Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/cavium-octeon/octeon-platform.c
26424 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (C) 2004-2017 Cavium, Inc.
7
* Copyright (C) 2008 Wind River Systems
8
*/
9
10
#include <linux/etherdevice.h>
11
#include <linux/of.h>
12
#include <linux/of_platform.h>
13
#include <linux/of_fdt.h>
14
#include <linux/platform_device.h>
15
#include <linux/libfdt.h>
16
17
#include <asm/octeon/octeon.h>
18
#include <asm/octeon/cvmx-helper-board.h>
19
20
#ifdef CONFIG_USB
21
#include <linux/usb/ehci_def.h>
22
#include <linux/usb/ehci_pdriver.h>
23
#include <linux/usb/ohci_pdriver.h>
24
#include <asm/octeon/cvmx-uctlx-defs.h>
25
26
#define CVMX_UAHCX_EHCI_USBCMD (CVMX_ADD_IO_SEG(0x00016F0000000010ull))
27
#define CVMX_UAHCX_OHCI_USBCMD (CVMX_ADD_IO_SEG(0x00016F0000000408ull))
28
29
static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
30
31
static int octeon2_usb_clock_start_cnt;
32
33
static int __init octeon2_usb_reset(void)
34
{
35
union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
36
u32 ucmd;
37
38
if (!OCTEON_IS_OCTEON2())
39
return 0;
40
41
clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
42
if (clk_rst_ctl.s.hrst) {
43
ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
44
ucmd &= ~CMD_RUN;
45
cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
46
mdelay(2);
47
ucmd |= CMD_RESET;
48
cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
49
ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
50
ucmd |= CMD_RUN;
51
cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
52
}
53
54
return 0;
55
}
56
arch_initcall(octeon2_usb_reset);
57
58
static void octeon2_usb_clocks_start(struct device *dev)
59
{
60
u64 div;
61
union cvmx_uctlx_if_ena if_ena;
62
union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
63
union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
64
int i;
65
unsigned long io_clk_64_to_ns;
66
u32 clock_rate = 12000000;
67
bool is_crystal_clock = false;
68
69
70
mutex_lock(&octeon2_usb_clocks_mutex);
71
72
octeon2_usb_clock_start_cnt++;
73
if (octeon2_usb_clock_start_cnt != 1)
74
goto exit;
75
76
io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
77
78
if (dev->of_node) {
79
struct device_node *uctl_node;
80
const char *clock_type;
81
82
uctl_node = of_get_parent(dev->of_node);
83
if (!uctl_node) {
84
dev_err(dev, "No UCTL device node\n");
85
goto exit;
86
}
87
i = of_property_read_u32(uctl_node,
88
"refclk-frequency", &clock_rate);
89
if (i) {
90
dev_err(dev, "No UCTL \"refclk-frequency\"\n");
91
of_node_put(uctl_node);
92
goto exit;
93
}
94
i = of_property_read_string(uctl_node,
95
"refclk-type", &clock_type);
96
of_node_put(uctl_node);
97
if (!i && strcmp("crystal", clock_type) == 0)
98
is_crystal_clock = true;
99
}
100
101
/*
102
* Step 1: Wait for voltages stable. That surely happened
103
* before starting the kernel.
104
*
105
* Step 2: Enable SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
106
*/
107
if_ena.u64 = 0;
108
if_ena.s.en = 1;
109
cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
110
111
for (i = 0; i <= 1; i++) {
112
port_ctl_status.u64 =
113
cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
114
/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
115
port_ctl_status.s.txvreftune = 15;
116
port_ctl_status.s.txrisetune = 1;
117
port_ctl_status.s.txpreemphasistune = 1;
118
cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
119
port_ctl_status.u64);
120
}
121
122
/* Step 3: Configure the reference clock, PHY, and HCLK */
123
clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
124
125
/*
126
* If the UCTL looks like it has already been started, skip
127
* the initialization, otherwise bus errors are obtained.
