Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/cavium-octeon/smp.c
26439 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (C) 2004-2008, 2009, 2010 Cavium Networks
7
*/
8
#include <linux/cpu.h>
9
#include <linux/delay.h>
10
#include <linux/smp.h>
11
#include <linux/interrupt.h>
12
#include <linux/kernel_stat.h>
13
#include <linux/sched.h>
14
#include <linux/sched/hotplug.h>
15
#include <linux/sched/task_stack.h>
16
#include <linux/init.h>
17
#include <linux/export.h>
18
#include <linux/kexec.h>
19
20
#include <asm/mmu_context.h>
21
#include <asm/time.h>
22
#include <asm/setup.h>
23
#include <asm/smp.h>
24
25
#include <asm/octeon/octeon.h>
26
27
#include "octeon_boot.h"
28
29
volatile unsigned long octeon_processor_boot = 0xff;
30
volatile unsigned long octeon_processor_sp;
31
volatile unsigned long octeon_processor_gp;
32
#ifdef CONFIG_RELOCATABLE
33
volatile unsigned long octeon_processor_relocated_kernel_entry;
34
#endif /* CONFIG_RELOCATABLE */
35
36
#ifdef CONFIG_HOTPLUG_CPU
37
uint64_t octeon_bootloader_entry_addr;
38
EXPORT_SYMBOL(octeon_bootloader_entry_addr);
39
#endif
40
41
extern void kernel_entry(unsigned long arg1, ...);
42
43
static void octeon_icache_flush(void)
44
{
45
asm volatile ("synci 0($0)\n");
46
}
47
48
static void (*octeon_message_functions[8])(void) = {
49
scheduler_ipi,
50
generic_smp_call_function_interrupt,
51
octeon_icache_flush,
52
};
53
54
static irqreturn_t mailbox_interrupt(int irq, void *dev_id)
55
{
56
u64 mbox_clrx = CVMX_CIU_MBOX_CLRX(cvmx_get_core_num());
57
u64 action;
58
int i;
59
60
/*
61
* Make sure the function array initialization remains
62
* correct.
63
*/
64
BUILD_BUG_ON(SMP_RESCHEDULE_YOURSELF != (1 << 0));
65
BUILD_BUG_ON(SMP_CALL_FUNCTION != (1 << 1));
66
BUILD_BUG_ON(SMP_ICACHE_FLUSH != (1 << 2));
67
68
/*
69
* Load the mailbox register to figure out what we're supposed
70
* to do.
71
*/
72
action = cvmx_read_csr(mbox_clrx);
73
74
if (OCTEON_IS_MODEL(OCTEON_CN68XX))
75
action &= 0xff;
76
else
77
action &= 0xffff;
78
79
/* Clear the mailbox to clear the interrupt */
80
cvmx_write_csr(mbox_clrx, action);
81
82
for (i = 0; i < ARRAY_SIZE(octeon_message_functions) && action;) {
83
if (action & 1) {
84
void (*fn)(void) = octeon_message_functions[i];
85
86
if (fn)
87
fn();
88
}
89
action >>= 1;
90
i++;
91
}
92
return IRQ_HANDLED;
93
}
94
95
/*
96
* Cause the function described by call_data to be executed on the passed
97
* cpu. When the function has finished, increment the finished field of
98
* call_data.
