Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/include/asm/dma.h
26481 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* linux/include/asm/dma.h: Defines for using and allocating dma channels.
4
* Written by Hennus Bergman, 1992.
5
* High DMA channel support & info by Hannu Savolainen
6
* and John Boyd, Nov. 1992.
7
*
8
* NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
9
* and can only be used for expansion cards. Onboard DMA controllers, such
10
* as the R4030 on Jazz boards behave totally different!
11
*/
12
13
#ifndef _ASM_DMA_H
14
#define _ASM_DMA_H
15
16
#include <asm/io.h> /* need byte IO */
17
#include <linux/spinlock.h> /* And spinlocks */
18
#include <linux/delay.h>
19
20
21
#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
22
#define dma_outb outb_p
23
#else
24
#define dma_outb outb
25
#endif
26
27
#define dma_inb inb
28
29
/*
30
* NOTES about DMA transfers:
31
*
32
* controller 1: channels 0-3, byte operations, ports 00-1F
33
* controller 2: channels 4-7, word operations, ports C0-DF
34
*
35
* - ALL registers are 8 bits only, regardless of transfer size
36
* - channel 4 is not used - cascades 1 into 2.
37
* - channels 0-3 are byte - addresses/counts are for physical bytes
38
* - channels 5-7 are word - addresses/counts are for physical words
39
* - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
40
* - transfer count loaded to registers is 1 less than actual count
41
* - controller 2 offsets are all even (2x offsets for controller 1)
42
* - page registers for 5-7 don't use data bit 0, represent 128K pages
43
* - page registers for 0-3 use bit 0, represent 64K pages
44
*
45
* DMA transfers are limited to the lower 16MB of _physical_ memory.
46
* Note that addresses loaded into registers must be _physical_ addresses,
47
* not logical addresses (which may differ if paging is active).
48
*
49
* Address mapping for channels 0-3:
50
*
51
* A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
52
* | ... | | ... | | ... |
53
* | ... | | ... | | ... |
54
* | ... | | ... | | ... |
55
* P7 ... P0 A7 ... A0 A7 ... A0
56
* | Page | Addr MSB | Addr LSB | (DMA registers)
57
*
58
* Address mapping for channels 5-7:
59
*
60
* A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
61
* | ... | \ \ ... \ \ \ ... \ \
62
* | ... | \ \ ... \ \ \ ... \ (not used)
63
* | ... | \ \ ... \ \ \ ... \
64
* P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
65
* | Page | Addr MSB | Addr LSB | (DMA registers)
66
*
67
* Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
68
* and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
69
* the hardware level, so odd-byte transfers aren't possible).
70
*
71
* Transfer count (_not # bytes_) is limited to 64K, represented as actual
72
* count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
73
* and up to 128K bytes may be transferred on channels 5-7 in one operation.
74
*
75
*/
76
77
#ifndef CONFIG_GENERIC_ISA_DMA_SUPPORT_BROKEN
78
#define MAX_DMA_CHANNELS 8
79
#endif
80
81
/*
82
* The maximum address in KSEG0 that we can perform a DMA transfer to on this
83
* platform. This describes only the PC style part of the DMA logic like on
84
* Deskstations or Acer PICA but not the much more versatile DMA logic used
85
* for the local devices on Acer PICA or Magnums.
86
*/
87
#if defined(CONFIG_SGI_IP22) || defined(CONFIG_SGI_IP28)
88
/* don't care; ISA bus master won't work, ISA slave DMA supports 32bit addr */
89
#define MAX_DMA_ADDRESS PAGE_OFFSET
90
#else
91
#define MAX_DMA_ADDRESS (PAGE_OFFSET + 0x01000000)
92
#endif
93
#define MAX_DMA_PFN PFN_DOWN(virt_to_phys((void *)MAX_DMA_ADDRESS))
94
95
#ifndef MAX_DMA32_PFN
96
#define MAX_DMA32_PFN (1UL << (32 - PAGE_SHIFT))
97
#endif
98
99
/* 8237 DMA controllers */
100
#define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
101
#define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
102
103
/* DMA controller registers */
104
#define DMA1_CMD_REG 0x08 /* command register (w) */
105
#define DMA1_STAT_REG 0x08 /* status register (r) */
106
#define DMA1_REQ_REG 0x09 /* request register (w) */
107
#define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
108
#define DMA1_MODE_REG 0x0B /* mode register (w) */
109
#define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
110
#define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
111
#define DMA1_RESET_REG 0x0D /* Master Clear (w) */
112
#define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
113
#define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
114
115
#define DMA2_CMD_REG 0xD0 /* command register (w) */
116
#define DMA2_STAT_REG 0xD0 /* status register (r) */
117
#define DMA2_REQ_REG 0xD2 /* request register (w) */
118
#define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
119
#define DMA2_MODE_REG 0xD6 /* mode register (w) */
120
#define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
121
#define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
122
#define DMA2_RESET_REG 0xDA /* Master Clear (w) */
123
#define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
124
#define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
125
126
#define DMA_ADDR_0 0x00 /* DMA address registers */
127
#define DMA_ADDR_1 0x02
128
#define DMA_ADDR_2 0x04
129
#define DMA_ADDR_3 0x06
130
#define DMA_ADDR_4 0xC0
131