128
*/
129
if (clk_rst_ctl.s.hrst)
130
goto end_clock;
131
/* 3a */
132
clk_rst_ctl.s.p_por = 1;
133
clk_rst_ctl.s.hrst = 0;
134
clk_rst_ctl.s.p_prst = 0;
135
clk_rst_ctl.s.h_clkdiv_rst = 0;
136
clk_rst_ctl.s.o_clkdiv_rst = 0;
137
clk_rst_ctl.s.h_clkdiv_en = 0;
138
clk_rst_ctl.s.o_clkdiv_en = 0;
139
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
140
141
/* 3b */
142
clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
143
switch (clock_rate) {
144
default:
145
pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
146
clock_rate);
147
fallthrough;
148
case 12000000:
149
clk_rst_ctl.s.p_refclk_div = 0;
150
break;
151
case 24000000:
152
clk_rst_ctl.s.p_refclk_div = 1;
153
break;
154
case 48000000:
155
clk_rst_ctl.s.p_refclk_div = 2;
156
break;
157
}
158
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
159
160
/* 3c */
161
div = octeon_get_io_clock_rate() / 130000000ull;
162
163
switch (div) {
164
case 0:
165
div = 1;
166
break;
167
case 1:
168
case 2:
169
case 3:
170
case 4:
171
break;
172
case 5:
173
div = 4;
174
break;
175
case 6:
176
case 7:
177
div = 6;
178
break;
179
case 8:
180
case 9:
181
case 10:
182
case 11:
183
div = 8;
184
break;
185
default:
186
div = 12;
187
break;
188
}
189
clk_rst_ctl.s.h_div = div;
190
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
191
/* Read it back, */
192
clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
193
clk_rst_ctl.s.h_clkdiv_en = 1;
194
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
195
/* 3d */
196
clk_rst_ctl.s.h_clkdiv_rst = 1;
197
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
198
199
/* 3e: delay 64 io clocks */
200
ndelay(io_clk_64_to_ns);
201
202
/*
203
* Step 4: Program the power-on reset field in the UCTL
204
* clock-reset-control register.
205
*/
206
clk_rst_ctl.s.p_por = 0;
207
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
208
209
/* Step 5: Wait 3 ms for the PHY clock to start. */
210
mdelay(3);
211
212
/* Steps 6..9 for ATE only, are skipped. */
213
214
/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
215
/* 10a */
216
clk_rst_ctl.s.o_clkdiv_rst = 1;
217
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
218
219
/* 10b */
220
clk_rst_ctl.s.o_clkdiv_en = 1;
221
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
222
223
/* 10c */
224
ndelay(io_clk_64_to_ns);
225
226
/*
227
* Step 11: Program the PHY reset field:
228
* UCTL0_CLK_RST_CTL[P_PRST] = 1
229
*/
230
clk_rst_ctl.s.p_prst = 1;
231
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
232
233
/* Step 11b */
234
udelay(1);
235
236
/* Step 11c */
237
clk_rst_ctl.s.p_prst = 0;
238
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
239
240
/* Step 11d */
241
mdelay(1);
242
243
/* Step 11e */
244
clk_rst_ctl.s.p_prst = 1;
245
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
246
247
/* Step 12: Wait 1 uS. */
248
udelay(1);
249
250
/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
251
clk_rst_ctl.s.hrst = 1;
252
cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
253
254
end_clock:
255
/* Set uSOF cycle period to 60,000 bits. */
256
cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
257
258
exit:
259
mutex_unlock(&octeon2_usb_clocks_mutex);
260
}
261
262
static void octeon2_usb_clocks_stop(void)
263
{
264
mutex_lock(&octeon2_usb_clocks_mutex);
265
octeon2_usb_clock_start_cnt--;
266
mutex_unlock(&octeon2_usb_clocks_mutex);
267
}
268
269
static int octeon_ehci_power_on(struct platform_device *pdev)
270
{
271
octeon2_usb_clocks_start(&pdev->dev);
272
return 0;
273
}
274
275
static void octeon_ehci_power_off(struct platform_device *pdev)
276
{
277
octeon2_usb_clocks_stop();
278
}
279
280
static struct usb_ehci_pdata octeon_ehci_pdata = {
281
/* Octeon EHCI matches CPU endianness. */
282
#ifdef __BIG_ENDIAN
283
.big_endian_mmio = 1,
284
#endif
285
/*
286
* We can DMA from anywhere. But the descriptors must be in
287
* the lower 4GB.
