Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/cavium-octeon/executive/cvmx-spi.c
26481 views
1
/***********************license start***************
2
* Author: Cavium Networks
3
*
4
* Contact: [email protected]
5
* This file is part of the OCTEON SDK
6
*
7
* Copyright (c) 2003-2008 Cavium Networks
8
*
9
* This file is free software; you can redistribute it and/or modify
10
* it under the terms of the GNU General Public License, Version 2, as
11
* published by the Free Software Foundation.
12
*
13
* This file is distributed in the hope that it will be useful, but
14
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16
* NONINFRINGEMENT. See the GNU General Public License for more
17
* details.
18
*
19
* You should have received a copy of the GNU General Public License
20
* along with this file; if not, write to the Free Software
21
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22
* or visit http://www.gnu.org/licenses/.
23
*
24
* This file may also be available under a different license from Cavium.
25
* Contact Cavium Networks for more information
26
***********************license end**************************************/
27
28
/*
29
*
30
* Support library for the SPI
31
*/
32
#include <asm/octeon/octeon.h>
33
34
#include <asm/octeon/cvmx-config.h>
35
36
#include <asm/octeon/cvmx-pko.h>
37
#include <asm/octeon/cvmx-spi.h>
38
39
#include <asm/octeon/cvmx-spxx-defs.h>
40
#include <asm/octeon/cvmx-stxx-defs.h>
41
#include <asm/octeon/cvmx-srxx-defs.h>
42
43
#define INVOKE_CB(function_p, args...) \
44
do { \
45
if (function_p) { \
46
res = function_p(args); \
47
if (res) \
48
return res; \
49
} \
50
} while (0)
51
52
#if CVMX_ENABLE_DEBUG_PRINTS
53
static const char *modes[] =
54
{ "UNKNOWN", "TX Halfplex", "Rx Halfplex", "Duplex" };
55
#endif
56
57
/* Default callbacks, can be overridden
58
* using cvmx_spi_get_callbacks/cvmx_spi_set_callbacks
59
*/
60
static cvmx_spi_callbacks_t cvmx_spi_callbacks = {
61
.reset_cb = cvmx_spi_reset_cb,
62
.calendar_setup_cb = cvmx_spi_calendar_setup_cb,
63
.clock_detect_cb = cvmx_spi_clock_detect_cb,
64
.training_cb = cvmx_spi_training_cb,
65
.calendar_sync_cb = cvmx_spi_calendar_sync_cb,
66
.interface_up_cb = cvmx_spi_interface_up_cb
67
};
68
69
/*
70
* Get current SPI4 initialization callbacks
71
*
72
* @callbacks: Pointer to the callbacks structure.to fill
73
*
74
* Returns Pointer to cvmx_spi_callbacks_t structure.
75
*/
76
void cvmx_spi_get_callbacks(cvmx_spi_callbacks_t *callbacks)
77
{
78
memcpy(callbacks, &cvmx_spi_callbacks, sizeof(cvmx_spi_callbacks));
79
}
80
81
/*
82
* Set new SPI4 initialization callbacks
83
*
84
* @new_callbacks: Pointer to an updated callbacks structure.
85
*/
86
void cvmx_spi_set_callbacks(cvmx_spi_callbacks_t *new_callbacks)
87
{
88
memcpy(&cvmx_spi_callbacks, new_callbacks, sizeof(cvmx_spi_callbacks));
89
}
90
91
/*
92
* Initialize and start the SPI interface.
93
*
94
* @interface: The identifier of the packet interface to configure and
95
* use as a SPI interface.
96
* @mode: The operating mode for the SPI interface. The interface
97
* can operate as a full duplex (both Tx and Rx data paths
98
* active) or as a halfplex (either the Tx data path is
99
* active or the Rx data path is active, but not both).
100
* @timeout: Timeout to wait for clock synchronization in seconds
101
* @num_ports: Number of SPI ports to configure
102
*
103
* Returns Zero on success, negative of failure.