99
*/
100
void octeon_send_ipi_single(int cpu, unsigned int action)
101
{
102
int coreid = cpu_logical_map(cpu);
103
/*
104
pr_info("SMP: Mailbox send cpu=%d, coreid=%d, action=%u\n", cpu,
105
coreid, action);
106
*/
107
cvmx_write_csr(CVMX_CIU_MBOX_SETX(coreid), action);
108
}
109
110
static inline void octeon_send_ipi_mask(const struct cpumask *mask,
111
unsigned int action)
112
{
113
unsigned int i;
114
115
for_each_cpu(i, mask)
116
octeon_send_ipi_single(i, action);
117
}
118
119
/*
120
* Detect available CPUs, populate cpu_possible_mask
121
*/
122
static void octeon_smp_hotplug_setup(void)
123
{
124
#ifdef CONFIG_HOTPLUG_CPU
125
struct linux_app_boot_info *labi;
126
127
if (!setup_max_cpus)
128
return;
129
130
labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER);
131
if (labi->labi_signature != LABI_SIGNATURE) {
132
pr_info("The bootloader on this board does not support HOTPLUG_CPU.");
133
return;
134
}
135
136
octeon_bootloader_entry_addr = labi->InitTLBStart_addr;
137
#endif
138
}
139
140
static void __init octeon_smp_setup(void)
141
{
142
const int coreid = cvmx_get_core_num();
143
int cpus;
144
int id;
145
struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
146
147
#ifdef CONFIG_HOTPLUG_CPU
148
int core_mask = octeon_get_boot_coremask();
149
unsigned int num_cores = cvmx_octeon_num_cores();
150
#endif
151
152
/* The present CPUs are initially just the boot cpu (CPU 0). */
153
for (id = 0; id < NR_CPUS; id++) {
154
set_cpu_possible(id, id == 0);
155
set_cpu_present(id, id == 0);
156
}
157
158
__cpu_number_map[coreid] = 0;
159
__cpu_logical_map[0] = coreid;
160
161
/* The present CPUs get the lowest CPU numbers. */
162
cpus = 1;
163
for (id = 0; id < NR_CPUS; id++) {
164
if ((id != coreid) && cvmx_coremask_is_core_set(&sysinfo->core_mask, id)) {
165
set_cpu_possible(cpus, true);
166
set_cpu_present(cpus, true);
167
__cpu_number_map[id] = cpus;
168
__cpu_logical_map[cpus] = id;
169
cpus++;
170
}
171
}
172
173
#ifdef CONFIG_HOTPLUG_CPU
174
/*
175
* The possible CPUs are all those present on the chip. We
176
* will assign CPU numbers for possible cores as well. Cores
177
* are always consecutively numberd from 0.
178
*/
179
for (id = 0; setup_max_cpus && octeon_bootloader_entry_addr &&
180
id < num_cores && id < NR_CPUS; id++) {
181
if (!(core_mask & (1 << id))) {
182
set_cpu_possible(cpus, true);
183
__cpu_number_map[id] = cpus;
184
__cpu_logical_map[cpus] = id;
185
cpus++;
186
}
187
}
188
#endif
189
190
octeon_smp_hotplug_setup();
191
}
192
193
194
#ifdef CONFIG_RELOCATABLE
195
int plat_post_relocation(long offset)
196
{
197
unsigned long entry = (unsigned long)kernel_entry;
198
199
/* Send secondaries into relocated kernel */
200
octeon_processor_relocated_kernel_entry = entry + offset;
201
202
return 0;
203
}
204
#endif /* CONFIG_RELOCATABLE */
205
206
/*
207
* Firmware CPU startup hook
208
*/
209
static int octeon_boot_secondary(int cpu, struct task_struct *idle)
210
{
211
int count;
212
213
pr_info("SMP: Booting CPU%02d (CoreId %2d)...\n", cpu,
214
cpu_logical_map(cpu));
215
216
octeon_processor_sp = __KSTK_TOS(idle);
217
octeon_processor_gp = (unsigned long)(task_thread_info(idle));
218
octeon_processor_boot = cpu_logical_map(cpu);
219
mb();
220
221
count = 10000;
222
while (octeon_processor_sp && count) {
223
/* Waiting for processor to get the SP and GP */
224
udelay(1);
225
count--;
226
}
227
if (count == 0) {
228
pr_err("Secondary boot timeout\n");
229
return -ETIMEDOUT;
230
}
231
232
return 0;
233
}
234
235
/*
236
* After we've done initial boot, this function is called to allow the
237
* board code to clean up state, if needed
238
*/
239
static void octeon_init_secondary(void)
240
{
241
unsigned int sr;
242
243
sr = set_c0_status(ST0_BEV);
244
write_c0_ebase((u32)ebase);
245
write_c0_status(sr);
246
247
octeon_check_cpu_bist();
248
octeon_init_cvmcount();
249
250
octeon_irq_setup_secondary();
251
}
252
253
/*
254
* Callout to firmware before smp_init
255
*/
256
static void __init octeon_prepare_cpus(unsigned int max_cpus)
257
{
258
/*
259
* Only the low order mailbox bits are used for IPIs, leave
260
* the other bits alone.
261
*/
262
cvmx_write_csr(CVMX_CIU_MBOX_CLRX(cvmx_get_core_num()), 0xffff);
263
if (request_irq(OCTEON_IRQ_MBOX0, mailbox_interrupt,
264
IRQF_PERCPU | IRQF_NO_THREAD, "SMP-IPI",
265
mailbox_interrupt)) {
266
panic("Cannot request_irq(OCTEON_IRQ_MBOX0)");
267
}
268
}
269
270
/*
271
* Last chance for the board code to finish SMP initialization before
272
* the CPU is "online".