288
*/
289
.dma_mask_64 = 0,
290
.power_on = octeon_ehci_power_on,
291
.power_off = octeon_ehci_power_off,
292
};
293
294
static void __init octeon_ehci_hw_start(struct device *dev)
295
{
296
union cvmx_uctlx_ehci_ctl ehci_ctl;
297
298
octeon2_usb_clocks_start(dev);
299
300
ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
301
/* Use 64-bit addressing. */
302
ehci_ctl.s.ehci_64b_addr_en = 1;
303
ehci_ctl.s.l2c_addr_msb = 0;
304
#ifdef __BIG_ENDIAN
305
ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
306
ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
307
#else
308
ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
309
ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
310
ehci_ctl.s.inv_reg_a2 = 1;
311
#endif
312
cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
313
314
octeon2_usb_clocks_stop();
315
}
316
317
static int __init octeon_ehci_device_init(void)
318
{
319
struct platform_device *pd;
320
struct device_node *ehci_node;
321
int ret = 0;
322
323
ehci_node = of_find_node_by_name(NULL, "ehci");
324
if (!ehci_node)
325
return 0;
326
327
pd = of_find_device_by_node(ehci_node);
328
of_node_put(ehci_node);
329
if (!pd)
330
return 0;
331
332
pd->dev.platform_data = &octeon_ehci_pdata;
333
octeon_ehci_hw_start(&pd->dev);
334
put_device(&pd->dev);
335
336
return ret;
337
}
338
device_initcall(octeon_ehci_device_init);
339
340
static int octeon_ohci_power_on(struct platform_device *pdev)
341
{
342
octeon2_usb_clocks_start(&pdev->dev);
343
return 0;
344
}
345
346
static void octeon_ohci_power_off(struct platform_device *pdev)
347
{
348
octeon2_usb_clocks_stop();
349
}
350
351
static struct usb_ohci_pdata octeon_ohci_pdata = {
352
/* Octeon OHCI matches CPU endianness. */
353
#ifdef __BIG_ENDIAN
354
.big_endian_mmio = 1,
355
#endif
356
.power_on = octeon_ohci_power_on,
357
.power_off = octeon_ohci_power_off,
358
};
359
360
static void __init octeon_ohci_hw_start(struct device *dev)
361
{
362
union cvmx_uctlx_ohci_ctl ohci_ctl;
363
364
octeon2_usb_clocks_start(dev);
365
366
ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
367
ohci_ctl.s.l2c_addr_msb = 0;
368
#ifdef __BIG_ENDIAN
369
ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
370
ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
371
#else
372
ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
373
ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
374
ohci_ctl.s.inv_reg_a2 = 1;
375
#endif
376
cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
377
378
octeon2_usb_clocks_stop();
379
}
380
381
static int __init octeon_ohci_device_init(void)
382
{
383
struct platform_device *pd;
384
struct device_node *ohci_node;
385
int ret = 0;
386
387
ohci_node = of_find_node_by_name(NULL, "ohci");
388
if (!ohci_node)
389
return 0;
390
391
pd = of_find_device_by_node(ohci_node);
392
of_node_put(ohci_node);
393
if (!pd)
394
return 0;
395
396
pd->dev.platform_data = &octeon_ohci_pdata;
397
octeon_ohci_hw_start(&pd->dev);
398
put_device(&pd->dev);
399
400
return ret;
401
}
402
device_initcall(octeon_ohci_device_init);
403
404
#endif /* CONFIG_USB */
405
406
/* Octeon Random Number Generator. */
407
static int __init octeon_rng_device_init(void)
408
{
409
struct platform_device *pd;
410
int ret = 0;
411
412
struct resource rng_resources[] = {
413
{
414
.flags = IORESOURCE_MEM,
415
.start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
416
.end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
417
}, {
418
.flags = IORESOURCE_MEM,
419
.start = cvmx_build_io_address(8, 0),
420
.end = cvmx_build_io_address(8, 0) + 0x7
421
}
422
};
423
424
pd = platform_device_alloc("octeon_rng", -1);
425
if (!pd) {
426
ret = -ENOMEM;
427
goto out;
428
}
429
430
ret = platform_device_add_resources(pd, rng_resources,
431
ARRAY_SIZE(rng_resources));
432
if (ret)
433
goto fail;
434
435
ret = platform_device_add(pd);
436
if (ret)
437
goto fail;
438
439
return ret;
440
fail:
441
platform_device_put(pd);
442
443
out:
444
return ret;
445
}
446
device_initcall(octeon_rng_device_init);
447
448