104
*/
105
int cvmx_spi_start_interface(int interface, cvmx_spi_mode_t mode, int timeout,
106
int num_ports)
107
{
108
int res = -1;
109
110
if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
111
return res;
112
113
/* Callback to perform SPI4 reset */
114
INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode);
115
116
/* Callback to perform calendar setup */
117
INVOKE_CB(cvmx_spi_callbacks.calendar_setup_cb, interface, mode,
118
num_ports);
119
120
/* Callback to perform clock detection */
121
INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout);
122
123
/* Callback to perform SPI4 link training */
124
INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout);
125
126
/* Callback to perform calendar sync */
127
INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode,
128
timeout);
129
130
/* Callback to handle interface coming up */
131
INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode);
132
133
return res;
134
}
135
136
/*
137
* This routine restarts the SPI interface after it has lost synchronization
138
* with its correspondent system.
139
*
140
* @interface: The identifier of the packet interface to configure and
141
* use as a SPI interface.
142
* @mode: The operating mode for the SPI interface. The interface
143
* can operate as a full duplex (both Tx and Rx data paths
144
* active) or as a halfplex (either the Tx data path is
145
* active or the Rx data path is active, but not both).
146
* @timeout: Timeout to wait for clock synchronization in seconds
147
*
148
* Returns Zero on success, negative of failure.
149
*/
150
int cvmx_spi_restart_interface(int interface, cvmx_spi_mode_t mode, int timeout)
151
{
152
int res = -1;
153
154
if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
155
return res;
156
157
cvmx_dprintf("SPI%d: Restart %s\n", interface, modes[mode]);
158
159
/* Callback to perform SPI4 reset */
160
INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode);
161
162
/* NOTE: Calendar setup is not performed during restart */
163
/* Refer to cvmx_spi_start_interface() for the full sequence */
164
165
/* Callback to perform clock detection */
166
INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout);
167
168
/* Callback to perform SPI4 link training */
169
INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout);
170
171
/* Callback to perform calendar sync */
172
INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode,
173
timeout);
174
175
/* Callback to handle interface coming up */
176
INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode);
177
178
return res;
179
}
180
EXPORT_SYMBOL_GPL(cvmx_spi_restart_interface);
181
182
/*
183
* Callback to perform SPI4 reset
184
*
185
* @interface: The identifier of the packet interface to configure and
186
* use as a SPI interface.
187
* @mode: The operating mode for the SPI interface. The interface
188
* can operate as a full duplex (both Tx and Rx data paths
189
* active) or as a halfplex (either the Tx data path is
190
* active or the Rx data path is active, but not both).
191
*
192
* Returns Zero on success, non-zero error code on failure (will cause
193
* SPI initialization to abort)
194
*/
195
int cvmx_spi_reset_cb(int interface, cvmx_spi_mode_t mode)
196
{
197
union cvmx_spxx_dbg_deskew_ctl spxx_dbg_deskew_ctl;
198
union cvmx_spxx_clk_ctl spxx_clk_ctl;
199
union cvmx_spxx_bist_stat spxx_bist_stat;
200
union cvmx_spxx_int_msk spxx_int_msk;
201
union cvmx_stxx_int_msk stxx_int_msk;
202
union cvmx_spxx_trn4_ctl spxx_trn4_ctl;
