap to create mapping, use virtual address
190
* CVMX 64 bit: use physical address directly
191
* CVMX 32 bit: use physical address directly
192
*
193
* Note that the CVMX environment assumes the use of 1-1 TLB
194
* mappings so that the physical addresses can be used
195
* directly
196
*/
197
if (!cvmx_bootmem_desc) {
198
#if defined(CVMX_ABI_64)
199
/* Set XKPHYS bit */
200
cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr));
201
#else
202
cvmx_bootmem_desc = (struct cvmx_bootmem_desc *) mem_desc_ptr;
203
#endif
204
}
205
206
return 0;
207
}
208
209
/*
210
* The cvmx_bootmem_phy* functions below return 64 bit physical
211
* addresses, and expose more features that the cvmx_bootmem_functions
212
* above. These are required for full memory space access in 32 bit
213
* applications, as well as for using some advance features. Most
214
* applications should not need to use these.
215
*/
216
217
int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min,
218
uint64_t address_max, uint64_t alignment,
219
uint32_t flags)
220
{
221
222
uint64_t head_addr;
223
uint64_t ent_addr;
224
/* points to previous list entry, NULL current entry is head of list */
225
uint64_t prev_addr = 0;
226
uint64_t new_ent_addr = 0;
227
uint64_t desired_min_addr;
228
229
#ifdef DEBUG
230
cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, "
231
"min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
232
(unsigned long long)req_size,
233
(unsigned long long)address_min,
234
(unsigned long long)address_max,
235
(unsigned long long)alignment);
236
#endif
237
238
if (cvmx_bootmem_desc->major_version > 3) {
239
cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
240
"version: %d.%d at addr: %p\n",
241
(int)cvmx_bootmem_desc->major_version,
242
(int)cvmx_bootmem_desc->minor_version,
243
cvmx_bootmem_desc);
244
goto error_out;
245
}
246
247
/*
248
* Do a variety of checks to validate the arguments. The
249
* allocator code will later assume that these checks have
250
* been made. We validate that the requested constraints are
251
* not self-contradictory before we look through the list of
252
* available memory.
253
*/
254
255
/* 0 is not a valid req_size for this allocator */
256
if (!req_size)
257
goto error_out;
258
259
/* Round req_size up to mult of minimum alignment bytes */
260
req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
261
~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
262
263
/*
264
* Convert !0 address_min and 0 address_max to special case of
265
* range that specifies an exact memory block to allocate. Do
266
* this before other checks and adjustments so that this
267
* transformation will be validated.
268
*/
269
if (address_min && !address_max)
270
address_max = address_min + req_size;
271
else if (!address_min && !address_max)
272
address_max = ~0ull; /* If no limits given, use max limits */
273
274
275
/*
276
* Enforce minimum alignment (this also keeps the minimum free block
277
* req_size the same as the alignment req_size.
278
*/
279
if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
280
alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
281
282
/*
283
* Adjust address minimum based on requested alignment (round
284
* up to meet alignment). Do this here so we can reject
285
* impossible requests up front. (NOP for address_min == 0)
286
*/
287
if (alignment)
288
address_min = ALIGN(address_min, alignment);
289
290
/*
291
* Reject inconsistent args. We have adjusted these, so this
292
* may fail due to our internal changes even if this check
293
* would pass for the values the user supplied.
294
*/
295
if (req_size > address_max - address_min)
296
goto error_out;
297
298
/* Walk through the list entries - first fit found is returned */
299
300
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
301
cvmx_bootmem_lock();
302
head_addr = cvmx_bootmem_desc->head_addr;
303
ent_addr = head_addr;
304
for (; ent_addr;
305
prev_addr = ent_addr,
306
ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
307
uint64_t usable_base, usable_max;
308
uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
309
310
if (cvmx_bootmem_phy_get_next(ent_addr)
311
&& ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) {
312
cvmx_dprintf("Internal bootmem_alloc() error: ent: "
313
"0x%llx, next: 0x%llx\n",
314
(unsigned long long)ent_addr,
315
(unsigned long long)
316
cvmx_bootmem_phy_get_next(ent_addr));
317
goto error_out;
318
}
319
320
/*
321
* Determine if this is an entry that can satisfy the
322
* request Check to make sure entry is large enough to
323
* satisfy request.
324
*/
325
usable_base =
326
ALIGN(max(address_min, ent_addr), alignment);
327
usable_max = min(address_max, ent_addr + ent_size);
328
/*
329
* We should be able to allocate block at address
330
* usable_base.
331
*/
332
333
desired_min_addr = usable_base;
334
/*
335
* Determine if request can be satisfied from the
336
* current entry.
337
*/
338
if (!((ent_addr + ent_size) > usable_base
339
&& ent_addr < address_max
340
&& req_size <= usable_max - usable_base))
341
continue;
342
/*
343
* We have found an entry that has room to satisfy the
344
* request, so allocate it from this entry. If end
345
* CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from
346
* the end of this block rather than the beginning.