static const struct of_device_id octeon_ids[] __initconst = {
449
{ .compatible = "simple-bus", },
450
{ .compatible = "cavium,octeon-6335-uctl", },
451
{ .compatible = "cavium,octeon-5750-usbn", },
452
{ .compatible = "cavium,octeon-3860-bootbus", },
453
{ .compatible = "cavium,mdio-mux", },
454
{ .compatible = "gpio-leds", },
455
{},
456
};
457
458
static bool __init octeon_has_88e1145(void)
459
{
460
return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
461
!OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
462
!OCTEON_IS_MODEL(OCTEON_CN56XX);
463
}
464
465
static bool __init octeon_has_fixed_link(int ipd_port)
466
{
467
switch (cvmx_sysinfo_get()->board_type) {
468
case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
469
case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
470
case CVMX_BOARD_TYPE_CN3020_EVB_HS5:
471
case CVMX_BOARD_TYPE_CUST_NB5:
472
case CVMX_BOARD_TYPE_EBH3100:
473
/* Port 1 on these boards is always gigabit. */
474
return ipd_port == 1;
475
case CVMX_BOARD_TYPE_BBGW_REF:
476
/* Ports 0 and 1 connect to the switch. */
477
return ipd_port == 0 || ipd_port == 1;
478
}
479
return false;
480
}
481
482
static void __init octeon_fdt_set_phy(int eth, int phy_addr)
483
{
484
const __be32 *phy_handle;
485
const __be32 *alt_phy_handle;
486
const __be32 *reg;
487
u32 phandle;
488
int phy;
489
int alt_phy;
490
const char *p;
491
int current_len;
492
char new_name[20];
493
494
phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
495
if (!phy_handle)
496
return;
497
498
phandle = be32_to_cpup(phy_handle);
499
phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
500
501
alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
502
if (alt_phy_handle) {
503
u32 alt_phandle = be32_to_cpup(alt_phy_handle);
504
505
alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
506
} else {
507
alt_phy = -1;
508
}
509
510
if (phy_addr < 0 || phy < 0) {
511
/* Delete the PHY things */
512
fdt_nop_property(initial_boot_params, eth, "phy-handle");
513
/* This one may fail */
514
fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
515
if (phy >= 0)
516
fdt_nop_node(initial_boot_params, phy);
517
if (alt_phy >= 0)
518
fdt_nop_node(initial_boot_params, alt_phy);
519
return;
520
}
521
522
if (phy_addr >= 256 && alt_phy > 0) {
523
const struct fdt_property *phy_prop;
524
struct fdt_property *alt_prop;
525
fdt32_t phy_handle_name;
526
527
/* Use the alt phy node instead.*/
528
phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
529
phy_handle_name = phy_prop->nameoff;
530
fdt_nop_node(initial_boot_params, phy);
531
fdt_nop_property(initial_boot_params, eth, "phy-handle");
532
alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
533
alt_prop->nameoff = phy_handle_name;
534
phy = alt_phy;
535
}
536
537
phy_addr &= 0xff;
538
539
if (octeon_has_88e1145()) {
540
fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
541
memset(new_name, 0, sizeof(new_name));
542
strcpy(new_name, "marvell,88e1145");
543
p = fdt_getprop(initial_boot_params, phy, "compatible",
544
&current_len);
545
if (p && current_len >= strlen(new_name))
546
fdt_setprop_inplace(initial_boot_params, phy,
547
"compatible", new_name, current_len);
548
}
549
550
reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
551
if (phy_addr == be32_to_cpup(reg))
552
return;
553
554
fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
555
556
snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
557
558
p = fdt_get_name(initial_boot_params, phy, &current_len);
559
if (p && current_len == strlen(new_name))
560
fdt_set_name(initial_boot_params, phy, new_name);
561
else
562
pr_err("Error: could not rename ethernet phy: <%s>", p);
563
}
564
565
static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
566
{
567
const u8 *old_mac;
568
int old_len;
569
u8 new_mac[6];
570
u64 mac = *pmac;
571
int r;
572
573
old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
574
&old_len);
575
if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
576
return;
577
578
new_mac[0] = (mac >> 40) & 0xff;