203
int index;
204
uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
205
206
/* Disable SPI error events while we run BIST */
207
spxx_int_msk.u64 = cvmx_read_csr(CVMX_SPXX_INT_MSK(interface));
208
cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), 0);
209
stxx_int_msk.u64 = cvmx_read_csr(CVMX_STXX_INT_MSK(interface));
210
cvmx_write_csr(CVMX_STXX_INT_MSK(interface), 0);
211
212
/* Run BIST in the SPI interface */
213
cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), 0);
214
cvmx_write_csr(CVMX_STXX_COM_CTL(interface), 0);
215
spxx_clk_ctl.u64 = 0;
216
spxx_clk_ctl.s.runbist = 1;
217
cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
218
__delay(10 * MS);
219
spxx_bist_stat.u64 = cvmx_read_csr(CVMX_SPXX_BIST_STAT(interface));
220
if (spxx_bist_stat.s.stat0)
221
cvmx_dprintf
222
("ERROR SPI%d: BIST failed on receive datapath FIFO\n",
223
interface);
224
if (spxx_bist_stat.s.stat1)
225
cvmx_dprintf("ERROR SPI%d: BIST failed on RX calendar table\n",
226
interface);
227
if (spxx_bist_stat.s.stat2)
228
cvmx_dprintf("ERROR SPI%d: BIST failed on TX calendar table\n",
229
interface);
230
231
/* Clear the calendar table after BIST to fix parity errors */
232
for (index = 0; index < 32; index++) {
233
union cvmx_srxx_spi4_calx srxx_spi4_calx;
234
union cvmx_stxx_spi4_calx stxx_spi4_calx;
235
236
srxx_spi4_calx.u64 = 0;
237
srxx_spi4_calx.s.oddpar = 1;
238
cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface),
239
srxx_spi4_calx.u64);
240
241
stxx_spi4_calx.u64 = 0;
242
stxx_spi4_calx.s.oddpar = 1;
243
cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface),
244
stxx_spi4_calx.u64);
245
}
246
247
/* Re enable reporting of error interrupts */
248
cvmx_write_csr(CVMX_SPXX_INT_REG(interface),
249
cvmx_read_csr(CVMX_SPXX_INT_REG(interface)));
250
cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), spxx_int_msk.u64);
251
cvmx_write_csr(CVMX_STXX_INT_REG(interface),
252
cvmx_read_csr(CVMX_STXX_INT_REG(interface)));
253
cvmx_write_csr(CVMX_STXX_INT_MSK(interface), stxx_int_msk.u64);
254
255
/* Setup the CLKDLY right in the middle */
256
spxx_clk_ctl.u64 = 0;
257
spxx_clk_ctl.s.seetrn = 0;
258
spxx_clk_ctl.s.clkdly = 0x10;
259
spxx_clk_ctl.s.runbist = 0;
260
spxx_clk_ctl.s.statdrv = 0;
261
/* This should always be on the opposite edge as statdrv */
262
spxx_clk_ctl.s.statrcv = 1;
263
spxx_clk_ctl.s.sndtrn = 0;
264
spxx_clk_ctl.s.drptrn = 0;
265
spxx_clk_ctl.s.rcvtrn = 0;
266
spxx_clk_ctl.s.srxdlck = 0;
267
cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
268
__delay(100 * MS);
269
270
/* Reset SRX0 DLL */
271
spxx_clk_ctl.s.srxdlck = 1;
272
cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
273
274
/* Waiting for Inf0 Spi4 RX DLL to lock */
275
__delay(100 * MS);
276
277
/* Enable dynamic alignment */
278
spxx_trn4_ctl.s.trntest = 0;
279
spxx_trn4_ctl.s.jitter = 1;
280
spxx_trn4_ctl.s.clr_boot = 1;
281
spxx_trn4_ctl.s.set_boot = 0;
282
if (OCTEON_IS_MODEL(OCTEON_CN58XX))
283
spxx_trn4_ctl.s.maxdist = 3;
284
else
285
spxx_trn4_ctl.s.maxdist = 8;
286
spxx_trn4_ctl.s.macro_en = 1;
287
spxx_trn4_ctl.s.mux_en = 1;
288
cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64);
289
290
spxx_dbg_deskew_ctl.u64 = 0;
291
cvmx_write_csr(CVMX_SPXX_DBG_DESKEW_CTL(interface),
292
spxx_dbg_deskew_ctl.u64);
293
294
return 0;
295
}
296
297
/*
298
* Callback to setup calendar and miscellaneous settings before clock detection
299
*
300
* @interface: The identifier of the packet interface to configure and
301
* use as a SPI interface.