347
*/
348
if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) {
349
desired_min_addr = usable_max - req_size;
350
/*
351
* Align desired address down to required
352
* alignment.
353
*/
354
desired_min_addr &= ~(alignment - 1);
355
}
356
357
/* Match at start of entry */
358
if (desired_min_addr == ent_addr) {
359
if (req_size < ent_size) {
360
/*
361
* big enough to create a new block
362
* from top portion of block.
363
*/
364
new_ent_addr = ent_addr + req_size;
365
cvmx_bootmem_phy_set_next(new_ent_addr,
366
cvmx_bootmem_phy_get_next(ent_addr));
367
cvmx_bootmem_phy_set_size(new_ent_addr,
368
ent_size -
369
req_size);
370
371
/*
372
* Adjust next pointer as following
373
* code uses this.
374
*/
375
cvmx_bootmem_phy_set_next(ent_addr,
376
new_ent_addr);
377
}
378
379
/*
380
* adjust prev ptr or head to remove this
381
* entry from list.
382
*/
383
if (prev_addr)
384
cvmx_bootmem_phy_set_next(prev_addr,
385
cvmx_bootmem_phy_get_next(ent_addr));
386
else
387
/*
388
* head of list being returned, so
389
* update head ptr.
390
*/
391
cvmx_bootmem_desc->head_addr =
392
cvmx_bootmem_phy_get_next(ent_addr);
393
394
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
395
cvmx_bootmem_unlock();
396
return desired_min_addr;
397
}
398
/*
399
* block returned doesn't start at beginning of entry,
400
* so we know that we will be splitting a block off
401
* the front of this one. Create a new block from the
402
* beginning, add to list, and go to top of loop
403
* again.
404
*
405
* create new block from high portion of
406
* block, so that top block starts at desired
407
* addr.
408
*/
409
new_ent_addr = desired_min_addr;
410
cvmx_bootmem_phy_set_next(new_ent_addr,
411
cvmx_bootmem_phy_get_next
412
(ent_addr));
413
cvmx_bootmem_phy_set_size(new_ent_addr,
414
cvmx_bootmem_phy_get_size
415
(ent_addr) -
416
(desired_min_addr -
417
ent_addr));
418
cvmx_bootmem_phy_set_size(ent_addr,
419
desired_min_addr - ent_addr);
420
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
421
/* Loop again to handle actual alloc from new block */
422
}
423
error_out:
424
/* We didn't find anything, so return error */
425
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
426
cvmx_bootmem_unlock();
427
return -1;
428
}
429
430
int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
431
{
432
uint64_t cur_addr;
433
uint64_t prev_addr = 0; /* zero is invalid */
434
int retval = 0;
435
436
#ifdef DEBUG
437
cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n",
438
(unsigned long long)phy_addr, (unsigned long long)size);
439
#endif
440
if (cvmx_bootmem_desc->major_version > 3) {
441
cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
442
"version: %d.%d at addr: %p\n",
443
(int)cvmx_bootmem_desc->major_version,
444
(int)cvmx_bootmem_desc->minor_version,
445
cvmx_bootmem_desc);
446
return 0;
447
}
448
449
/* 0 is not a valid size for this allocator */
450
if (!size)
451
return 0;
452
453
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
454
cvmx_bootmem_lock();
455
cur_addr = cvmx_bootmem_desc->head_addr;
456
if (cur_addr == 0 || phy_addr < cur_addr) {
457
/* add at front of list - special case with changing head ptr */
458
if (cur_addr && phy_addr + size > cur_addr)
459
goto bootmem_free_done; /* error, overlapping section */
460
else if (phy_addr + size == cur_addr) {
461
/* Add to front of existing first block */
462
cvmx_bootmem_phy_set_next(phy_addr,
463
cvmx_bootmem_phy_get_next
464
(cur_addr));
465
cvmx_bootmem_phy_set_size(phy_addr,
466
cvmx_bootmem_phy_get_size
467
(cur_addr) + size);
468
cvmx_bootmem_desc->head_addr = phy_addr;
469
470
} else {
471
/* New block before first block. OK if cur_addr is 0 */
472
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
473
cvmx_bootmem_phy_set_size(phy_addr, size);
474
cvmx_bootmem_desc->head_addr = phy_addr;
475
}
476
retval = 1;
477
goto bootmem_free_done;
478
}
479
480
/* Find place in list to add block */
481
while (cur_addr && phy_addr > cur_addr) {
482
prev_addr = cur_addr;
483
cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
484
}
485
486
if (!cur_addr) {
487
/*
488
* We have reached the end of the list, add on to end,
489
* checking to see if we need to combine with last
490
* block
491
*/
492
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
493
phy_addr) {
494
cvmx_bootmem_phy_set_size(prev_addr,
495
cvmx_bootmem_phy_get_size
496
(prev_addr) + size);
497
} else {
498
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
499
cvmx_bootmem_phy_set_size(phy_addr, size);
500
cvmx_bootmem_phy_set_next(phy_addr, 0);
501
}
502
retval = 1;
503
goto bootmem_free_done;
504
} else {
505
/*
506
* insert between prev and cur nodes, checking for
507
* merge with either/both.