579
new_mac[1] = (mac >> 32) & 0xff;
580
new_mac[2] = (mac >> 24) & 0xff;
581
new_mac[3] = (mac >> 16) & 0xff;
582
new_mac[4] = (mac >> 8) & 0xff;
583
new_mac[5] = mac & 0xff;
584
585
r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
586
new_mac, sizeof(new_mac));
587
588
if (r) {
589
pr_err("Setting \"local-mac-address\" failed %d", r);
590
return;
591
}
592
*pmac = mac + 1;
593
}
594
595
static void __init octeon_fdt_rm_ethernet(int node)
596
{
597
const __be32 *phy_handle;
598
599
phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
600
if (phy_handle) {
601
u32 ph = be32_to_cpup(phy_handle);
602
int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
603
604
if (p >= 0)
605
fdt_nop_node(initial_boot_params, p);
606
}
607
fdt_nop_node(initial_boot_params, node);
608
}
609
610
static void __init _octeon_rx_tx_delay(int eth, int rx_delay, int tx_delay)
611
{
612
fdt_setprop_inplace_cell(initial_boot_params, eth, "rx-delay",
613
rx_delay);
614
fdt_setprop_inplace_cell(initial_boot_params, eth, "tx-delay",
615
tx_delay);
616
}
617
618
static void __init octeon_rx_tx_delay(int eth, int iface, int port)
619
{
620
switch (cvmx_sysinfo_get()->board_type) {
621
case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
622
if (iface == 0) {
623
if (port == 0) {
624
/*
625
* Boards with gigabit WAN ports need a
626
* different setting that is compatible with
627
* 100 Mbit settings
628
*/
629
_octeon_rx_tx_delay(eth, 0xc, 0x0c);
630
return;
631
} else if (port == 1) {
632
/* Different config for switch port. */
633
_octeon_rx_tx_delay(eth, 0x0, 0x0);
634
return;
635
}
636
}
637
break;
638
case CVMX_BOARD_TYPE_UBNT_E100:
639
if (iface == 0 && port <= 2) {
640
_octeon_rx_tx_delay(eth, 0x0, 0x10);
641
return;
642
}
643
break;
644
}
645
fdt_nop_property(initial_boot_params, eth, "rx-delay");
646
fdt_nop_property(initial_boot_params, eth, "tx-delay");
647
}
648
649
static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
650
{
651
char name_buffer[20];
652
int eth;
653
int phy_addr;
654
int ipd_port;
655
int fixed_link;
656
657
snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
658
eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
659
if (eth < 0)
660
return;
661
if (p > max) {
662
pr_debug("Deleting port %x:%x\n", i, p);
663
octeon_fdt_rm_ethernet(eth);
664
return;
665
}
666
if (OCTEON_IS_MODEL(OCTEON_CN68XX))
667
ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
668
else
669
ipd_port = 16 * i + p;
670
671
phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
672
octeon_fdt_set_phy(eth, phy_addr);
673
674
fixed_link = fdt_subnode_offset(initial_boot_params, eth, "fixed-link");
675
if (fixed_link < 0)
676
WARN_ON(octeon_has_fixed_link(ipd_port));
677
else if (!octeon_has_fixed_link(ipd_port))
678
fdt_nop_node(initial_boot_params, fixed_link);
679
octeon_rx_tx_delay(eth, i, p);
680
}
681
682
static void __init octeon_fdt_pip_iface(int pip, int idx)
683
{
684
char name_buffer[20];
685
int iface;
686
int p;
687
int count = 0;
688
689
snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
690
iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
691
if (iface < 0)
692
return;
693
694
if (cvmx_helper_interface_enumerate(idx) == 0)
695
count = cvmx_helper_ports_on_interface(idx);
696
697
for (p = 0; p < 16; p++)
698
octeon_fdt_pip_port(iface, idx, p, count - 1);
699
}
700
701
void __init octeon_fill_mac_addresses(void)
702
{
703
const char *alias_prop;
704
char name_buffer[20];
705
u64 mac_addr_base;
706
int aliases;
707
int pip;
708
int i;
709
710
aliases = fdt_path_offset(initial_boot_params, "/aliases");
711
if (aliases < 0)
712
return;
713
714
mac_addr_base =
715
((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
716
((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
717
((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
718
((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
719
((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
720
(octeon_bootinfo->mac_addr_base[5] & 0xffull);
721
722