302
* @mode: The operating mode for the SPI interface. The interface
303
* can operate as a full duplex (both Tx and Rx data paths
304
* active) or as a halfplex (either the Tx data path is
305
* active or the Rx data path is active, but not both).
306
* @num_ports: Number of ports to configure on SPI
307
*
308
* Returns Zero on success, non-zero error code on failure (will cause
309
* SPI initialization to abort)
310
*/
311
int cvmx_spi_calendar_setup_cb(int interface, cvmx_spi_mode_t mode,
312
int num_ports)
313
{
314
int port;
315
int index;
316
if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
317
union cvmx_srxx_com_ctl srxx_com_ctl;
318
union cvmx_srxx_spi4_stat srxx_spi4_stat;
319
320
/* SRX0 number of Ports */
321
srxx_com_ctl.u64 = 0;
322
srxx_com_ctl.s.prts = num_ports - 1;
323
srxx_com_ctl.s.st_en = 0;
324
srxx_com_ctl.s.inf_en = 0;
325
cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
326
327
/* SRX0 Calendar Table. This round robbins through all ports */
328
port = 0;
329
index = 0;
330
while (port < num_ports) {
331
union cvmx_srxx_spi4_calx srxx_spi4_calx;
332
srxx_spi4_calx.u64 = 0;
333
srxx_spi4_calx.s.prt0 = port++;
334
srxx_spi4_calx.s.prt1 = port++;
335
srxx_spi4_calx.s.prt2 = port++;
336
srxx_spi4_calx.s.prt3 = port++;
337
srxx_spi4_calx.s.oddpar =
338
~(cvmx_dpop(srxx_spi4_calx.u64) & 1);
339
cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface),
340
srxx_spi4_calx.u64);
341
index++;
342
}
343
srxx_spi4_stat.u64 = 0;
344
srxx_spi4_stat.s.len = num_ports;
345
srxx_spi4_stat.s.m = 1;
346
cvmx_write_csr(CVMX_SRXX_SPI4_STAT(interface),
347
srxx_spi4_stat.u64);
348
}
349
350
if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
351
union cvmx_stxx_arb_ctl stxx_arb_ctl;
352
union cvmx_gmxx_tx_spi_max gmxx_tx_spi_max;
353
union cvmx_gmxx_tx_spi_thresh gmxx_tx_spi_thresh;
354
union cvmx_gmxx_tx_spi_ctl gmxx_tx_spi_ctl;
355
union cvmx_stxx_spi4_stat stxx_spi4_stat;
356
union cvmx_stxx_spi4_dat stxx_spi4_dat;
357
358
/* STX0 Config */
359
stxx_arb_ctl.u64 = 0;
360
stxx_arb_ctl.s.igntpa = 0;
361
stxx_arb_ctl.s.mintrn = 0;
362
cvmx_write_csr(CVMX_STXX_ARB_CTL(interface), stxx_arb_ctl.u64);
363
364
gmxx_tx_spi_max.u64 = 0;
365
gmxx_tx_spi_max.s.max1 = 8;
366
gmxx_tx_spi_max.s.max2 = 4;
367
gmxx_tx_spi_max.s.slice = 0;
368
cvmx_write_csr(CVMX_GMXX_TX_SPI_MAX(interface),
369
gmxx_tx_spi_max.u64);
370
371
gmxx_tx_spi_thresh.u64 = 0;
372
gmxx_tx_spi_thresh.s.thresh = 4;
373
cvmx_write_csr(CVMX_GMXX_TX_SPI_THRESH(interface),
374
gmxx_tx_spi_thresh.u64);
375
376
gmxx_tx_spi_ctl.u64 = 0;
377
gmxx_tx_spi_ctl.s.tpa_clr = 0;
378
gmxx_tx_spi_ctl.s.cont_pkt = 0;
379
cvmx_write_csr(CVMX_GMXX_TX_SPI_CTL(interface),
380
gmxx_tx_spi_ctl.u64);
381
382
/* STX0 Training Control */
383
stxx_spi4_dat.u64 = 0;
384
/*Minimum needed by dynamic alignment */
385
stxx_spi4_dat.s.alpha = 32;
386
stxx_spi4_dat.s.max_t = 0xFFFF; /*Minimum interval is 0x20 */
387
cvmx_write_csr(CVMX_STXX_SPI4_DAT(interface),
388
stxx_spi4_dat.u64);
389
390
/* STX0 Calendar Table. This round robbins through all ports */
391
port = 0;
392
index = 0;
393
while (port < num_ports) {
394
union cvmx_stxx_spi4_calx stxx_spi4_calx;
395
stxx_spi4_calx.u64 = 0;
396
stxx_spi4_calx.s.prt0 = port++;
