Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/cavium-octeon/setup.c
26424 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (C) 2004-2007 Cavium Networks
7
* Copyright (C) 2008, 2009 Wind River Systems
8
* written by Ralf Baechle <[email protected]>
9
*/
10
#include <linux/compiler.h>
11
#include <linux/vmalloc.h>
12
#include <linux/init.h>
13
#include <linux/kernel.h>
14
#include <linux/console.h>
15
#include <linux/delay.h>
16
#include <linux/export.h>
17
#include <linux/interrupt.h>
18
#include <linux/io.h>
19
#include <linux/memblock.h>
20
#include <linux/serial.h>
21
#include <linux/smp.h>
22
#include <linux/types.h>
23
#include <linux/string.h> /* for memset */
24
#include <linux/tty.h>
25
#include <linux/time.h>
26
#include <linux/platform_device.h>
27
#include <linux/serial_core.h>
28
#include <linux/serial_8250.h>
29
#include <linux/of_fdt.h>
30
#include <linux/libfdt.h>
31
#include <linux/kexec.h>
32
33
#include <asm/processor.h>
34
#include <asm/reboot.h>
35
#include <asm/smp-ops.h>
36
#include <asm/irq_cpu.h>
37
#include <asm/mipsregs.h>
38
#include <asm/bootinfo.h>
39
#include <asm/sections.h>
40
#include <asm/fw/fw.h>
41
#include <asm/setup.h>
42
#include <asm/prom.h>
43
#include <asm/time.h>
44
45
#include <asm/octeon/octeon.h>
46
#include <asm/octeon/pci-octeon.h>
47
#include <asm/octeon/cvmx-rst-defs.h>
48
49
/*
50
* TRUE for devices having registers with little-endian byte
51
* order, FALSE for registers with native-endian byte order.
52
* PCI mandates little-endian, USB and SATA are configuraable,
53
* but we chose little-endian for these.
54
*/
55
const bool octeon_should_swizzle_table[256] = {
56
[0x00] = true, /* bootbus/CF */
57
[0x1b] = true, /* PCI mmio window */
58
[0x1c] = true, /* PCI mmio window */
59
[0x1d] = true, /* PCI mmio window */
60
[0x1e] = true, /* PCI mmio window */
61
[0x68] = true, /* OCTEON III USB */
62
[0x69] = true, /* OCTEON III USB */
63
[0x6c] = true, /* OCTEON III SATA */
64
[0x6f] = true, /* OCTEON II USB */
65
};
66
EXPORT_SYMBOL(octeon_should_swizzle_table);
67
68
#ifdef CONFIG_PCI
69
extern void pci_console_init(const char *arg);
70
#endif
71
72
static unsigned long long max_memory = ULLONG_MAX;
73
static unsigned long long reserve_low_mem;
74
75
DEFINE_SEMAPHORE(octeon_bootbus_sem, 1);
76
EXPORT_SYMBOL(octeon_bootbus_sem);
77
78
static struct octeon_boot_descriptor *octeon_boot_desc_ptr;
79
80
struct cvmx_bootinfo *octeon_bootinfo;
81
EXPORT_SYMBOL(octeon_bootinfo);
82
83
#ifdef CONFIG_KEXEC
84
#ifdef CONFIG_SMP
85
/*
86
* Wait for relocation code is prepared and send
87
* secondary CPUs to spin until kernel is relocated.
88
*/
89
static void octeon_kexec_smp_down(void *ignored)
90
{
91
int cpu = smp_processor_id();
92
93
local_irq_disable();
94
set_cpu_online(cpu, false);
95
while (!atomic_read(&kexec_ready_to_reboot))
96
cpu_relax();
97
98
asm volatile (
99
" sync \n"
100
" synci ($0) \n");
101
102
kexec_reboot();
103
}
104
#endif
105
106
#define OCTEON_DDR0_BASE (0x0ULL)
107
#define OCTEON_DDR0_SIZE (0x010000000ULL)
108
#define OCTEON_DDR1_BASE (0x410000000ULL)
109
#define OCTEON_DDR1_SIZE (0x010000000ULL)
110
#define OCTEON_DDR2_BASE (0x020000000ULL)
111
#define OCTEON_DDR2_SIZE (0x3e0000000ULL)
112
#define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
113
114
static struct kimage *kimage_ptr;
115
116
static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
117
{
118
int64_t addr;
119
struct cvmx_bootmem_desc *bootmem_desc;
120
121
bootmem_desc = cvmx_bootmem_get_desc();
122
123
if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
124
mem_size = OCTEON_MAX_PHY_MEM_SIZE;
125
pr_err("Error: requested memory too large,"
126
"truncating to maximum size\n");
127
}
128
129
bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
130
bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
131
132
addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
133
bootmem_desc->head_addr = 0;
134
135
if (mem_size <= OCTEON_DDR0_SIZE) {
136
__cvmx_bootmem_phy_free(addr,
137
mem_size - reserve_low_mem -
138
low_reserved_bytes, 0);
139
return;
140
}
141
142
__cvmx_bootmem_phy_free(addr,
143
OCTEON_DDR0_SIZE - reserve_low_mem -
144
low_reserved_bytes, 0);
145
146
mem_size -= OCTEON_DDR0_SIZE;
147
148
if (mem_size > OCTEON_DDR1_SIZE) {
149
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
150
__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
151
mem_size - OCTEON_DDR1_SIZE, 0);
152
} else
153
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
154
}
155
156
static int octeon_kexec_prepare(struct kimage *image)
157
{
158
int i;
159
char *bootloader = "kexec";
160
161
octeon_boot_desc_ptr->argc = 0;
162
for (i = 0; i < image->nr_segments; i++) {
163
if (!strncmp(bootloader, (char *)image->segment[i].buf,
164
strlen(bootloader))) {
165
/*
166
* convert command line string to array
167
* of parameters (as bootloader does).