for (i = 0; i < 2; i++) {
723
int mgmt;
724
725
snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
726
alias_prop = fdt_getprop(initial_boot_params, aliases,
727
name_buffer, NULL);
728
if (!alias_prop)
729
continue;
730
mgmt = fdt_path_offset(initial_boot_params, alias_prop);
731
if (mgmt < 0)
732
continue;
733
octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
734
}
735
736
alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
737
if (!alias_prop)
738
return;
739
740
pip = fdt_path_offset(initial_boot_params, alias_prop);
741
if (pip < 0)
742
return;
743
744
for (i = 0; i <= 4; i++) {
745
int iface;
746
int p;
747
748
snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
749
iface = fdt_subnode_offset(initial_boot_params, pip,
750
name_buffer);
751
if (iface < 0)
752
continue;
753
for (p = 0; p < 16; p++) {
754
int eth;
755
756
snprintf(name_buffer, sizeof(name_buffer),
757
"ethernet@%x", p);
758
eth = fdt_subnode_offset(initial_boot_params, iface,
759
name_buffer);
760
if (eth < 0)
761
continue;
762
octeon_fdt_set_mac_addr(eth, &mac_addr_base);
763
}
764
}
765
}
766
767
int __init octeon_prune_device_tree(void)
768
{
769
int i, max_port, uart_mask;
770
const char *pip_path;
771
const char *alias_prop;
772
char name_buffer[20];
773
int aliases;
774
775
if (fdt_check_header(initial_boot_params))
776
panic("Corrupt Device Tree.");
777
778
WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
779
"Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
780
cvmx_board_type_to_string(octeon_bootinfo->board_type));
781
782
aliases = fdt_path_offset(initial_boot_params, "/aliases");
783
if (aliases < 0) {
784
pr_err("Error: No /aliases node in device tree.");
785
return -EINVAL;
786
}
787
788
if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
789
max_port = 2;
790
else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
791
max_port = 1;
792
else
793
max_port = 0;
794
795
if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
796
max_port = 0;
797
798
for (i = 0; i < 2; i++) {
799
int mgmt;
800
801
snprintf(name_buffer, sizeof(name_buffer),
802
"mix%d", i);
803
alias_prop = fdt_getprop(initial_boot_params, aliases,
804
name_buffer, NULL);
805
if (alias_prop) {
806
mgmt = fdt_path_offset(initial_boot_params, alias_prop);
807
if (mgmt < 0)
808
continue;
809
if (i >= max_port) {
810
pr_debug("Deleting mix%d\n", i);
811
octeon_fdt_rm_ethernet(mgmt);
812
fdt_nop_property(initial_boot_params, aliases,
813
name_buffer);
814
} else {
815
int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
816
817
octeon_fdt_set_phy(mgmt, phy_addr);
818
}
819
}
820
}
821
822
pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
823
if (pip_path) {
824
int pip = fdt_path_offset(initial_boot_params, pip_path);
825
826
if (pip >= 0)
827
for (i = 0; i <= 4; i++)
828
octeon_fdt_pip_iface(pip, i);
829
}
830
831
/* I2C */
832
if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
833
OCTEON_IS_MODEL(OCTEON_CN63XX) ||
834
OCTEON_IS_MODEL(OCTEON_CN68XX) ||
835
OCTEON_IS_MODEL(OCTEON_CN56XX))
836
max_port = 2;
837
else
838
max_port = 1;
839
840
for (i = 0; i < 2; i++) {
841
int i2c;
842
843
snprintf(name_buffer, sizeof(name_buffer),
844
"twsi%d", i);
845
alias_prop = fdt_getprop(initial_boot_params, aliases,
846
name_buffer, NULL);
847
848
if (alias_prop) {
849
i2c = fdt_path_offset(initial_boot_params, alias_prop);
850
if (i2c < 0)
851
continue;
852
if (i >= max_port) {
853
pr_debug("Deleting twsi%d\n", i);
854
fdt_nop_node(initial_boot_params, i2c);
855
fdt_nop_property(initial_boot_params, aliases,
856
name_buffer);
857
}
858
}
859
}
860
861
/* SMI/MDIO */
862
if (OCTEON_IS_MODEL(OCTEON_CN68XX))
863
max_port = 4;
864
else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
865
OCTEON_IS_MODEL(OCTEON_CN63XX) ||
866
OCTEON_IS_MODEL(OCTEON_CN56XX))
867
max_port = 2;
868
else
869
max_port = 1;
870
871
for (i = 0; i < 2; i++) {
872
int i2c;
873
874
snprintf(name_buffer, sizeof(name_buffer),
875
"smi%d", i);
876
alias_prop = fdt_getprop(initial_boot_params, aliases,
877