508
*/
509
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
510
phy_addr) {
511
/* Merge with previous */
512
cvmx_bootmem_phy_set_size(prev_addr,
513
cvmx_bootmem_phy_get_size
514
(prev_addr) + size);
515
if (phy_addr + size == cur_addr) {
516
/* Also merge with current */
517
cvmx_bootmem_phy_set_size(prev_addr,
518
cvmx_bootmem_phy_get_size(cur_addr) +
519
cvmx_bootmem_phy_get_size(prev_addr));
520
cvmx_bootmem_phy_set_next(prev_addr,
521
cvmx_bootmem_phy_get_next(cur_addr));
522
}
523
retval = 1;
524
goto bootmem_free_done;
525
} else if (phy_addr + size == cur_addr) {
526
/* Merge with current */
527
cvmx_bootmem_phy_set_size(phy_addr,
528
cvmx_bootmem_phy_get_size
529
(cur_addr) + size);
530
cvmx_bootmem_phy_set_next(phy_addr,
531
cvmx_bootmem_phy_get_next
532
(cur_addr));
533
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
534
retval = 1;
535
goto bootmem_free_done;
536
}
537
538
/* It is a standalone block, add in between prev and cur */
539
cvmx_bootmem_phy_set_size(phy_addr, size);
540
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
541
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
542
543
}
544
retval = 1;
545
546
bootmem_free_done:
547
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
548
cvmx_bootmem_unlock();
549
return retval;
550
551
}
552
553
/*
554
* Finds a named memory block by name.
555
* Also used for finding an unused entry in the named block table.
556
*
557
* @name: Name of memory block to find. If NULL pointer given, then
558
* finds unused descriptor, if available.
559
*
560
* @flags: Flags to control options for the allocation.
561
*
562
* Returns Pointer to memory block descriptor, NULL if not found.
563
* If NULL returned when name parameter is NULL, then no memory
564
* block descriptors are available.
565
*/
566
static struct cvmx_bootmem_named_block_desc *
567
cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags)
568
{
569
unsigned int i;
570
struct cvmx_bootmem_named_block_desc *named_block_array_ptr;
571
572
#ifdef DEBUG
573
cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
574
#endif
575
/*
576
* Lock the structure to make sure that it is not being
577
* changed while we are examining it.
578
*/
579
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
580
cvmx_bootmem_lock();
581
582
/* Use XKPHYS for 64 bit linux */
583
named_block_array_ptr = (struct cvmx_bootmem_named_block_desc *)
584
cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr);
585
586
#ifdef DEBUG
587
cvmx_dprintf
588
("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n",
589
named_block_array_ptr);
590
#endif
591
if (cvmx_bootmem_desc->major_version == 3) {
592
for (i = 0;
593
i < cvmx_bootmem_desc->named_block_num_blocks; i++) {
594
if ((name && named_block_array_ptr[i].size
595
&& !strncmp(name, named_block_array_ptr[i].name,
596
cvmx_bootmem_desc->named_block_name_len
597
- 1))
598
|| (!name && !named_block_array_ptr[i].size)) {
599
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
600
cvmx_bootmem_unlock();
601
602
return &(named_block_array_ptr[i]);
603
}
604
}
605
} else {
606
cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
607
"version: %d.%d at addr: %p\n",
608
(int)cvmx_bootmem_desc->major_version,
609
(int)cvmx_bootmem_desc->minor_version,
610
cvmx_bootmem_desc);
611
}
612
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
613
cvmx_bootmem_unlock();
614
615
return NULL;
616
}
617
618
void *cvmx_bootmem_alloc_named_range_once(uint64_t size, uint64_t min_addr,
619
uint64_t max_addr, uint64_t align,
620
char *name,
621
void (*init) (void *))
622
{
623
int64_t addr;
624
void *ptr;
625
uint64_t named_block_desc_addr;
626
627
named_block_desc_addr = (uint64_t)
628
cvmx_bootmem_phy_named_block_find(name,
629
(uint32_t)CVMX_BOOTMEM_FLAG_NO_LOCKING);
630
631
if (named_block_desc_addr) {
632
addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr,
633
base_addr);
634
return cvmx_phys_to_ptr(addr);
635
}
636
637
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
638
align, name,
639
(uint32_t)CVMX_BOOTMEM_FLAG_NO_LOCKING);
640
641
if (addr < 0)
642
return NULL;
643
ptr = cvmx_phys_to_ptr(addr);
644
645
if (init)
646
init(ptr);
647
else
648
memset(ptr, 0, size);
649
650
return ptr;
651
}
652
EXPORT_SYMBOL(cvmx_bootmem_alloc_named_range_once);
653
654
struct cvmx_bootmem_named_block_desc *cvmx_bootmem_find_named_block(char *name)
655
{
656
return cvmx_bootmem_phy_named_block_find(name, 0);
657
}
658
EXPORT_SYMBOL(cvmx_bootmem_find_named_block);
659
660
/*
661
* Frees a named block.