168
*/
169
int argc = 0, offt;
170
char *str = (char *)image->segment[i].buf;
171
char *ptr = strchr(str, ' ');
172
while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
173
*ptr = '\0';
174
if (ptr[1] != ' ') {
175
offt = (int)(ptr - str + 1);
176
octeon_boot_desc_ptr->argv[argc] =
177
image->segment[i].mem + offt;
178
argc++;
179
}
180
ptr = strchr(ptr + 1, ' ');
181
}
182
octeon_boot_desc_ptr->argc = argc;
183
break;
184
}
185
}
186
187
/*
188
* Information about segments will be needed during pre-boot memory
189
* initialization.
190
*/
191
kimage_ptr = image;
192
return 0;
193
}
194
195
static void octeon_generic_shutdown(void)
196
{
197
int i;
198
#ifdef CONFIG_SMP
199
int cpu;
200
#endif
201
struct cvmx_bootmem_desc *bootmem_desc;
202
void *named_block_array_ptr;
203
204
bootmem_desc = cvmx_bootmem_get_desc();
205
named_block_array_ptr =
206
cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
207
208
#ifdef CONFIG_SMP
209
/* disable watchdogs */
210
for_each_online_cpu(cpu)
211
cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
212
#else
213
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
214
#endif
215
if (kimage_ptr != kexec_crash_image) {
216
memset(named_block_array_ptr,
217
0x0,
218
CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
219
sizeof(struct cvmx_bootmem_named_block_desc));
220
/*
221
* Mark all memory (except low 0x100000 bytes) as free.
222
* It is the same thing that bootloader does.
223
*/
224
kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
225
0x100000);
226
/*
227
* Allocate all segments to avoid their corruption during boot.
228
*/
229
for (i = 0; i < kimage_ptr->nr_segments; i++)
230
cvmx_bootmem_alloc_address(
231
kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
232
kimage_ptr->segment[i].mem - PAGE_SIZE,
233
PAGE_SIZE);
234
} else {
235
/*
236
* Do not mark all memory as free. Free only named sections
237
* leaving the rest of memory unchanged.
238
*/
239
struct cvmx_bootmem_named_block_desc *ptr =
240
(struct cvmx_bootmem_named_block_desc *)
241
named_block_array_ptr;
242
243
for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
244
if (ptr[i].size)
245
cvmx_bootmem_free_named(ptr[i].name);
246
}
247
kexec_args[2] = 1UL; /* running on octeon_main_processor */
248
kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
249
#ifdef CONFIG_SMP
250
secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
251
secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
252
#endif
253
}
254
255
static void octeon_shutdown(void)
256
{
257
octeon_generic_shutdown();
258
#ifdef CONFIG_SMP
259
smp_call_function(octeon_kexec_smp_down, NULL, 0);
260
smp_wmb();
261
while (num_online_cpus() > 1) {
262
cpu_relax();
263
mdelay(1);
264
}
265
#endif
266
}
267
268
static void octeon_crash_shutdown(struct pt_regs *regs)
269
{
270
octeon_generic_shutdown();
271
default_machine_crash_shutdown(regs);
272
}
273
274
#ifdef CONFIG_SMP
275
void octeon_crash_smp_send_stop(void)
276
{
277
int cpu;
278
279
/* disable watchdogs */
280
for_each_online_cpu(cpu)
281
cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
282
}
283
#endif
284
285
#endif /* CONFIG_KEXEC */
286
287
uint64_t octeon_reserve32_memory;
288
EXPORT_SYMBOL(octeon_reserve32_memory);
289
290
#ifdef CONFIG_KEXEC
291
/* crashkernel cmdline parameter is parsed _after_ memory setup
292
* we also parse it here (workaround for EHB5200) */
293
static uint64_t crashk_size, crashk_base;
294
#endif
295
296
static int octeon_uart;
297
298
extern asmlinkage void handle_int(void);
299
300
/**
301
* octeon_is_simulation - Return non-zero if we are currently running
302
* in the Octeon simulator
303
*
304
* Return: non-0 if running in the Octeon simulator, 0 otherwise
305
*/
306
int octeon_is_simulation(void)
307
{
308
return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
309
}
310
EXPORT_SYMBOL(octeon_is_simulation);
311
312
/**
313
* octeon_is_pci_host - Return true if Octeon is in PCI Host mode. This means
314
* Linux can control the PCI bus.
