/* SPDX-License-Identifier: GPL-2.0 */1/*2* linux/include/asm/dma.h: Defines for using and allocating dma channels.3* Written by Hennus Bergman, 1992.4* High DMA channel support & info by Hannu Savolainen5* and John Boyd, Nov. 1992.6*7* NOTE: all this is true *only* for ISA/EISA expansions on Mips boards8* and can only be used for expansion cards. Onboard DMA controllers, such9* as the R4030 on Jazz boards behave totally different!10*/1112#ifndef _ASM_DMA_H13#define _ASM_DMA_H1415#include <asm/io.h> /* need byte IO */16#include <linux/spinlock.h> /* And spinlocks */17#include <linux/delay.h>181920#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER21#define dma_outb outb_p22#else23#define dma_outb outb24#endif2526#define dma_inb inb2728/*29* NOTES about DMA transfers:30*31* controller 1: channels 0-3, byte operations, ports 00-1F32* controller 2: channels 4-7, word operations, ports C0-DF33*34* - ALL registers are 8 bits only, regardless of transfer size35* - channel 4 is not used - cascades 1 into 2.36* - channels 0-3 are byte - addresses/counts are for physical bytes37* - channels 5-7 are word - addresses/counts are for physical words38* - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries39* - transfer count loaded to registers is 1 less than actual count40* - controller 2 offsets are all even (2x offsets for controller 1)41* - page registers for 5-7 don't use data bit 0, represent 128K pages42* - page registers for 0-3 use bit 0, represent 64K pages43*44* DMA transfers are limited to the lower 16MB of _physical_ memory.45* Note that addresses loaded into registers must be _physical_ addresses,46* not logical addresses (which may differ if paging is active).47*48* Address mapping for channels 0-3:49*50* A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)51* | ... | | ... | | ... |52* | ... | | ... | | ... |53* | ... | | ... | | ... |54* P7 ... P0 A7 ... A0 A7 ... A055* | Page | Addr MSB | Addr LSB | (DMA registers)56*57* Address mapping for channels 5-7:58*59* A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)60* | ... | \ \ ... \ \ \ ... \ \61* | ... | \ \ ... \ \ \ ... \ (not used)62* | ... | \ \ ... \ \ \ ... \63* P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A064* | Page | Addr MSB | Addr LSB | (DMA registers)65*66* Again, channels 5-7 transfer _physical_ words (16 bits), so addresses67* and counts _must_ be word-aligned (the lowest address bit is _ignored_ at68* the hardware level, so odd-byte transfers aren't possible).69*70* Transfer count (_not # bytes_) is limited to 64K, represented as actual71* count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,72* and up to 128K bytes may be transferred on channels 5-7 in one operation.73*74*/7576#ifndef CONFIG_GENERIC_ISA_DMA_SUPPORT_BROKEN77#define MAX_DMA_CHANNELS 878#endif7980/*81* The maximum address in KSEG0 that we can perform a DMA transfer to on this82* platform. This describes only the PC style part of the DMA logic like on83* Deskstations or Acer PICA but not the much more versatile DMA logic used84* for the local devices on Acer PICA or Magnums.85*/86#if defined(CONFIG_SGI_IP22) || defined(CONFIG_SGI_IP28)87/* don't care; ISA bus master won't work, ISA slave DMA supports 32bit addr */88#define MAX_DMA_ADDRESS PAGE_OFFSET89#else90#define MAX_DMA_ADDRESS (PAGE_OFFSET + 0x01000000)91#endif92#define MAX_DMA_PFN PFN_DOWN(virt_to_phys((void *)MAX_DMA_ADDRESS))9394#ifndef MAX_DMA32_PFN95#define MAX_DMA32_PFN (1UL << (32 - PAGE_SHIFT))96#endif9798/* 8237 DMA controllers */99#define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */100#define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */101102/* DMA controller registers */103#define DMA1_CMD_REG 0x08 /* command register (w) */104#define DMA1_STAT_REG 0x08 /* status register (r) */105#define DMA1_REQ_REG 0x09 /* request register (w) */106#define DMA1_MASK_REG 0x0A /* single-channel mask (w) */107#define DMA1_MODE_REG 0x0B /* mode register (w) */108#define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */109#define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */110#define DMA1_RESET_REG 0x0D /* Master Clear (w) */111#define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */112#define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */113114#define DMA2_CMD_REG 0xD0 /* command register (w) */115#define DMA2_STAT_REG 0xD0 /* status register (r) */116#define DMA2_REQ_REG 0xD2 /* request register (w) */117#define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */118#define DMA2_MODE_REG 0xD6 /* mode register (w) */119#define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */120#define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */121#define DMA2_RESET_REG 0xDA /* Master Clear (w) */122#define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */123#define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */124125#define DMA_ADDR_0 0x00 /* DMA address registers */126#define DMA_ADDR_1 0x02127#define DMA_ADDR_2 0x04128#define DMA_ADDR_3 0x06129#define