662
*
663
* @name: name of block to free
664
* @flags: flags for passing options
665
*
666
* Returns 0 on failure
667
* 1 on success
668
*/
669
static int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags)
670
{
671
struct cvmx_bootmem_named_block_desc *named_block_ptr;
672
673
if (cvmx_bootmem_desc->major_version != 3) {
674
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
675
"%d.%d at addr: %p\n",
676
(int)cvmx_bootmem_desc->major_version,
677
(int)cvmx_bootmem_desc->minor_version,
678
cvmx_bootmem_desc);
679
return 0;
680
}
681
#ifdef DEBUG
682
cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
683
#endif
684
685
/*
686
* Take lock here, as name lookup/block free/name free need to
687
* be atomic.
688
*/
689
cvmx_bootmem_lock();
690
691
named_block_ptr =
692
cvmx_bootmem_phy_named_block_find(name,
693
CVMX_BOOTMEM_FLAG_NO_LOCKING);
694
if (named_block_ptr) {
695
#ifdef DEBUG
696
cvmx_dprintf("cvmx_bootmem_phy_named_block_free: "
697
"%s, base: 0x%llx, size: 0x%llx\n",
698
name,
699
(unsigned long long)named_block_ptr->base_addr,
700
(unsigned long long)named_block_ptr->size);
701
#endif
702
__cvmx_bootmem_phy_free(named_block_ptr->base_addr,
703
named_block_ptr->size,
704
CVMX_BOOTMEM_FLAG_NO_LOCKING);
705
named_block_ptr->size = 0;
706
/* Set size to zero to indicate block not used. */
707
}
708
709
cvmx_bootmem_unlock();
710
return named_block_ptr != NULL; /* 0 on failure, 1 on success */
711
}
712
713
int cvmx_bootmem_free_named(char *name)
714
{
715
return cvmx_bootmem_phy_named_block_free(name, 0);
716
}
717
718
int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr,
719
uint64_t max_addr,
720
uint64_t alignment,
721
char *name,
722
uint32_t flags)
723
{
724
int64_t addr_allocated;
725
struct cvmx_bootmem_named_block_desc *named_block_desc_ptr;
726
727
#ifdef DEBUG
728
cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: "
729
"0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
730
(unsigned long long)size,
731
(unsigned long long)min_addr,
732
(unsigned long long)max_addr,
733
(unsigned long long)alignment,
734
name);
735
#endif
736
if (cvmx_bootmem_desc->major_version != 3) {
737
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
738
"%d.%d at addr: %p\n",
739
(int)cvmx_bootmem_desc->major_version,
740
(int)cvmx_bootmem_desc->minor_version,
741
cvmx_bootmem_desc);
742
return -1;
743
}
744
745
/*
746
* Take lock here, as name lookup/block alloc/name add need to
747
* be atomic.
748
*/
749
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
750
cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
751
752
/* Get pointer to first available named block descriptor */
753
named_block_desc_ptr =
754
cvmx_bootmem_phy_named_block_find(NULL,
755
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
756
757
/*
758
* Check to see if name already in use, return error if name
759
* not available or no more room for blocks.
760
*/
761
if (cvmx_bootmem_phy_named_block_find(name,
762
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING) || !named_block_desc_ptr) {
763
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
764
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
765
return -1;
766
}
767
768
769
/*
770
* Round size up to mult of minimum alignment bytes We need
771
* the actual size allocated to allow for blocks to be
772
* coalesced when they are freed. The alloc routine does the
773
* same rounding up on all allocations.
774
*/
775
size = ALIGN(size, CVMX_BOOTMEM_ALIGNMENT_SIZE);
776
777
addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
778
alignment,
779
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
780
if (addr_allocated >= 0) {
781
named_block_desc_ptr->base_addr = addr_allocated;
782
named_block_desc_ptr->size = size;
783
strscpy(named_block_desc_ptr->name, name,
784
cvmx_bootmem_desc->named_block_name_len);
785
}
786
787
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
788
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
789
return addr_allocated;
790
}
791
792
struct cvmx_bootmem_desc *cvmx_bootmem_get_desc(void)
793
{
794
return cvmx_bootmem_desc;
795
}
796
797