315
*
316
* Return: Non-zero if Octeon is in host mode.
317
*/
318
int octeon_is_pci_host(void)
319
{
320
#ifdef CONFIG_PCI
321
return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
322
#else
323
return 0;
324
#endif
325
}
326
327
/**
328
* octeon_get_clock_rate - Get the clock rate of Octeon
329
*
330
* Return: Clock rate in HZ
331
*/
332
uint64_t octeon_get_clock_rate(void)
333
{
334
struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
335
336
return sysinfo->cpu_clock_hz;
337
}
338
EXPORT_SYMBOL(octeon_get_clock_rate);
339
340
static u64 octeon_io_clock_rate;
341
342
u64 octeon_get_io_clock_rate(void)
343
{
344
return octeon_io_clock_rate;
345
}
346
EXPORT_SYMBOL(octeon_get_io_clock_rate);
347
348
349
/**
350
* octeon_write_lcd - Write to the LCD display connected to the bootbus.
351
* @s: String to write
352
*
353
* This display exists on most Cavium evaluation boards. If it doesn't exist,
354
* then this function doesn't do anything.
355
*/
356
static void octeon_write_lcd(const char *s)
357
{
358
if (octeon_bootinfo->led_display_base_addr) {
359
void __iomem *lcd_address =
360
ioremap(octeon_bootinfo->led_display_base_addr,
361
8);
362
int i;
363
for (i = 0; i < 8; i++, s++) {
364
if (*s)
365
iowrite8(*s, lcd_address + i);
366
else
367
iowrite8(' ', lcd_address + i);
368
}
369
iounmap(lcd_address);
370
}
371
}
372
373
/**
374
* octeon_get_boot_uart - Return the console uart passed by the bootloader
375
*
376
* Return: uart number (0 or 1)
377
*/
378
static int octeon_get_boot_uart(void)
379
{
380
return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
381
1 : 0;
382
}
383
384
/**
385
* octeon_get_boot_coremask - Get the coremask Linux was booted on.
386
*
387
* Return: Core mask
388
*/
389
int octeon_get_boot_coremask(void)
390
{
391
return octeon_boot_desc_ptr->core_mask;
392
}
393
394
/**
395
* octeon_check_cpu_bist - Check the hardware BIST results for a CPU
396
*/
397
void octeon_check_cpu_bist(void)
398
{
399
const int coreid = cvmx_get_core_num();
400
unsigned long long mask;
401
unsigned long long bist_val;
402
403
/* Check BIST results for COP0 registers */
404
mask = 0x1f00000000ull;
405
bist_val = read_octeon_c0_icacheerr();
406
if (bist_val & mask)
407
pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
408
coreid, bist_val);
409
410
bist_val = read_octeon_c0_dcacheerr();
411
if (bist_val & 1)
412
pr_err("Core%d L1 Dcache parity error: "
413
"CacheErr(dcache) = 0x%llx\n",
414
coreid, bist_val);
415
416
mask = 0xfc00000000000000ull;
417
bist_val = read_c0_cvmmemctl();
418
if (bist_val & mask)
419
pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
420
coreid, bist_val);
421
422
write_octeon_c0_dcacheerr(0);
423
}
424
425
/**
426
* octeon_restart - Reboot Octeon
427
*
428
* @command: Command to pass to the bootloader. Currently ignored.
429
*/
430
static void octeon_restart(char *command)
431
{
432
/* Disable all watchdogs before soft reset. They don't get cleared */
433
#ifdef CONFIG_SMP
434
int cpu;
435
for_each_online_cpu(cpu)
436
cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
437
#else
438
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
439
#endif
440
441
mb();
442
while (1)
443
if (OCTEON_IS_OCTEON3())
444
cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
445
else
446
cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
447
}
448
449
450
/**
451
* octeon_kill_core - Permanently stop a core.
452
*
453
* @arg: Ignored.