name_buffer, NULL);
878
if (alias_prop) {
879
i2c = fdt_path_offset(initial_boot_params, alias_prop);
880
if (i2c < 0)
881
continue;
882
if (i >= max_port) {
883
pr_debug("Deleting smi%d\n", i);
884
fdt_nop_node(initial_boot_params, i2c);
885
fdt_nop_property(initial_boot_params, aliases,
886
name_buffer);
887
}
888
}
889
}
890
891
/* Serial */
892
uart_mask = 3;
893
894
/* Right now CN52XX is the only chip with a third uart */
895
if (OCTEON_IS_MODEL(OCTEON_CN52XX))
896
uart_mask |= 4; /* uart2 */
897
898
for (i = 0; i < 3; i++) {
899
int uart;
900
901
snprintf(name_buffer, sizeof(name_buffer),
902
"uart%d", i);
903
alias_prop = fdt_getprop(initial_boot_params, aliases,
904
name_buffer, NULL);
905
906
if (alias_prop) {
907
uart = fdt_path_offset(initial_boot_params, alias_prop);
908
if (uart_mask & (1 << i)) {
909
__be32 f;
910
911
f = cpu_to_be32(octeon_get_io_clock_rate());
912
fdt_setprop_inplace(initial_boot_params,
913
uart, "clock-frequency",
914
&f, sizeof(f));
915
continue;
916
}
917
pr_debug("Deleting uart%d\n", i);
918
fdt_nop_node(initial_boot_params, uart);
919
fdt_nop_property(initial_boot_params, aliases,
920
name_buffer);
921
}
922
}
923
924
/* Compact Flash */
925
alias_prop = fdt_getprop(initial_boot_params, aliases,
926
"cf0", NULL);
927
if (alias_prop) {
928
union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
929
unsigned long base_ptr, region_base, region_size;
930
unsigned long region1_base = 0;
931
unsigned long region1_size = 0;
932
int cs, bootbus;
933
bool is_16bit = false;
934
bool is_true_ide = false;
935
__be32 new_reg[6];
936
__be32 *ranges;
937
int len;
938
939
int cf = fdt_path_offset(initial_boot_params, alias_prop);
940
941
base_ptr = 0;
942
if (octeon_bootinfo->major_version == 1
943
&& octeon_bootinfo->minor_version >= 1) {
944
if (octeon_bootinfo->compact_flash_common_base_addr)
945
base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
946
} else {
947
base_ptr = 0x1d000800;
948
}
949
950
if (!base_ptr)
951
goto no_cf;
952
953
/* Find CS0 region. */
954
for (cs = 0; cs < 8; cs++) {
955
mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
956
region_base = mio_boot_reg_cfg.s.base << 16;
957
region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
958
if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
959
&& base_ptr < region_base + region_size) {
960
is_16bit = mio_boot_reg_cfg.s.width;
961
break;
962
}
963
}
964
if (cs >= 7) {
965
/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
966
goto no_cf;
967
}
968
969
if (!(base_ptr & 0xfffful)) {
970
/*
971
* Boot loader signals availability of DMA (true_ide
972
* mode) by setting low order bits of base_ptr to
973
* zero.
974
*/
975
976
/* Assume that CS1 immediately follows. */
977
mio_boot_reg_cfg.u64 =
978
cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
979
region1_base = mio_boot_reg_cfg.s.base << 16;
980
region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
981
if (!mio_boot_reg_cfg.s.en)
982
goto no_cf;
983
is_true_ide = true;
984
985
} else {
986
fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
987
fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
988
if (!is_16bit) {
989
__be32 width = cpu_to_be32(8);
990
991
fdt_setprop_inplace(initial_boot_params, cf,
992
"cavium,bus-width", &width, sizeof(width));
993
}
994
}
995
new_reg[0] = cpu_to_be32(cs);
996
new_reg[1] = cpu_to_be32(0);
997
new_reg[2] = cpu_to_be32(0x10000);
998
new_reg[3] = cpu_to_be32(cs + 1);
999
new_reg[4] = cpu_to_be32(0);
1000
new_reg[5] = cpu_to_be32(0x10000);
1001
fdt_setprop_inplace(initial_boot_params, cf,
1002
"reg", new_reg, sizeof(new_reg));
1003
1004
bootbus = fdt_parent_offset(initial_boot_params, cf);
1005
if (bootbus < 0)
1006
goto no_cf;
1007
ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1008
if (!ranges || len < (5 * 8 * sizeof(__be32)))
1009
goto no_cf;
1010
1011
ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1012
ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1013
ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1014