397
stxx_spi4_calx.s.prt1 = port++;
398
stxx_spi4_calx.s.prt2 = port++;
399
stxx_spi4_calx.s.prt3 = port++;
400
stxx_spi4_calx.s.oddpar =
401
~(cvmx_dpop(stxx_spi4_calx.u64) & 1);
402
cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface),
403
stxx_spi4_calx.u64);
404
index++;
405
}
406
stxx_spi4_stat.u64 = 0;
407
stxx_spi4_stat.s.len = num_ports;
408
stxx_spi4_stat.s.m = 1;
409
cvmx_write_csr(CVMX_STXX_SPI4_STAT(interface),
410
stxx_spi4_stat.u64);
411
}
412
413
return 0;
414
}
415
416
/*
417
* Callback to perform clock detection
418
*
419
* @interface: The identifier of the packet interface to configure and
420
* use as a SPI interface.
421
* @mode: The operating mode for the SPI interface. The interface
422
* can operate as a full duplex (both Tx and Rx data paths
423
* active) or as a halfplex (either the Tx data path is
424
* active or the Rx data path is active, but not both).
425
* @timeout: Timeout to wait for clock synchronization in seconds
426
*
427
* Returns Zero on success, non-zero error code on failure (will cause
428
* SPI initialization to abort)
429
*/
430
int cvmx_spi_clock_detect_cb(int interface, cvmx_spi_mode_t mode, int timeout)
431
{
432
int clock_transitions;
433
union cvmx_spxx_clk_stat stat;
434
uint64_t timeout_time;
435
uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
436
437
/*
438
* Regardless of operating mode, both Tx and Rx clocks must be
439
* present for the SPI interface to operate.
440
*/
441
cvmx_dprintf("SPI%d: Waiting to see TsClk...\n", interface);
442
timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
443
/*
444
* Require 100 clock transitions in order to avoid any noise
445
* in the beginning.
446
*/
447
clock_transitions = 100;
448
do {
449
stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
450
if (stat.s.s4clk0 && stat.s.s4clk1 && clock_transitions) {
451
/*
452
* We've seen a clock transition, so decrement
453
* the number we still need.
454
*/
455
clock_transitions--;
456
cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
457
stat.s.s4clk0 = 0;
458
stat.s.s4clk1 = 0;
459
}
460
if (cvmx_get_cycle() > timeout_time) {
461
cvmx_dprintf("SPI%d: Timeout\n", interface);
462
return -1;
463
}
464
} while (stat.s.s4clk0 == 0 || stat.s.s4clk1 == 0);
465
466
cvmx_dprintf("SPI%d: Waiting to see RsClk...\n", interface);
467
timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
468
/*
469
* Require 100 clock transitions in order to avoid any noise in the
470
* beginning.
471
*/
472
clock_transitions = 100;
473
do {
474
stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
475
if (stat.s.d4clk0 && stat.s.d4clk1 && clock_transitions) {
476
/*
477
* We've seen a clock transition, so decrement
478
* the number we still need
479
*/
480
clock_transitions--;
481
cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
482
stat.s.d4clk0 = 0;
483
stat.s.d4clk1 = 0;
484
}
485
if (cvmx_get_cycle() > timeout_time) {
486
cvmx_dprintf("SPI%d: Timeout\n", interface);
487
return -1;
488
}
489
} while (stat.s.d4clk0 == 0 || stat.s.d4clk1 == 0);
490
491
return 0;
492
}
493
494
/*
495
* Callback to perform link training
496
*
497
* @interface: The identifier of the packet interface to configure and
498
* use as a SPI interface.