273
*/
274
static void octeon_smp_finish(void)
275
{
276
octeon_user_io_init();
277
278
/* to generate the first CPU timer interrupt */
279
write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
280
local_irq_enable();
281
}
282
283
#ifdef CONFIG_HOTPLUG_CPU
284
285
/* State of each CPU. */
286
static DEFINE_PER_CPU(int, cpu_state);
287
288
static int octeon_cpu_disable(void)
289
{
290
unsigned int cpu = smp_processor_id();
291
292
if (!octeon_bootloader_entry_addr)
293
return -ENOTSUPP;
294
295
set_cpu_online(cpu, false);
296
calculate_cpu_foreign_map();
297
octeon_fixup_irqs();
298
299
__flush_cache_all();
300
local_flush_tlb_all();
301
302
return 0;
303
}
304
305
static void octeon_cpu_die(unsigned int cpu)
306
{
307
int coreid = cpu_logical_map(cpu);
308
uint32_t mask, new_mask;
309
const struct cvmx_bootmem_named_block_desc *block_desc;
310
311
while (per_cpu(cpu_state, cpu) != CPU_DEAD)
312
cpu_relax();
313
314
/*
315
* This is a bit complicated strategics of getting/settig available
316
* cores mask, copied from bootloader
317
*/
318
319
mask = 1 << coreid;
320
/* LINUX_APP_BOOT_BLOCK is initialized in bootoct binary */
321
block_desc = cvmx_bootmem_find_named_block(LINUX_APP_BOOT_BLOCK_NAME);
322
323
if (!block_desc) {
324
struct linux_app_boot_info *labi;
325
326
labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER);
327
328
labi->avail_coremask |= mask;
329
new_mask = labi->avail_coremask;
330
} else { /* alternative, already initialized */
331
uint32_t *p = (uint32_t *)PHYS_TO_XKSEG_CACHED(block_desc->base_addr +
332
AVAIL_COREMASK_OFFSET_IN_LINUX_APP_BOOT_BLOCK);
333
*p |= mask;
334
new_mask = *p;
335
}
336
337
pr_info("Reset core %d. Available Coremask = 0x%x \n", coreid, new_mask);
338
mb();
339
cvmx_write_csr(CVMX_CIU_PP_RST, 1 << coreid);
340
cvmx_write_csr(CVMX_CIU_PP_RST, 0);
341
}
342
343
void play_dead(void)
344
{
345
int cpu = cpu_number_map(cvmx_get_core_num());
346
347
idle_task_exit();
348
cpuhp_ap_report_dead();
349
octeon_processor_boot = 0xff;
350
per_cpu(cpu_state, cpu) = CPU_DEAD;
351
352
mb();
353
354
while (1) /* core will be reset here */
355
;
356
}
357
358
static void start_after_reset(void)
359
{
360
kernel_entry(0, 0, 0); /* set a2 = 0 for secondary core */
361
}
362
363
static int octeon_update_boot_vector(unsigned int cpu)
364
{
365
366
int coreid = cpu_logical_map(cpu);
367
uint32_t avail_coremask;
368
const struct cvmx_bootmem_named_block_desc *block_desc;
369
struct boot_init_vector *boot_vect =
370
(struct boot_init_vector *)PHYS_TO_XKSEG_CACHED(BOOTLOADER_BOOT_VECTOR);
371
372
block_desc = cvmx_bootmem_find_named_block(LINUX_APP_BOOT_BLOCK_NAME);
373
374
if (!block_desc) {
375
struct linux_app_boot_info *labi;
376
377
labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER);
378
379
avail_coremask = labi->avail_coremask;
380
labi->avail_coremask &= ~(1 << coreid);
381
} else { /* alternative, already initialized */
382
avail_coremask = *(uint32_t *)PHYS_TO_XKSEG_CACHED(
383
block_desc->base_addr + AVAIL_COREMASK_OFFSET_IN_LINUX_APP_BOOT_BLOCK);
384
}
385
386
if (!(avail_coremask & (1 << coreid))) {
387
/* core not available, assume, that caught by simple-executive */
388
cvmx_write_csr(CVMX_CIU_PP_RST, 1 << coreid);
389
cvmx_write_csr(CVMX_CIU_PP_RST, 0);
390
}
391
392
boot_vect[coreid].app_start_func_addr =
393
(uint32_t) (unsigned long) start_after_reset;
394
boot_vect[coreid].code_addr = octeon_bootloader_entry_addr;
395
396
mb();
397