#define DMA_ADDR_5 0xC4
132
#define DMA_ADDR_6 0xC8
133
#define DMA_ADDR_7 0xCC
134
135
#define DMA_CNT_0 0x01 /* DMA count registers */
136
#define DMA_CNT_1 0x03
137
#define DMA_CNT_2 0x05
138
#define DMA_CNT_3 0x07
139
#define DMA_CNT_4 0xC2
140
#define DMA_CNT_5 0xC6
141
#define DMA_CNT_6 0xCA
142
#define DMA_CNT_7 0xCE
143
144
#define DMA_PAGE_0 0x87 /* DMA page registers */
145
#define DMA_PAGE_1 0x83
146
#define DMA_PAGE_2 0x81
147
#define DMA_PAGE_3 0x82
148
#define DMA_PAGE_5 0x8B
149
#define DMA_PAGE_6 0x89
150
#define DMA_PAGE_7 0x8A
151
152
#define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
153
#define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
154
#define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
155
156
#define DMA_AUTOINIT 0x10
157
158
extern spinlock_t dma_spin_lock;
159
160
static __inline__ unsigned long claim_dma_lock(void)
161
{
162
unsigned long flags;
163
spin_lock_irqsave(&dma_spin_lock, flags);
164
return flags;
165
}
166
167
static __inline__ void release_dma_lock(unsigned long flags)
168
{
169
spin_unlock_irqrestore(&dma_spin_lock, flags);
170
}
171
172
/* enable/disable a specific DMA channel */
173
static __inline__ void enable_dma(unsigned int dmanr)
174
{
175
if (dmanr<=3)
176
dma_outb(dmanr, DMA1_MASK_REG);
177
else
178
dma_outb(dmanr & 3, DMA2_MASK_REG);
179
}
180
181
static __inline__ void disable_dma(unsigned int dmanr)
182
{
183
if (dmanr<=3)
184
dma_outb(dmanr | 4, DMA1_MASK_REG);
185
else
186
dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
187
}
188
189
/* Clear the 'DMA Pointer Flip Flop'.
190
* Write 0 for LSB/MSB, 1 for MSB/LSB access.
191
* Use this once to initialize the FF to a known state.
192
* After that, keep track of it. :-)
193
* --- In order to do that, the DMA routines below should ---
194
* --- only be used while holding the DMA lock ! ---
195
*/
196
static __inline__ void clear_dma_ff(unsigned int dmanr)
197
{
198
if (dmanr<=3)
199
dma_outb(0, DMA1_CLEAR_FF_REG);
200
else
201
dma_outb(0, DMA2_CLEAR_FF_REG);
202
}
203
204
/* set mode (above) for a specific DMA channel */
205
static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
206
{
207
if (dmanr<=3)
208
dma_outb(mode | dmanr, DMA1_MODE_REG);
209
else
210
dma_outb(mode | (dmanr&3), DMA2_MODE_REG);
211
}
212
213
/* Set only the page register bits of the transfer address.
214
* This is used for successive transfers when we know the contents of
215
* the lower 16 bits of the DMA current address register, but a 64k boundary
216
* may have been crossed.
217
*/
218
static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
219
{
220
switch(dmanr) {
221
case 0:
222
dma_outb(pagenr, DMA_PAGE_0);
223
break;
224
case 1:
225
dma_outb(pagenr, DMA_PAGE_1);
226
break;
227
case 2:
228
dma_outb(pagenr, DMA_PAGE_2);
229
break;
230
case 3:
231
dma_outb(pagenr, DMA_PAGE_3);
232
break;
233
case 5:
234
dma_outb(pagenr & 0xfe, DMA_PAGE_5);
235
break;
236
case 6:
237
dma_outb(pagenr & 0xfe, DMA_PAGE_6);
238
break;
239
case 7:
240
dma_outb(pagenr & 0xfe, DMA_PAGE_7);
241
break;
242
}
243
}
244
245
246
/* Set transfer address & page bits for specific DMA channel.
247
* Assumes dma flipflop is clear.
248
*/
249
static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
250
{
251
set_dma_page(dmanr, a>>16);
252
if (dmanr <= 3) {
253
dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
254
dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
255
} else {
256
dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
257
dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
258
}
259
}
260
261
262
/* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
263
* a specific DMA channel.
264
* You must ensure the parameters are valid.
265
* NOTE: from a manual: "the number of transfers is one more
266
* than the initial word count"! This is taken into account.
267
* Assumes dma flip-flop is clear.
268
* NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
269
*/
270
static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
271
{
272
count--;
273
if (dmanr <= 3) {
274
dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
275
dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
276
} else {
277
dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
278
dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
279
}
280
}
281
282
283
/* Get DMA residue count. After a DMA transfer, this
284
* should return zero. Reading this while a DMA transfer is
285
* still in progress will return unpredictable results.
286
* If called before the channel has been used, it may return 1.
287
* Otherwise, it returns the number of _bytes_ left to transfer.
288
*
289
* Assumes DMA flip-flop is clear.
290
*/
291
static __inline__ int get_dma_residue(unsigned int dmanr)
292
{
293
unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
294
: ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
295
296
/* using short to get 16-bit wrap around */
297
unsigned short count;
298
299
count = 1 + dma_inb(io_port);
300
count += dma_inb(io_port) << 8;
301
302
return (dmanr<=3)? count : (count<<1);
303
}
304
305
306
/* These are in kernel/dma.c: */
307
extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */
308
extern void free_dma(unsigned int dmanr); /* release it again */
309
310
#endif /* _ASM_DMA_H */
311
312