454
*/
455
static void octeon_kill_core(void *arg)
456
{
457
if (octeon_is_simulation())
458
/* A break instruction causes the simulator stop a core */
459
asm volatile ("break" ::: "memory");
460
461
local_irq_disable();
462
/* Disable watchdog on this core. */
463
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
464
/* Spin in a low power mode. */
465
while (true)
466
asm volatile ("wait" ::: "memory");
467
}
468
469
470
/**
471
* octeon_halt - Halt the system
472
*/
473
static void octeon_halt(void)
474
{
475
smp_call_function(octeon_kill_core, NULL, 0);
476
477
switch (octeon_bootinfo->board_type) {
478
case CVMX_BOARD_TYPE_NAO38:
479
/* Driving a 1 to GPIO 12 shuts off this board */
480
cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
481
cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
482
break;
483
default:
484
octeon_write_lcd("PowerOff");
485
break;
486
}
487
488
octeon_kill_core(NULL);
489
}
490
491
static char __read_mostly octeon_system_type[80];
492
493
static void __init init_octeon_system_type(void)
494
{
495
char const *board_type;
496
497
board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
498
if (board_type == NULL) {
499
struct device_node *root;
500
int ret;
501
502
root = of_find_node_by_path("/");
503
ret = of_property_read_string(root, "model", &board_type);
504
of_node_put(root);
505
if (ret)
506
board_type = "Unsupported Board";
507
}
508
509
snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
510
board_type, octeon_model_get_string(read_c0_prid()));
511
}
512
513
/**
514
* octeon_board_type_string - Return a string representing the system type
515
*
516
* Return: system type string
517
*/
518
const char *octeon_board_type_string(void)
519
{
520
return octeon_system_type;
521
}
522
523
const char *get_system_type(void)
524
__attribute__ ((alias("octeon_board_type_string")));
525
526
void octeon_user_io_init(void)
527
{
528
union octeon_cvmemctl cvmmemctl;
529
530
/* Get the current settings for CP0_CVMMEMCTL_REG */
531
cvmmemctl.u64 = read_c0_cvmmemctl();
532
/* R/W If set, marked write-buffer entries time out the same
533
* as other entries; if clear, marked write-buffer entries
534
* use the maximum timeout. */
535
cvmmemctl.s.dismarkwblongto = 1;
536
/* R/W If set, a merged store does not clear the write-buffer
537
* entry timeout state. */
538
cvmmemctl.s.dismrgclrwbto = 0;
539
/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
540
* word location for an IOBDMA. The other 8 bits come from the
541
* SCRADDR field of the IOBDMA. */
542
cvmmemctl.s.iobdmascrmsb = 0;
543
/* R/W If set, SYNCWS and SYNCS only order marked stores; if
544
* clear, SYNCWS and SYNCS only order unmarked
545
* stores. SYNCWSMARKED has no effect when DISSYNCWS is
546
* set. */
547
cvmmemctl.s.syncwsmarked = 0;
548
/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
549
cvmmemctl.s.dissyncws = 0;
550
/* R/W If set, no stall happens on write buffer full. */
551
if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
552
cvmmemctl.s.diswbfst = 1;
553
else
554
cvmmemctl.s.diswbfst = 0;
555
/* R/W If set (and SX set), supervisor-level loads/stores can
556
* use XKPHYS addresses with <48>==0 */
557
cvmmemctl.s.xkmemenas = 0;
558
559
/* R/W If set (and UX set), user-level loads/stores can use
560
* XKPHYS addresses with VA<48>==0 */
561
cvmmemctl.s.xkmemenau = 0;
562
563
/* R/W If set (and SX set), supervisor-level loads/stores can
564
* use XKPHYS addresses with VA<48>==1 */
565
cvmmemctl.s.xkioenas = 0;
566
567
/* R/W If set (and UX set), user-level loads/stores can use
568
* XKPHYS addresses with VA<48>==1 */
569
cvmmemctl.s.xkioenau = 0;
570
571
/* R/W If set, all stores act as SYNCW (NOMERGE must be set
572
* when this is set) RW, reset to 0. */
573
cvmmemctl.s.allsyncw = 0;
574
575
/* R/W If set, no stores merge, and all stores reach the
576
* coherent bus in order. */
577
cvmmemctl.s.nomerge = 0;
578
/* R/W Selects the bit in the counter used for DID time-outs 0
579
* = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
580
* between 1x and 2x this interval. For example, with
581
* DIDTTO=3, expiration interval is between 16K and 32K. */
582
cvmmemctl.s.didtto = 0;
583
/* R/W If set, the (mem) CSR clock never turns off. */
584
cvmmemctl.s.csrckalwys = 0;
585
/* R/W If set, mclk never turns off. */
586
cvmmemctl.s.mclkalwys = 0;
587
/* R/W Selects the bit in the counter used for write buffer
588
* flush time-outs (WBFLT+11) is the bit position in an
589
* internal counter used to determine expiration. The write
590
* buffer expires between 1x and 2x this interval. For
591
* example, with WBFLT = 0, a write buffer expires between 2K
592
* and 4K cycles after the write buffer entry is allocated. */
593
cvmmemctl.s.wbfltime = 0;
594
/* R/W If set, do not put Istream in the L2 cache. */
595
cvmmemctl.s.istrnol2 = 0;
596
597
/*
598
* R/W The write buffer threshold. As per erratum Core-14752
599
* for CN63XX, a sc/scd might fail if the write buffer is
600
* full. Lowering WBTHRESH greatly lowers the chances of the
601
* write buffer ever being full and triggering the erratum.