499
* @mode: The operating mode for the SPI interface. The interface
500
* can operate as a full duplex (both Tx and Rx data paths
501
* active) or as a halfplex (either the Tx data path is
502
* active or the Rx data path is active, but not both).
503
* @timeout: Timeout to wait for link to be trained (in seconds)
504
*
505
* Returns Zero on success, non-zero error code on failure (will cause
506
* SPI initialization to abort)
507
*/
508
int cvmx_spi_training_cb(int interface, cvmx_spi_mode_t mode, int timeout)
509
{
510
union cvmx_spxx_trn4_ctl spxx_trn4_ctl;
511
union cvmx_spxx_clk_stat stat;
512
uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
513
uint64_t timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
514
int rx_training_needed;
515
516
/* SRX0 & STX0 Inf0 Links are configured - begin training */
517
union cvmx_spxx_clk_ctl spxx_clk_ctl;
518
spxx_clk_ctl.u64 = 0;
519
spxx_clk_ctl.s.seetrn = 0;
520
spxx_clk_ctl.s.clkdly = 0x10;
521
spxx_clk_ctl.s.runbist = 0;
522
spxx_clk_ctl.s.statdrv = 0;
523
/* This should always be on the opposite edge as statdrv */
524
spxx_clk_ctl.s.statrcv = 1;
525
spxx_clk_ctl.s.sndtrn = 1;
526
spxx_clk_ctl.s.drptrn = 1;
527
spxx_clk_ctl.s.rcvtrn = 1;
528
spxx_clk_ctl.s.srxdlck = 1;
529
cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64);
530
__delay(1000 * MS);
531
532
/* SRX0 clear the boot bit */
533
spxx_trn4_ctl.u64 = cvmx_read_csr(CVMX_SPXX_TRN4_CTL(interface));
534
spxx_trn4_ctl.s.clr_boot = 1;
535
cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64);
536
537
/* Wait for the training sequence to complete */
538
cvmx_dprintf("SPI%d: Waiting for training\n", interface);
539
__delay(1000 * MS);
540
/* Wait a really long time here */
541
timeout_time = cvmx_get_cycle() + 1000ull * MS * 600;
542
/*
543
* The HRM says we must wait for 34 + 16 * MAXDIST training sequences.
544
* We'll be pessimistic and wait for a lot more.
545
*/
546
rx_training_needed = 500;
547
do {
548
stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
549
if (stat.s.srxtrn && rx_training_needed) {
550
rx_training_needed--;
551
cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64);
552
stat.s.srxtrn = 0;
553
}
554
if (cvmx_get_cycle() > timeout_time) {
555
cvmx_dprintf("SPI%d: Timeout\n", interface);
556
return -1;
557
}
558
} while (stat.s.srxtrn == 0);
559
560
return 0;
561
}
562
563
/*
564
* Callback to perform calendar data synchronization
565
*
566
* @interface: The identifier of the packet interface to configure and
567
* use as a SPI interface.
568
* @mode: The operating mode for the SPI interface. The interface
569
* can operate as a full duplex (both Tx and Rx data paths
570
* active) or as a halfplex (either the Tx data path is
571
* active or the Rx data path is active, but not both).