if (is_true_ide) {
1015
cs++;
1016
ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
1017
ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
1018
ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
1019
}
1020
goto end_cf;
1021
no_cf:
1022
fdt_nop_node(initial_boot_params, cf);
1023
1024
end_cf:
1025
;
1026
}
1027
1028
/* 8 char LED */
1029
alias_prop = fdt_getprop(initial_boot_params, aliases,
1030
"led0", NULL);
1031
if (alias_prop) {
1032
union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
1033
unsigned long base_ptr, region_base, region_size;
1034
int cs, bootbus;
1035
__be32 new_reg[6];
1036
__be32 *ranges;
1037
int len;
1038
int led = fdt_path_offset(initial_boot_params, alias_prop);
1039
1040
base_ptr = octeon_bootinfo->led_display_base_addr;
1041
if (base_ptr == 0)
1042
goto no_led;
1043
/* Find CS0 region. */
1044
for (cs = 0; cs < 8; cs++) {
1045
mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
1046
region_base = mio_boot_reg_cfg.s.base << 16;
1047
region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
1048
if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
1049
&& base_ptr < region_base + region_size)
1050
break;
1051
}
1052
1053
if (cs > 7)
1054
goto no_led;
1055
1056
new_reg[0] = cpu_to_be32(cs);
1057
new_reg[1] = cpu_to_be32(0x20);
1058
new_reg[2] = cpu_to_be32(0x20);
1059
new_reg[3] = cpu_to_be32(cs);
1060
new_reg[4] = cpu_to_be32(0);
1061
new_reg[5] = cpu_to_be32(0x20);
1062
fdt_setprop_inplace(initial_boot_params, led,
1063
"reg", new_reg, sizeof(new_reg));
1064
1065
bootbus = fdt_parent_offset(initial_boot_params, led);
1066
if (bootbus < 0)
1067
goto no_led;
1068
ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1069
if (!ranges || len < (5 * 8 * sizeof(__be32)))
1070
goto no_led;
1071
1072
ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1073
ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1074
ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1075
goto end_led;
1076
1077
no_led:
1078
fdt_nop_node(initial_boot_params, led);
1079
end_led:
1080
;
1081
}
1082
1083
#ifdef CONFIG_USB
1084
/* OHCI/UHCI USB */
1085
alias_prop = fdt_getprop(initial_boot_params, aliases,
1086
"uctl", NULL);
1087
if (alias_prop) {
1088
int uctl = fdt_path_offset(initial_boot_params, alias_prop);
1089
1090
if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
1091
octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
1092
pr_debug("Deleting uctl\n");
1093
fdt_nop_node(initial_boot_params, uctl);
1094
fdt_nop_property(initial_boot_params, aliases, "uctl");
1095
} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
1096
octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
1097
/* Missing "refclk-type" defaults to crystal. */
1098
fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1099
}
1100
}
1101
1102
/* DWC2 USB */
1103
alias_prop = fdt_getprop(initial_boot_params, aliases,
1104
"usbn", NULL);
1105
if (alias_prop) {
1106
int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1107
1108
if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1109
!octeon_has_feature(OCTEON_FEATURE_USB))) {
1110
pr_debug("Deleting usbn\n");
1111
fdt_nop_node(initial_boot_params, usbn);
1112
fdt_nop_property(initial_boot_params, aliases, "usbn");
1113
} else {
1114
__be32 new_f[1];
1115
enum cvmx_helper_board_usb_clock_types c;
1116
1117
c = __cvmx_helper_board_usb_get_clock_type();
1118
switch (c) {
1119
case USB_CLOCK_TYPE_REF_48:
1120
new_f[0] = cpu_to_be32(48000000);
1121
fdt_setprop_inplace(initial_boot_params, usbn,
1122
"refclk-frequency", new_f, sizeof(new_f));
1123
fallthrough;
1124
case USB_CLOCK_TYPE_REF_12:
1125
/* Missing "refclk-type" defaults to external. */
1126
fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1127
break;
1128
default:
1129
break;
1130
}
1131
}
1132
}
1133
#endif
1134
1135
return 0;
1136
}
1137
1138
static int __init octeon_publish_devices(void)
1139
{
1140
return of_platform_populate(NULL, octeon_ids, NULL, NULL);
1141
}
1142
arch_initcall(octeon_publish_devices);
1143
1144