DMA_ADDR_4 0xC0130#define DMA_ADDR_5 0xC4131#define DMA_ADDR_6 0xC8132#define DMA_ADDR_7 0xCC133134#define DMA_CNT_0 0x01 /* DMA count registers */135#define DMA_CNT_1 0x03136#define DMA_CNT_2 0x05137#define DMA_CNT_3 0x07138#define DMA_CNT_4 0xC2139#define DMA_CNT_5 0xC6140#define DMA_CNT_6 0xCA141#define DMA_CNT_7 0xCE142143#define DMA_PAGE_0 0x87 /* DMA page registers */144#define DMA_PAGE_1 0x83145#define DMA_PAGE_2 0x81146#define DMA_PAGE_3 0x82147#define DMA_PAGE_5 0x8B148#define DMA_PAGE_6 0x89149#define DMA_PAGE_7 0x8A150151#define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */152#define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */153#define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */154155#define DMA_AUTOINIT 0x10156157extern spinlock_t dma_spin_lock;158159static __inline__ unsigned long claim_dma_lock(void)160{161unsigned long flags;162spin_lock_irqsave(&dma_spin_lock, flags);163return flags;164}165166static __inline__ void release_dma_lock(unsigned long flags)167{168spin_unlock_irqrestore(&dma_spin_lock, flags);169}170171/* enable/disable a specific DMA channel */172static __inline__ void enable_dma(unsigned int dmanr)173{174if (dmanr<=3)175dma_outb(dmanr, DMA1_MASK_REG);176else177dma_outb(dmanr & 3, DMA2_MASK_REG);178}179180static __inline__ void disable_dma(unsigned int dmanr)181{182if (dmanr<=3)183dma_outb(dmanr | 4, DMA1_MASK_REG);184else185dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);186}187188/* Clear the 'DMA Pointer Flip Flop'.189* Write 0 for LSB/MSB, 1 for MSB/LSB access.190* Use this once to initialize the FF to a known state.191* After that, keep track of it. :-)192* --- In order to do that, the DMA routines below should ---193* --- only be used while holding the DMA lock ! ---194*/195static __inline__ void clear_dma_ff(unsigned int dmanr)196{197if (dmanr<=3)198dma_outb(0, DMA1_CLEAR_FF_REG);199else200dma_outb(0, DMA2_CLEAR_FF_REG);201}202203/* set mode (above) for a specific DMA channel */204static __inline__ void set_dma_mode(unsigned int dmanr, char mode)205{206if (dmanr<=3)207dma_outb(mode | dmanr, DMA1_MODE_REG);208else209dma_outb(mode | (dmanr&3), DMA2_MODE_REG);210}211212/* Set only the page register bits of the transfer address.213* This is used for successive transfers when we know the contents of214* the lower 16 bits of the DMA current address register, but a 64k boundary215* may have been crossed.216*/217static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)218{219switch(dmanr) {220case 0:221dma_outb(pagenr, DMA_PAGE_0);222break;223case 1:224dma_outb(pagenr, DMA_PAGE_1);225break;226case 2:227dma_outb(pagenr, DMA_PAGE_2);228break;229case 3:230dma_outb(pagenr, DMA_PAGE_3);231break;232case 5:233dma_outb(pagenr & 0xfe, DMA_PAGE_5);234break;235case 6:236dma_outb(pagenr & 0xfe, DMA_PAGE_6);237break;238case 7:239dma_outb(pagenr & 0xfe, DMA_PAGE_7);240break;241}242}243244245/* Set transfer address & page bits for specific DMA channel.246* Assumes dma flipflop is clear.247*/248static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)249{250set_dma_page(dmanr, a>>16);251if (dmanr <= 3) {252dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );253dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );254} else {255dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );256dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );257}258}259260261/* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for262* a specific DMA channel.263* You must ensure the parameters are valid.264* NOTE: from a manual: "the number of transfers is one more265* than the initial word count"! This is taken into account.266* Assumes dma flip-flop is clear.267* NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.268*/269static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)270{271count--;272if (dmanr <= 3) {273dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );274dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );275} else {276dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );277dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );278}279}280281282/* Get DMA residue count. After a DMA transfer, this283* should return zero. Reading this while a DMA transfer is284* still in progress will return unpredictable results.285* If called before the channel has been used, it may return 1.286* Otherwise, it returns the number of _bytes_ left to transfer.287*288* Assumes DMA flip-flop is clear.289*/290static __inline__ int get_dma_residue(unsigned int dmanr)291{292unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE293: ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;294295/* using short to get 16-bit wrap around */296unsigned short count;297298count = 1 + dma_inb(io_port);299count += dma_inb(io_port) << 8;300301return (dmanr<=3)? count : (count<<1);302}303304305/* These are in kernel/dma.c: */306extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */307extern void free_dma(unsigned int dmanr); /* release it again */308309#endif /* _ASM_DMA_H */310311312