602
*/
603
if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
604
cvmmemctl.s.wbthresh = 4;
605
else
606
cvmmemctl.s.wbthresh = 10;
607
608
/* R/W If set, CVMSEG is available for loads/stores in
609
* kernel/debug mode. */
610
#if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
611
cvmmemctl.s.cvmsegenak = 1;
612
#else
613
cvmmemctl.s.cvmsegenak = 0;
614
#endif
615
/* R/W If set, CVMSEG is available for loads/stores in
616
* supervisor mode. */
617
cvmmemctl.s.cvmsegenas = 0;
618
/* R/W If set, CVMSEG is available for loads/stores in user
619
* mode. */
620
cvmmemctl.s.cvmsegenau = 0;
621
622
write_c0_cvmmemctl(cvmmemctl.u64);
623
624
/* Setup of CVMSEG is done in kernel-entry-init.h */
625
if (smp_processor_id() == 0)
626
pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
627
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
628
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
629
630
if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
631
union cvmx_iob_fau_timeout fau_timeout;
632
633
/* Set a default for the hardware timeouts */
634
fau_timeout.u64 = 0;
635
fau_timeout.s.tout_val = 0xfff;
636
/* Disable tagwait FAU timeout */
637
fau_timeout.s.tout_enb = 0;
638
cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
639
}
640
641
if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
642
!OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
643
OCTEON_IS_MODEL(OCTEON_CN70XX)) {
644
union cvmx_pow_nw_tim nm_tim;
645
646
nm_tim.u64 = 0;
647
/* 4096 cycles */
648
nm_tim.s.nw_tim = 3;
649
cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
650
}
651
652
write_octeon_c0_icacheerr(0);
653
write_c0_derraddr1(0);
654
}
655
656
/**
657
* prom_init - Early entry point for arch setup
658
*/
659
void __init prom_init(void)
660
{
661
struct cvmx_sysinfo *sysinfo;
662
const char *arg;
663
char *p;
664
int i;
665
u64 t;
666
int argc;
667
/*
668
* The bootloader passes a pointer to the boot descriptor in
669
* $a3, this is available as fw_arg3.
670
*/
671
octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
672
octeon_bootinfo =
673
cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
674
cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
675
676
sysinfo = cvmx_sysinfo_get();
677
memset(sysinfo, 0, sizeof(*sysinfo));
678
sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
679
sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
680
681
if ((octeon_bootinfo->major_version > 1) ||
682
(octeon_bootinfo->major_version == 1 &&
683
octeon_bootinfo->minor_version >= 4))
684
cvmx_coremask_copy(&sysinfo->core_mask,
685
&octeon_bootinfo->ext_core_mask);
686
else
687
cvmx_coremask_set64(&sysinfo->core_mask,
688
octeon_bootinfo->core_mask);
689
690
/* Some broken u-boot pass garbage in upper bits, clear them out */
691
if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
692
for (i = 512; i < 1024; i++)
693
cvmx_coremask_clear_core(&sysinfo->core_mask, i);
694
695
sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
696
sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
697
sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
698
sysinfo->board_type = octeon_bootinfo->board_type;
699
sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
700
sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
701
memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
702
sizeof(sysinfo->mac_addr_base));
703
sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
704
memcpy(sysinfo->board_serial_number,
705
octeon_bootinfo->board_serial_number,
706
sizeof(sysinfo->board_serial_number));
707
sysinfo->compact_flash_common_base_addr =
708
octeon_bootinfo->compact_flash_common_base_addr;
709
sysinfo->compact_flash_attribute_base_addr =
710
octeon_bootinfo->compact_flash_attribute_base_addr;
711
sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
712
sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
713
sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
714
715
if (OCTEON_IS_OCTEON2()) {
716
/* I/O clock runs at a different rate than the CPU. */
717
union cvmx_mio_rst_boot rst_boot;
718
rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
719
octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
720
} else if (OCTEON_IS_OCTEON3()) {
721
/* I/O clock runs at a different rate than the CPU. */
722
union cvmx_rst_boot rst_boot;
723
rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
724
octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
725
} else {
726
octeon_io_clock_rate = sysinfo->cpu_clock_hz;
727
}
728
729
t = read_c0_cvmctl();
730
if ((t & (1ull << 27)) == 0) {
731
/*
732
* Setup the multiplier save/restore code if
733
* CvmCtl[NOMUL] clear.
734
*/
735
void *save;
736
void *save_end;
737
void *restore;
738
void *restore_end;
739
int save_len;
740
int restore_len;
741
int save_max = (char *)octeon_mult_save_end -
742
(char *)octeon_mult_save;
743
int restore_max = (char *)octeon_mult_restore_end -
744
(char *)octeon_mult_restore;
745
if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
746
save = octeon_mult_save3;
747
save_end = octeon_mult_save3_end;
748
restore = octeon_mult_restore3;
749
restore_end = octeon_mult_restore3_end;
750
} else {
751
save = octeon_mult_save2;
752
save_end = octeon_mult_save2_end;
753
restore = octeon_mult_restore2;
754
restore_end = octeon_mult_restore2_end;
755
}
756
save_len = (char *)save_end - (char *)save;
757
restore_len = (char *)restore_end - (char *)restore;
758
if (!WARN_ON(save_len > save_max ||
759
restore_len > restore_max)) {
760
memcpy(octeon_mult_save, save, save_len);
761
memcpy(octeon_mult_restore, restore, restore_len);
762
}
763
}
764
765
/*
766
* Only enable the LED controller if we're running on a CN38XX, CN58XX,
767
* or CN56XX. The CN30XX and CN31XX don't have an LED controller.