398
cvmx_write_csr(CVMX_CIU_NMI, (1 << coreid) & avail_coremask);
399
400
return 0;
401
}
402
403
static int register_cavium_notifier(void)
404
{
405
return cpuhp_setup_state_nocalls(CPUHP_MIPS_SOC_PREPARE,
406
"mips/cavium:prepare",
407
octeon_update_boot_vector, NULL);
408
}
409
late_initcall(register_cavium_notifier);
410
411
#endif /* CONFIG_HOTPLUG_CPU */
412
413
static const struct plat_smp_ops octeon_smp_ops = {
414
.send_ipi_single = octeon_send_ipi_single,
415
.send_ipi_mask = octeon_send_ipi_mask,
416
.init_secondary = octeon_init_secondary,
417
.smp_finish = octeon_smp_finish,
418
.boot_secondary = octeon_boot_secondary,
419
.smp_setup = octeon_smp_setup,
420
.prepare_cpus = octeon_prepare_cpus,
421
#ifdef CONFIG_HOTPLUG_CPU
422
.cpu_disable = octeon_cpu_disable,
423
.cpu_die = octeon_cpu_die,
424
#endif
425
#ifdef CONFIG_KEXEC_CORE
426
.kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
427
#endif
428
};
429
430
static irqreturn_t octeon_78xx_reched_interrupt(int irq, void *dev_id)
431
{
432
scheduler_ipi();
433
return IRQ_HANDLED;
434
}
435
436
static irqreturn_t octeon_78xx_call_function_interrupt(int irq, void *dev_id)
437
{
438
generic_smp_call_function_interrupt();
439
return IRQ_HANDLED;
440
}
441
442
static irqreturn_t octeon_78xx_icache_flush_interrupt(int irq, void *dev_id)
443
{
444
octeon_icache_flush();
445
return IRQ_HANDLED;
446
}
447
448
/*
449
* Callout to firmware before smp_init
450
*/
451
static void octeon_78xx_prepare_cpus(unsigned int max_cpus)
452
{
453
if (request_irq(OCTEON_IRQ_MBOX0 + 0,
454
octeon_78xx_reched_interrupt,
455
IRQF_PERCPU | IRQF_NO_THREAD, "Scheduler",
456
octeon_78xx_reched_interrupt)) {
457
panic("Cannot request_irq for SchedulerIPI");
458
}
459
if (request_irq(OCTEON_IRQ_MBOX0 + 1,
460
octeon_78xx_call_function_interrupt,
461
IRQF_PERCPU | IRQF_NO_THREAD, "SMP-Call",
462
octeon_78xx_call_function_interrupt)) {
463
panic("Cannot request_irq for SMP-Call");
464
}
465
if (request_irq(OCTEON_IRQ_MBOX0 + 2,
466
octeon_78xx_icache_flush_interrupt,
467
IRQF_PERCPU | IRQF_NO_THREAD, "ICache-Flush",
468
octeon_78xx_icache_flush_interrupt)) {
469
panic("Cannot request_irq for ICache-Flush");
470
}
471
}
472
473
static void octeon_78xx_send_ipi_single(int cpu, unsigned int action)
474
{
475
int i;
476
477
for (i = 0; i < 8; i++) {
478
if (action & 1)
479
octeon_ciu3_mbox_send(cpu, i);
480
action >>= 1;
481
}
482
}
483
484
static void octeon_78xx_send_ipi_mask(const struct cpumask *mask,
485
unsigned int action)
486
{
487
unsigned int cpu;
488
489
for_each_cpu(cpu, mask)
490
octeon_78xx_send_ipi_single(cpu, action);
491
}
492
493
static const struct plat_smp_ops octeon_78xx_smp_ops = {
494
.send_ipi_single = octeon_78xx_send_ipi_single,
495
.send_ipi_mask = octeon_78xx_send_ipi_mask,
496
.init_secondary = octeon_init_secondary,
497
.smp_finish = octeon_smp_finish,
498
.boot_secondary = octeon_boot_secondary,
499
.smp_setup = octeon_smp_setup,
500
.prepare_cpus = octeon_78xx_prepare_cpus,
501
#ifdef CONFIG_HOTPLUG_CPU
502
.cpu_disable = octeon_cpu_disable,
503
.cpu_die = octeon_cpu_die,
504
#endif
505
#ifdef CONFIG_KEXEC_CORE
506
.kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
507
#endif
508
};
509
510
void __init octeon_setup_smp(void)
511
{
512
const struct plat_smp_ops *ops;
513
514
if (octeon_has_feature(OCTEON_FEATURE_CIU3))
515
ops = &octeon_78xx_smp_ops;
516
else
517
ops = &octeon_smp_ops;
518
519
register_smp_ops(ops);
520
}
521
522