572
* @timeout: Timeout to wait for calendar data in seconds
573
*
574
* Returns Zero on success, non-zero error code on failure (will cause
575
* SPI initialization to abort)
576
*/
577
int cvmx_spi_calendar_sync_cb(int interface, cvmx_spi_mode_t mode, int timeout)
578
{
579
uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000;
580
if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
581
/* SRX0 interface should be good, send calendar data */
582
union cvmx_srxx_com_ctl srxx_com_ctl;
583
cvmx_dprintf
584
("SPI%d: Rx is synchronized, start sending calendar data\n",
585
interface);
586
srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface));
587
srxx_com_ctl.s.inf_en = 1;
588
srxx_com_ctl.s.st_en = 1;
589
cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
590
}
591
592
if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
593
/* STX0 has achieved sync */
594
/* The corespondant board should be sending calendar data */
595
/* Enable the STX0 STAT receiver. */
596
union cvmx_spxx_clk_stat stat;
597
uint64_t timeout_time;
598
union cvmx_stxx_com_ctl stxx_com_ctl;
599
stxx_com_ctl.u64 = 0;
600
stxx_com_ctl.s.st_en = 1;
601
cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64);
602
603
/* Waiting for calendar sync on STX0 STAT */
604
cvmx_dprintf("SPI%d: Waiting to sync on STX[%d] STAT\n",
605
interface, interface);
606
timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout;
607
/* SPX0_CLK_STAT - SPX0_CLK_STAT[STXCAL] should be 1 (bit10) */
608
do {
609
stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface));
610
if (cvmx_get_cycle() > timeout_time) {
611
cvmx_dprintf("SPI%d: Timeout\n", interface);
612
return -1;
613
}
614
} while (stat.s.stxcal == 0);
615
}
616
617
return 0;
618
}
619
620
/*
621
* Callback to handle interface up
622
*
623
* @interface: The identifier of the packet interface to configure and
624
* use as a SPI interface.
625
* @mode: The operating mode for the SPI interface. The interface
626
* can operate as a full duplex (both Tx and Rx data paths
627
* active) or as a halfplex (either the Tx data path is
628
* active or the Rx data path is active, but not both).
629
*
630
* Returns Zero on success, non-zero error code on failure (will cause
631
* SPI initialization to abort)
632
*/
633
int cvmx_spi_interface_up_cb(int interface, cvmx_spi_mode_t mode)
634
{
635
union cvmx_gmxx_rxx_frm_min gmxx_rxx_frm_min;
636
union cvmx_gmxx_rxx_frm_max gmxx_rxx_frm_max;
637
union cvmx_gmxx_rxx_jabber gmxx_rxx_jabber;
638
639
if (mode & CVMX_SPI_MODE_RX_HALFPLEX) {
640
union cvmx_srxx_com_ctl srxx_com_ctl;
641
srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface));
642
srxx_com_ctl.s.inf_en = 1;
643
cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64);
644
cvmx_dprintf("SPI%d: Rx is now up\n", interface);
645
}
646
647
if (mode & CVMX_SPI_MODE_TX_HALFPLEX) {
648
union cvmx_stxx_com_ctl stxx_com_ctl;
649
stxx_com_ctl.u64 = cvmx_read_csr(CVMX_STXX_COM_CTL(interface));
650
stxx_com_ctl.s.inf_en = 1;
651
cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64);
652
cvmx_dprintf("SPI%d: Tx is now up\n", interface);
653
}
654
655
gmxx_rxx_frm_min.u64 = 0;
656
gmxx_rxx_frm_min.s.len = 64;
657
cvmx_write_csr(CVMX_GMXX_RXX_FRM_MIN(0, interface),
658
gmxx_rxx_frm_min.u64);
659
gmxx_rxx_frm_max.u64 = 0;
660
gmxx_rxx_frm_max.s.len = 64 * 1024 - 4;
661
cvmx_write_csr(CVMX_GMXX_RXX_FRM_MAX(0, interface),
662
gmxx_rxx_frm_max.u64);
663
gmxx_rxx_jabber.u64 = 0;
664
gmxx_rxx_jabber.s.cnt = 64 * 1024 - 4;
665
cvmx_write_csr(CVMX_GMXX_RXX_JABBER(0, interface), gmxx_rxx_jabber.u64);
666
667
return 0;
668
}
669
670