768
*/
769
if (!octeon_is_simulation() &&
770
octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
771
cvmx_write_csr(CVMX_LED_EN, 0);
772
cvmx_write_csr(CVMX_LED_PRT, 0);
773
cvmx_write_csr(CVMX_LED_DBG, 0);
774
cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
775
cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
776
cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
777
cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
778
cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
779
cvmx_write_csr(CVMX_LED_EN, 1);
780
}
781
782
/*
783
* We need to temporarily allocate all memory in the reserve32
784
* region. This makes sure the kernel doesn't allocate this
785
* memory when it is getting memory from the
786
* bootloader. Later, after the memory allocations are
787
* complete, the reserve32 will be freed.
788
*
789
* Allocate memory for RESERVED32 aligned on 2MB boundary. This
790
* is in case we later use hugetlb entries with it.
791
*/
792
if (CONFIG_CAVIUM_RESERVE32) {
793
int64_t addr =
794
cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
795
0, 0, 2 << 20,
796
"CAVIUM_RESERVE32", 0);
797
if (addr < 0)
798
pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
799
else
800
octeon_reserve32_memory = addr;
801
}
802
803
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
804
if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
805
pr_info("Skipping L2 locking due to reduced L2 cache size\n");
806
} else {
807
uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
808
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
809
/* TLB refill */
810
cvmx_l2c_lock_mem_region(ebase, 0x100);
811
#endif
812
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
813
/* General exception */
814
cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
815
#endif
816
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
817
/* Interrupt handler */
818
cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
819
#endif
820
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
821
cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
822
cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
823
#endif
824
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
825
cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
826
#endif
827
}
828
#endif
829
830
octeon_check_cpu_bist();
831
832
octeon_uart = octeon_get_boot_uart();
833
834
#ifdef CONFIG_SMP
835
octeon_write_lcd("LinuxSMP");
836
#else
837
octeon_write_lcd("Linux");
838
#endif
839
840
octeon_setup_delays();
841
842
/*
843
* BIST should always be enabled when doing a soft reset. L2
844
* Cache locking for instance is not cleared unless BIST is
845
* enabled. Unfortunately due to a chip errata G-200 for
846
* Cn38XX and CN31XX, BIST must be disabled on these parts.
847
*/
848
if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
849
OCTEON_IS_MODEL(OCTEON_CN31XX))
850
cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
851
else
852
cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
853
854
/* Default to 64MB in the simulator to speed things up */
855
if (octeon_is_simulation())
856
max_memory = 64ull << 20;
857
858
arg = strstr(arcs_cmdline, "mem=");
859
if (arg) {
860
max_memory = memparse(arg + 4, &p);
861
if (max_memory == 0)
862
max_memory = 32ull << 30;
863
if (*p == '@')
864
reserve_low_mem = memparse(p + 1, &p);
865
}
866
867
arcs_cmdline[0] = 0;
868
argc = octeon_boot_desc_ptr->argc;
869
for (i = 0; i < argc; i++) {
870
const char *arg =
871
cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
872
if ((strncmp(arg, "MEM=", 4) == 0) ||
873
(strncmp(arg, "mem=", 4) == 0)) {
874
max_memory = memparse(arg + 4, &p);
875
if (max_memory == 0)
876
max_memory = 32ull << 30;
877
if (*p == '@')
878
reserve_low_mem = memparse(p + 1, &p);
879
#ifdef CONFIG_KEXEC
880
} else if (strncmp(arg, "crashkernel=", 12) == 0) {
881
crashk_size = memparse(arg+12, &p);
882
if (*p == '@')
883
crashk_base = memparse(p+1, &p);
884
strcat(arcs_cmdline, " ");
885
strcat(arcs_cmdline, arg);
886
/*
887
* To do: switch parsing to new style, something like:
888
* parse_crashkernel(arg, sysinfo->system_dram_size,
889
* &crashk_size, &crashk_base);
890
*/
891
#endif
892
} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
893
sizeof(arcs_cmdline) - 1) {
894
strcat(arcs_cmdline, " ");
895
strcat(arcs_cmdline, arg);
896
}
897
}
898
899
if (strstr(arcs_cmdline, "console=") == NULL) {
900
if (octeon_uart == 1)
901
strcat(arcs_cmdline, " console=ttyS1,115200");
902
else
903
strcat(arcs_cmdline, " console=ttyS0,115200");
904
}
905
906
mips_hpt_frequency = octeon_get_clock_rate();
907
908
octeon_init_cvmcount();
909
910
_machine_restart = octeon_restart;
911
_machine_halt = octeon_halt;
912
913
#ifdef CONFIG_KEXEC
914
_machine_kexec_shutdown = octeon_shutdown;
915
_machine_crash_shutdown = octeon_crash_shutdown;
916
_machine_kexec_prepare = octeon_kexec_prepare;
917
#ifdef CONFIG_SMP
918
_crash_smp_send_stop = octeon_crash_smp_send_stop;
919
#endif
920
#endif
921
922
octeon_user_io_init();
923
octeon_setup_smp();
924
}
925
926
/* Exclude a single page from the regions obtained in plat_mem_setup. */
927
#ifndef CONFIG_CRASH_DUMP
928
static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
929
{
930
if (addr > *mem && addr < *mem + *size) {
931
u64 inc = addr - *mem;
932
memblock_add(*mem, inc);
933
*mem += inc;
934
*size -= inc;
935
}
936
937
if (addr == *mem && *size > PAGE_SIZE) {
938
*mem += PAGE_SIZE;
939
*size -= PAGE_SIZE;
940
}
941
}
942
#endif /* CONFIG_CRASH_DUMP */
943
944
void __init fw_init_cmdline(void)
945
{
946
int i;
947
948
octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
949
for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
950
const char *arg =
951
cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
952
if (strlen(arcs_cmdline) + strlen(arg) + 1 <
953
sizeof(arcs_cmdline) - 1) {
954
strcat(arcs_cmdline, " ");
955
strcat(arcs_cmdline, arg);
956
}
957
}
958
}
959
960
void __init *plat_get_fdt(void)
961
{
962
octeon_bootinfo =
963
cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
964
return phys_to_virt(octeon_bootinfo->fdt_addr);
965
}
966
967
void __init plat_mem_setup(void)
968
{
969
uint64_t mem_alloc_size;
970
uint64_t total;
971
uint64_t crashk_end;
972
#ifndef CONFIG_CRASH_DUMP
973
int64_t memory;
974
#endif
975
976
total = 0;
977
crashk_end = 0;
978
979
/*
980
* The Mips memory init uses the first memory location for
981
* some memory vectors. When SPARSEMEM is in use, it doesn't
982
* verify that the size is big enough for the final
983
* vectors. Making the smallest chuck 4MB seems to be enough
984
* to consistently work.
985
*/
986
mem_alloc_size = 4 << 20;
987
if (mem_alloc_size > max_memory)
988
mem_alloc_size = max_memory;
989
990
/* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
991
#ifdef CONFIG_CRASH_DUMP
992
memblock_add(reserve_low_mem, max_memory);
993
total += max_memory;
994
#else
995
#ifdef CONFIG_KEXEC
996
if (crashk_size > 0) {
997
memblock_add(crashk_base, crashk_size);
998
crashk_end = crashk_base + crashk_size;
999
}
1000
#endif
1001
/*
1002
* When allocating memory, we want incrementing addresses,
1003
* which is handled by memblock
1004
*/
1005
cvmx_bootmem_lock();
1006
while (total < max_memory) {
1007
memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1008
__pa_symbol(&_end), -1,
1009
0x100000,
1010
CVMX_BOOTMEM_FLAG_NO_LOCKING);
1011
if (memory >= 0) {
1012
u64 size = mem_alloc_size;
1013
#ifdef CONFIG_KEXEC
1014
uint64_t end;
1015
#endif
1016
1017
/*
1018
* exclude a page at the beginning and end of
1019
* the 256MB PCIe 'hole' so the kernel will not
1020
* try to allocate multi-page buffers that
1021
* span the discontinuity.
1022
*/
1023
memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1024
&memory, &size);
1025
memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1026
CVMX_PCIE_BAR1_PHYS_SIZE,
1027
&memory, &size);
1028
#ifdef CONFIG_KEXEC
1029
end = memory + mem_alloc_size;
1030
1031
/*
1032
* This function automatically merges address regions
1033
* next to each other if they are received in
1034
* incrementing order
1035
*/
1036
if (memory < crashk_base && end > crashk_end) {
1037
/* region is fully in */
1038
memblock_add(memory, crashk_base - memory);
1039
total += crashk_base - memory;
1040
memblock_add(crashk_end, end - crashk_end);
1041
total += end - crashk_end;
1042
continue;
1043
}
1044
1045
if (memory >= crashk_base && end <= crashk_end)
1046
/*
1047
* Entire memory region is within the new
1048
* kernel's memory, ignore it.
1049
*/
1050
continue;
1051
1052
if (memory > crashk_base && memory < crashk_end &&
1053
end > crashk_end) {
1054
/*
1055
* Overlap with the beginning of the region,
1056
* reserve the beginning.
1057
*/
1058
mem_alloc_size -= crashk_end - memory;
1059
memory = crashk_end;
1060
} else if (memory < crashk_base && end > crashk_base &&
1061
end < crashk_end)
1062
/*
1063
* Overlap with the beginning of the region,
1064
* chop of end.
1065
*/
1066
mem_alloc_size -= end - crashk_base;
1067
#endif
1068
memblock_add(memory, mem_alloc_size);
1069
total += mem_alloc_size;
1070
/* Recovering mem_alloc_size */
1071
mem_alloc_size = 4 << 20;
1072
} else {
1073
break;
1074
}
1075
}
1076
cvmx_bootmem_unlock();
1077
#endif /* CONFIG_CRASH_DUMP */
1078
1079
/*
1080
* Now that we've allocated the kernel memory it is safe to
1081
* free the reserved region. We free it here so that builtin
1082
* drivers can use the memory.
1083
*/
1084
if (octeon_reserve32_memory)
1085
cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1086
1087
if (total == 0)
1088
panic("Unable to allocate memory from "
1089
"cvmx_bootmem_phy_alloc");
1090
}
1091
1092
/*
1093
* Emit one character to the boot UART. Exported for use by the
1094
* watchdog timer.
1095
*/
1096
void prom_putchar(char c)
1097
{
1098
uint64_t lsrval;
1099
1100
/* Spin until there is room */
1101
do {
1102
lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1103
} while ((lsrval & 0x20) == 0);
1104
1105
/* Write the byte */
1106
cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1107
}
1108
EXPORT_SYMBOL(prom_putchar);
1109
1110
void __init prom_free_prom_memory(void)
1111
{
1112
if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
1113
/* Check for presence of Core-14449 fix. */
1114
u32 insn;
1115
u32 *foo;
1116
1117
foo = &insn;
1118
1119
asm volatile("# before" : : : "memory");
1120
prefetch(foo);
1121
asm volatile(
1122
".set push\n\t"
1123
".set noreorder\n\t"
1124
"bal 1f\n\t"
1125
"nop\n"
1126
"1:\tlw %0,-12($31)\n\t"
1127
".set pop\n\t"
1128
: "=r" (insn) : : "$31", "memory");
1129
1130
if ((insn >> 26) != 0x33)
1131
panic("No PREF instruction at Core-14449 probe point.");
1132
1133
if (((insn >> 16) & 0x1f) != 28)
1134
panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1135
"Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1136
insn);
1137
}
1138
}
1139
1140
void __init octeon_fill_mac_addresses(void);
1141
1142
void __init device_tree_init(void)
1143
{
1144
const void *fdt;
1145
bool do_prune;
1146
bool fill_mac;
1147
1148
#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1149
if (!fdt_check_header(&__appended_dtb)) {
1150
fdt = &__appended_dtb;
1151
do_prune = false;
1152
fill_mac = true;
1153
pr_info("Using appended Device Tree.\n");
1154
} else
1155
#endif
1156
if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1157
fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1158
if (fdt_check_header(fdt))
1159
panic("Corrupt Device Tree passed to kernel.");
1160
do_prune = false;
1161
fill_mac = false;
1162
pr_info("Using passed Device Tree.\n");
1163
} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1164
fdt = &__dtb_octeon_68xx_begin;
1165
do_prune = true;
1166
fill_mac = true;
1167
} else {
1168
fdt = &__dtb_octeon_3xxx_begin;
1169
do_prune = true;
1170
fill_mac = true;
1171
}
1172
1173
initial_boot_params = (void *)fdt;
1174
1175
if (do_prune) {
1176
octeon_prune_device_tree();
1177
pr_info("Using internal Device Tree.\n");
1178
}
1179
if (fill_mac)
1180
octeon_fill_mac_addresses();
1181
unflatten_and_copy_device_tree();
1182
init_octeon_system_type();
1183
}
1184
1185
static int __initdata disable_octeon_edac_p;
1186
1187
static int __init disable_octeon_edac(char *str)
1188
{
1189
disable_octeon_edac_p = 1;
1190
return 0;
1191
}
1192
early_param("disable_octeon_edac", disable_octeon_edac);
1193
1194
static char *edac_device_names[] = {
1195
"octeon_l2c_edac",
1196
"octeon_pc_edac",
1197
};
1198
1199
static int __init edac_devinit(void)
1200
{
1201
struct platform_device *dev;
1202
int i, err = 0;
1203
int num_lmc;
1204
char *name;
1205
1206
if (disable_octeon_edac_p)
1207
return 0;
1208
1209
for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1210
name = edac_device_names[i];
1211
dev = platform_device_register_simple(name, -1, NULL, 0);
1212
if (IS_ERR(dev)) {
1213
pr_err("Registration of %s failed!\n", name);
1214
err = PTR_ERR(dev);
1215
}
1216
}
1217
1218
num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1219
(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1220
for (i = 0; i < num_lmc; i++) {
1221
dev = platform_device_register_simple("octeon_lmc_edac",
1222
i, NULL, 0);
1223
if (IS_ERR(dev)) {
1224
pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1225
err = PTR_ERR(dev);
1226
}
1227
}
1228
1229
return err;
1230
}
1231
device_initcall(edac_devinit);
1232
1233
static void __initdata *octeon_dummy_iospace;
1234
1235
static int __init octeon_no_pci_init(void)
1236
{
1237
/*
1238
* Initially assume there is no PCI. The PCI/PCIe platform code will
1239
* later re-initialize these to correct values if they are present.
1240
*/
1241
octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1242
set_io_port_base((unsigned long)octeon_dummy_iospace);
1243
ioport_resource.start = RESOURCE_SIZE_MAX;
1244
ioport_resource.end = 0;
1245
return 0;
1246
}
1247
core_initcall(octeon_no_pci_init);
1248
1249
static int __init octeon_no_pci_release(void)
1250
{
1251
/*
1252
* Release the allocated memory if a real IO space is there.
1253
*/
1254
if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1255
vfree(octeon_dummy_iospace);
1256
return 0;
1257
}
1258
late_initcall(octeon_no_pci_release);
1259
1260